
The NiCad Clone Detector

James R Cordy
Queen’s University, Kingston, Canada

Email: cordy@cs.queensu.ca

Chanchal K. Roy
University of Saskatchewan, Saskatoon, Canada

Email: croy@cs.usask.ca

Abstract—The NiCad Clone Detector is a scalable, flexible
clone detection tool designed to implement the NiCad (Au-
tomated Detection of Near-Miss Intentional Clones) hybrid
clone detection method in a convenient, easy-to-use command-
line tool that can easily be embedded in IDEs and other
environments. It takes as input a source directory or directories
to be checked for clones and a configuration file specifying the
normalization and filtering to be done, and provides output
results in both XML form for easy analysis and HTML form
for convenient browsing. NiCad handles a range of languages
and normalizations, and is designed to be easily extensible using
a component-based plugin architecture. It is scalable to very
large systems and has been used to analyze, for example, all
47 releases of FreeBSD (60 million lines) as a single system.

Keywords-tools, clone detection, NiCad, plugin architecture

I. THE NICAD METHOD

NiCad [1] is a new clone detection method that has been
shown to yield both high precision and high recall [2]
in detecting near-miss intentional clones. NiCad is a hy-
brid method that combines language-sensitive parsing with
language-independent similarity analysis to yield structurally
meaningful near-miss clones.

The NiCad method involves three main stages, parsing,
normalization, and comparison. In the first stage the input
sources are parsed to extract all fragments of a given
granularity, such as functions or blocks. Each extracted
fragment (“potential clone”) is pretty-printed into a standard
textual form. Spacing and line breaks are normalized and
comments are removed to yield a form that exposes Type 1
(exact) clones as textually identical fragments.

In the second stage, extracted fragments can be normal-
ized, filtered or abstracted before comparison. For example,
they can be transformed by renaming, standard parenthesiza-
tion, or removal of declarations.

In the comparison stage, the extracted and normalized
fragments are linewise compared using an optimized LCS
(longest common subsequence) algorithm to detect similar
fragments (clones). Comparison is parameterized by a dif-
ference threshold that allows for near-miss detection. For
example, a difference threshold of 0.0 detects only exact
clones, 0.1 detects those that may differ by up to 10% of
their normalized lines, 0.2 by up to 20%, and so on. Unlike
most other methods, NiCad builds clone classes directly, as
part of comparison, rather than clustering separately.

II. THE NICAD CLONE DETECTOR

The NiCad Clone Detector (Figure 1) is a free open-
source implementation of the NiCad method designed to

be flexible, extensible and embeddable in IDEs and other
applications. It is designed to have a simple command-line
interface that allows for easy scripting and combination with
other tools and analyses. NiCad is invoked from the Linux,
Solaris, Cygwin or Mac OS X command line by simply
giving the desired granularity of processing, the language of
the source files to be processed, and the root directory of
the source system to be analyzed, for example:

% nicad functions java ./JHotDraw54b1

At present NiCad supports two granularities, functions and
blocks, and five languages, C, C#, Java, Python and WSDL.
New languages and granularities can be added simply by
adding a new TXL parser or extractor for the new language
or granularity to the plugins directory - see Section IV.
By default NiCad runs with no normalization, filtering or
renaming and simply finds exact and near-miss clones at
four difference (UPI) thresholds: 0.0, 0.1, 0.2 and 0.3,
corresponding to 0%, 10%, 20% and 30% different lines
in the normalized extracted fragments (e.g. Java methods).

A summary of progress and results is printed on the stan-
dard output, and the main output is stored in a newly created
directory in the same directory as the original system source,
in this case ./JHotDraw54b1 functions-clones/ where the
results in both XML form and as browsable HTML pages
are stored. FIgure 2 shows an example of the web page
output of the command above for the 0.3 threshold.

To specify normalization, filtering or renaming, the user
adds the name of a configuration file to the command:
% nicad functions java ./JHotDraw54b1 blindrenaming

The “blindrenaming” part means that the configuration file
named blindrenaming.cfg is to be used.

Configuration files (Figure 3) allow the user to specify a
range of options, including the set of near-miss thresholds
to be reported, the minimum and maximum size of clones
(in number of pretty-printed lines), the renaming to be

Figure 2. NiCad HTML web page output

2. Rename / Filter / Normalize

Pretty-printed
Potential Clones

1234

Parsing &
Potential Clone

Extraction

Original
Code Base

 Renaming,
Filtering,

Normalization

Clone
Classes

5.pc
23.pc
67.pc
 . . .

12.pc
17.pc
22.pc
 . . .

15.pc
18.pc
78.pc
 . . .

21.pc
63.pc
97.pc
 . . .

37.pc
39.pc
44.pc
 . . .

