
Tuning Research Tools for Scalability and Performance:
The NICAD Experience

James R. Cordy
School of Computing
Queen’s University

Kingston, Ontario, Canada

Chanchal K. Roy
Department of Computer Science

University of Saskatchewan
Saskatoon, Sasksatchewan, Canada

Abstract

Clone detection is a research technique for analyzing software systems for sim-
ilarities, with applications in software understanding, maintenance, evolution, li-
cense enforcement and many other issues. The NiCad near-miss clone detection
method has been shown to yield highly accurate results in both precision and re-
call. However, its naive two-step method, involving a parsing first step to identify
and normalize code fragments, followed by a text line-based second step using
longest common subsequence (LCS) to compare fragments, has proven di�cult
to migrate to the e�ciency and scalability required for large scale research appli-
cations. Rather than presenting the NiCad tool itself in detail, this paper focuses
on our experience in migrating NiCad from an initial rapid prototype to a prac-
tical scalable research tool. The process has increased overall performance by a
factor of up to 40 and clone detection speed by a factor of over 400, while re-
ducing memory and processor requirements to fit on a standard laptop. We apply
a sequence of four di↵erent kinds of performance optimizations and analyze the
e↵ect of each optimization in detail. We believe that the lessons of our experience
in migrating NiCad from research prototype to production performance may be
beneficial to others who are facing a similar problem.

Keywords: clone detection, longest common subsequence, optimization, NiCad

Preprint submitted to Elsevier November 8, 2011

1. Introduction

The copy/paste/edit cycle is a common practice in software development, and
as a result most software systems contain a significant number of similar code
fragments, called code clones or simply clones. While the practice of code cloning
can speed up and simplify software development, and in some cases can actually
be beneficial [1, 2], it can also lead to software understanding and maintenance
di�culties that can cause problems down the road [3].

Clone detection, or the analysis of source code for identical or similar frag-
ments, has become a popular and practical application of source analysis to assist
in finding and resolving such clones. A wide range of tools and techniques have
been proposed for clone detection [4], and it is currently an active and popular area
of source code analysis research. One of the most recent methods is the hybrid
technique NiCad [5], which is the subject of this paper.

The NiCad prototype tool has been shown to yield high accuracy in both preci-
sion [5] and recall [6], and has proven itself practical in large initial research stud-
ies [7, 8]. However, at several days to process the Linux kernel, its performance
leaves a lot to be desired. In this paper, rather than presenting the NiCad tool it-
self in detail, we address the performance issue head-on. We present a number of
tuning steps, including memory-residence, file reduction, line-level hashing, and
a custom optimization of the longest common subsequence (LCS) algorithm to
reduce comparison time. The objective is to move from the initial internal rapid
prototype to a scalable, e�cient research tool for use by other researchers.

This paper is not about clone detection per se, and not about comparing or
evaluating clone detectors. There are a number of other such studies already in
the literature [9, 4] and no doubt there will be more in the future. This paper is
about performance and scalability tuning, and in particular about tuning source
code processing systems, as represented by clone detection tools. Our goal is to
share our experience in tuning the performance and scalability of one particular
source code analysis system, the NiCad clone detector, in the hopes that others
may benefit from what we have learned about what matters, what worked for us,
and what the relative e↵ect of di↵erent tuning strategies may be expected to be.
Tuning software systems in general and source analysis systems in particular is an
art [10], and the more we know about what has worked in the past, the better we
can practice that art in the future.

The remainder of this paper is structured as follows. In Section 2 we outline
the problem we are attacking and the motivation for our tuning e↵orts. In Sec-
tion 3 we review the basics of the NiCad clone detection method and the structure

2

and properties of the original NiCad clone detector, including its prototype im-
plementation and poor performance. In Section 4 we outline the design of our
tuning experiment and introduce the set of systems we use as a joint benchmark
for measuring our performance improvements and original NiCad’s performance
on them. Section 5 introduces our first tuning step, moving all comparisons from
files to memory, and measures the improvements we observed. Section 6 mea-
sures the e↵ect of our second step, amalgamating all fragment files into one to
avoid system overhead. Section 7 introduces and measures the e↵ect of our third
step, using a hash table to convert text lines to hash codes, and finally Section 8
describes a specialization of the LCS length algorithm to speed fragment com-
parison and measures its e↵ect on overall performance. Section 9 reviews the
overall e↵ect of our tuning e↵orts on performance and scalability, and analyzes
the relative e↵ect of our various optimizations. Section 10 briefly admits that
there certainly are other clone detection methods with even better performance.
Section 11 outlines the lessons we have learned from this experience and the pos-
sible implications for tuning other tools. Our conclusions (Section 12) wrap up
the paper with further plans for the future of NiCad.