Choose Next
Potential Clone

as Exemplar

1. Parse / Extract 3. Clone Analysis

Normalized
Potential Clones

1234

Comparable Size
Potential Clone Cluster

Pairwise
Comparison

with Exemplar

(Repeat)

Cluster
Comparable

Size PCs

Figure 1. The NiCad Clone Detector

done (blind or consistent), syntactic forms to be filtered out
(e.g., declarations), syntactic forms to be abstracted (e.g.,
expressions), and custom contextual normalizations to be
applied (e.g., abstract if conditions).

Each option specified in the configuration file invokes a
NiCad plugin to be run on the potential clones (extracted
fragments) before comparison. Plugins are transformations,
such as renamers, normalizers and abstractors, implemented
in TXL and stored in the NiCad plugin directory (Section
IV). Users can add any new normalization they wish as a
TXL program using the language grammars provided. The
filtering and abstraction plugins are special, in that they are
generic - they automatically handle any set of forms named
in any language’s grammar.

Blind (all identifiers “X”) and consistent (same identifiers
“Xn”) renamings, as well as filtering (removal) and abstrac-
tion (replacement by “S”) of any syntactic form S before
comparison is provided for all languages.

III. INCREMENTAL NICAD

NiCad also provides an incremental mode, in which a
system that has already been analyzed is re-analyzed only
for new clones. In this mode, NiCad reports only clones that
have arisen as a result of the new version - that is, those that
cross the boundary between the old and new versions of the
system. If only changed files are given as the new system,
this allows for very efficient incremental clone detection.

Incremental clone detection can also be used to compare
two different systems for cross-system clones - for example,

 # NiCad configuration file
 # blindrename-filterdeclarations-abstractexpressions

 # Set of thresholds we are interested in
 thresholds="0.0 0.1 0.2 0.3"

 # Sizes of clones we are interested in
 minsize=5
 maxsize=500

 # Kind of renaming to be applied
 rename=blind

 # Kind of filtering to be applied
 filter=declaration

 # Kind of abstraction to be applied
 abstract=expression

 # Custom contextual normalizer to be applied
 normalize=none

 # End of NiCad configuration parameters

Figure 3. Example NiCad configuration file

c
java
cs
py
. . .

c-blocks
c-functions

j-blocks
j-functions

. . .

c-rename-blind
c-rename-cons
j-rename-blind
j-rename-cons

. . .

filter (c)
filter (java)
filter (cs)
filter (py)

. . .

abstract (c)
abstract (java)
abstract (cs)
abstract (py)

. . .

c-ctx-norm1
j-ctx-norm2

. . .

Parsers Extractors Renamers Generic
Form Filter

Generic Form
Abstractor

Contextual
Normalizers

Figure 4. NiCad plugin architecture

if we use Linux as the original system and FreeBSD as the
“new version”, NiCad will report clones that cross between
Linux and FreeBSD. Incremental NiCad simply adds another
command line argument for the new version:
% nicadincr blocks c linux/linux-2.6.24.2

freebsd/8.0-RELEASE consistentrename

IV. PLUGIN ARCHITECTURE

NiCad is designed with a plugin architecture to allow for
easy addition of new languages, granularities, renamings
and custom normalizations (Figure 4). NiCad recognizes
new plugins by naming convention - for example, to add
support for language L at granularity functions, we name
the parser/extractor L-functions-extract.txl and put it in the
TXL plugins directory, and NiCad will be able to use it in
detecting function clones in L systems right away. The sup-
plied extractors use robust parsing to allow for minor syntax
errors and unrecognized forms in input. Seriously malformed
files (typically very few) are reported and ignored.

Custom context-dependent normalizations can be added
by copying a generic normalization template and adding
TXL rules for the user’s new normalization. Again, the new
normalization program (e.g., mynormalization.txl) is placed
in the TXL plugins directory, and NiCad will be able to use it
immediately when normalize=mynormalization is specified
in a configuration file.

V. DEMONSTRATION

In this demonstration we will interactively run NiCad on
real systems to demonstrate its features and performance.
NiCad is very efficient in its resource usage, and can handle
even the largest systems (over 60 million lines) in 2 Gb
of memory on a standard single-processor laptop. While
parsing and extraction is the most expensive stage, it needs
be done only once on a given system to support many clone
analyses. There are of course many other tools to compare
to, but there is no room to do that here. The reader is referred
to existing published reviews of comparable systems [3].

REFERENCES

[1] C.K. Roy and J.R. Cordy, ”NICAD: Accurate Detection of Near-miss
Intentional Clones using flexible pretty-printing and code normaliza-
tion”, in ICPC 2008, pp. 172-181, Amsterdam, Netherlands, June 2008.

[2] C.K. Roy and J.R. Cordy, ”A mutation / injection-based automatic
framework for evaluating code clone detection tools”, in Mutation
2009, pp. 157-166, Denver, USA, Apr. 2009.

[3] C.K Roy, J.R. Cordy and R. Koschke, ”Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach”,
Sci. Comput. Program. 74(7), pp. 470-495, May 2009.