2. Motivation

Clone detectors face three fundamental challenges: accuracy, the extent to
which a clone detector finds cloned code with high precision (i.e., returns few
false positives) and recall (i.e., returns few false negatives), performance, the
speed with which the detector can return its results, and scalability, the extent
to which the detector can handle increasingly large systems. Meeting all three
of these is di�cult, and many creative ideas, such as su�x trees [11], metrics
[12], parallel computation [13] and dynamic clustering [5] have been proposed to
improve speed and other attributes.

In our previous research on the NiCad clone detection tool [5], we have chosen
to concentrate primarily on accuracy at the cost of scalability and performance.
Recognizing that the accuracy of clone detectors can be subjective, we developed
a method-independent copy/paste/edit theory of clone creation by programmers
that provides a formal definition for clones that can be used to objectively assess
accuracy [14]. Based on this theory, we validated both the high precision of the
NiCad method using a combination of back-checking using raw di↵ and a custom
interface that allows for practical total hand validation [5], and the high recall of
the NiCad method using thousands of artificially generated clones in a mutation-
based automated assessment framework [6].

3

Now that we are confident about accuracy, our attention turns to issues of scal-
ability and performance. While NiCad is designed to scale using parallelization,
and has been used for one or two initial large scale research studies [7], its poor
performance (e.g., a few days to process the Linux kernel, even running 4-way
parallel) makes it impractical for wider research use, and analysis of systems ten
times larger than Linux is simply infeasible.

Our specific motivation comes from a range of new requirements for clone
detectors, specifically: (i) the desire to bring clone detection research tools “to the
masses” on their own laptop PC, using reasonable resources on a modest single
processor; (ii) the desire to embed clone detection as an immediate service in code
development environments, with rapid incremental clone analysis as users create
or edit code; (iii) the desire to handle truly large code bases, such as the entire eight
DVD Debian source distribution, in order to audit other systems for copyright
or GPL violations; or the entire 48 releases of the FreeBSD kernel, in order to
track long-term code evolution. All three of these desires require high speed and
scalability, and the first two additionally require a modest memory footprint. The
optimizations outlined here have achieved all three of these goals [15, 16, 17].

3. NiCad

The NICAD (a dyslexic acronym for Accurate Detection of Near-miss Inten-
tional Clones) clone detector is a hybrid parser-based / text comparison clone de-
tection system. It is designed to combine the high precision of language-sensitive
parser-based clone detection methods with the high recall of language-independent
text- or token-based systems, in order to increase overall accuracy. At present it
can process programs in four di↵erent languages: C, Java, C# and Python.

The original NiCad design grew out of a multi-language (HTML, ASP, JSP)
web application refactoring project, which required a clone detection method that
was at once language structure sensitive and applicable across a range of lan-
guages, while allowing for unexpected nonstructural editing changes in the code
[18]. Input size was not originally an issue, since we were processing only static
web pages of relatively modest size.

The simple two-phase design we adopted (Figure 1) focuses on simplicity, ac-
curacy and flexibility in near-miss clone detection. In the first phase, a language-
sensitive island parser implemented in TXL [19] is used to recognize and extract
all fragments of the desired granularity (e.g., functions, blocks or statements) for
comparison as clones. Extraction uses the TXL non-terminal extraction built-in
function, which creates a list of all subtrees of a given non-terminal type (e.g.

4

Pretty-printed
Potential Clones

1234

Original
Code Base

Parsing &
Potential Clone

Extraction

Optional
Flexible

Normalization

 Cluster
Comparable Size

Potential Clones by
Exemplar

Comparable Size
Potential Clone Cluster

Clone
Classes

5.pc
23.pc
67.pc
 . . .

12.pc
17.pc
22.pc
 . . .

15.pc
18.pc
78.pc
 . . .

21.pc
63.pc
97.pc
 . . .

37.pc
39.pc
44.pc
 . . .

Choose Next
Potential Clone

as Exemplar

Pairwise
Comparison

with Exemplar

(Repeat)

Parse / Extract Clone Analysis

Figure 1: NiCad process architecture.

function, block, statement) in the parse tree of a given input. The structure of the
code recognized by the parser is preserved in the text of the extracted fragments,
called potential clones, using formal indentation and line break rules (“pretty-
printing”) to encode language structure. The result is the set of all code fragments
of the given granularity from all the source code files of a system, each pretty-
printed, comment-stripped and stored in a separate file. Figure 2 gives an example
of a small C source file and the potential clones that would be extracted from it at
the function granularity.

In the second phase, a language-independent near-miss comparator compares
the lines of text in pairs of potential clones using the di↵ algorithm, recognizing
as clones those extracted fragments whose pretty-printed text form di↵ers by less
than a given threshold (e.g., 30%, representing a maximum di↵erence of 3 lines
in every ten). If the threshold is 0%, allowing for no di↵erences at all, matching
fragments are called exact clones, referred to in the clone research community as
Type 1 clones. If the threshold is greater than 0%, then the matching fragments
are called near-miss clones, in that they are exact copies except for a few lines of
change. These are referred to in the cloning community as Type 3 clones. Figure
3 shows an example of two potential clone files that are near-miss clones at the
30% di↵erence threshold but not at 20%.

The NiCad method has been generalized to allow for an optional middle phase,
normalization. In normalization, potential clone files can be pre-processed for re-
naming, filtering or abstraction before comparison. Clones that are found by exact
matching of normalized fragments are referred to in the cloning community as pa-
rameterized or Type 2 clones, which allow for changes in identifiers, literal values
or other items within matching source lines, but do not allow for changes between
lines. Since our optimizations have the same e↵ect with or without normalization,
we ignore it in this paper.

In the original rapid prototype implementation of NiCad, a TXL [19] program
is used to extract and pretty-print the potential clones to a set of separate potential

5

/* Example C Source File */
void asn1_table_unset
 (hash_t *table,char *key){
 ssize_t klen=strlen(key);
 asn1_t *asn1=
 hash_get(table, key, klen);
 if(!asn1){
 return; /* Give up */
 }

 /* Free hash pointer */
 free(asn1);
 /* Clear hash entry */
 hash_set(table,key,klen,NULL);
 }

static const char *key_types[] =
/* Only two */ {"RSA", "DSA"};

const char *asn1_keystr(int keytype){
 /* Return if past max */
 if (keytype >= SSL_AIDX_MAX) {
 return NULL; }

 return asn1_key_types[keytype]; }

const char *table_keyfmt(pool_t *p,
 char *id, int keytype) {

 /* Make standard key format */
 const char *keystr =
 asn1_keystr(keytype);
 return pstrcat(p, id, ":",
 keystr, NULL);
}

void asn1_table_unset (apr_hash_t *table, char *key)
{
 ssize_t klen = strlen (key);
 asn1_t *asn1 = hash_get (table, key, klen);
 if (!asn1) {
 return;
 }
 free (asn1);
 hash_set (table, key, klen, NULL);
}

const char *asn1_keystr (int keytype)
{
 if (keytype >= SSL_AIDX_MAX) {
 return NULL;
 }
 return asn1_key_types [keytype];
}

const char *table_keyfmt (pool_t *p, char *id, int keytype)
{
 const char *keystr = asn1_keystr (keytype);
 return pstrcat (p, id, ":", keystr, NULL);
}

Figure 2: An example C source file and extracted potential clones at the function granularity.

void leftone (apr_hash_t *table, char *key)
{
 ssize_t klen = strlen (key);
 asn1_t *asn1 = hash_get (table, key, klen);
 if (!asn1) {
 return;
 }
 free (asn1);
 hash_set (table, key, klen, NULL);
}

void rightone (hash_t *table, char *key)
{
 ssize_t klen = strlen (key);
 asn1_t *asn1 = hash_get (table, key, klen);
 if (!asn1) {
 return (NULL);
 }
 asn1 = NULL;
 hash_set (table, key, klen, NULL);
}

Figure 3: A pair of C function potential clones which are near-miss clones at the 30% di↵erence
threshold level but not at 20%. The three di↵ering lines are highlighted in boldface.

clone files, and an optimized open-source Perl implementation of the di↵ longest
common subsequence (LCS) algorithm is used to compare potential clone files as
pairs. A Perl driver script dynamically chooses comparable sets of potential clone
files using an exemplar-based strategy that makes one pass over a sorted list of the
sizes of the potential clone files.

Potential clone files are first sorted from largest to smallest by number of lines.
The largest potential clone is then chosen as an exemplar. The comparable files
are then those whose di↵erence in number of lines from the examplar is within the
di↵erence threshold. For example, if the size of the exemplar is 10 lines and the
near-miss di↵erence threshold is 30%, then all potential clones between 7 and 13
lines form the comparable set. Once the exemplar is compared to these and clones
of it identified, they are removed from the comparison set and the next largest
remaining potential clone is chosen as exemplar, and so on. The script takes

6

advantage of the number of processor cores on the host machine to parallelize
comparison of the sets as much as possible.

While this prototype implementation has proven practical enough to support
our own research studies of cloning in open source software [7, 8], its perfor-
mance has been a problem, and is a serious barrier to its use as a general research
tool by others. For example, using NiCad to detect near-miss function clones in
a relatively modest mid-sized system such as Apache httpd at a 30% di↵erence
threshold takes about 15 minutes on a standard desktop PC. While one may apol-
ogize that, while slow compared to almost any other method, this is still usable
given the high accuracy of NiCad, it does not scale up – when httpd is processed
at the finer granularity of C blocks for the same di↵erence threshold, the time re-
quired grows to over an hour. Worse, for large systems, performance is a problem
even at the function granularity. For example, the total time for NiCad to extract
and find near-miss function clones in version 2.6.24.2 of the Linux kernel at a
30% di↵erence threshold on a quad-core 8 Gb compute server is almost a week.
Clearly such poor performance cannot serve us for finer granularities, longitudinal
studies, entire distribution code bases, real time personal clone detection or rapid
turnaround incremental analysis.

4. The Experiment

As a result of the observations above, we undertook to investigate methods for
tuning the performance of the NiCad tool to reasonable levels. The basic questions
to begin with were: Where does the time go? Are there any obvious opportunities
(“low-hanging fruit”) for improving performance? Can we learn anything that
others might use to tune their systems?

While NiCad is built in two stages, the first, implemented in TXL using the
TXL parser, is for the most part already tuned as a result of more than two decades
of TXL use on large scale problems. Initial measurements indicated that the vast
majority of the original NiCad time (more than 85% for httpd up to more than
99% for Linux) was spent in fragment comparison. Thus we have concentrated
most of our tuning e↵orts on clone analysis and comparison itself – problems that
are faced to some extent by all clone detection methods.

Based on an initial instrumentation of the Perl-based NiCad process, we de-
cided on six basic “research” questions for our tuning experiment:

1. Would changing to a compiled language from an interpretive one signifi-
cantly change performance?

7

2. What would be the e↵ect of using memory-resident rather than file-based
comparison of potential clones?

3. What is the e↵ect of file system performance and file representation on over-
all performance?

4. Can line-level hashing be used to improve comparison time and space?
5. Can the LCS length algorithm be optimized for near-miss clone detection?
6. And finally, what is the relative e↵ect of each of these techniques on overall

performance?

In order to answer these questions, we systematically applied each of these
potential optimizations to the NiCad implementation, one by one. In each case we
tracked the e↵ect on performance. Since true “memory resident” data (e.g., direct
memory-mapped arrays) is not a guaranteed property of interpretive languages
such as Perl, and since the challenge of recoding the complex Perl scripts running
old NiCad was formidable, we bundled the first two optimizations into one.

In order to track performance, we chose a suite of example applications chosen
from the four languages that NiCad can handle so far, and formed a baseline of
the times that our original NiCad prototype takes to process them at two di↵erent
granularities (Table 1). The example systems are mid-sized representatives of each
of the languages, and in the case of C and Java systems (httpd, postgresql, eclipse-
jdtcore, jEdit, etc.) have been chosen because of their familiarity as examples in
the clone detection community. (The Linux kernel, which due to its large size
would dominate the results, is considered separately – see Section 9).

Since the clone detection results from all these systems have already been re-
ported and their accuracy validated in our previous experiments [7, 8], we will not
repeat that data here. We simply say that since the method and algorithm remains
the same, none of our optimizations changes any of our clone detection results,
other than a tiny rounding e↵ect due to di↵erences in floating point representation
between Perl and compiled code. At each stage we used the results of the origi-
nal NiCad implementation on these systems as a regression test to insure that our
optimizations did not introduce any unexpected behaviour.

In order to reduce the number of free variables in the experiment, we have cho-
sen to show results only for the case of near-miss exact (Type 3) clones – that is,
those without renaming, filtering, abstraction or other normalization. Since nor-
malization a↵ects only extraction and is not a↵ected by any of our optimizations,
we are confident that our results are also valid for the normalized case.

Using Table 1 as a baseline, in each stage of the tuning experiment we used
the sum of the total processing times for all of the systems together (“Total all

8

(a) Functions
Elapsed time (sec)

Language System #Files #Lines #Fcns Extraction 0% 10% 20% 30%
C httpd 539 275,255 5,752 148.41 148.62 313.49 539.79 695.97

postgresql 322 201,686 4,685 130.02 132.10 249.92 434.17 574.96
C# Castle 2,419 130,565 9,529 223.88 271.13 379.41 647.83 801.62

RssBandit 316 166,495 4,580 195.41 54.44 86.81 157.53 212.91
Java eclipse-jdtcore 741 147,634 7,696 168.35 150.41 266.79 442.81 551.73

jEdit 539 173,792 6,251 151.08 106.21 185.07 328.16 422.72
JHotDraw 285 40,063 2,536 39.78 11.13 14.61 27.65 38.83

Python Django 1,343 140,117 7,084 168.96 179.93 247.16 457.79 604.07
Eric 743 196,513 7,659 257.57 184.88 306.94 525.17 688.63

Total All SystemsTotal All Systems 7,247 1,472,120 55,772 1,483.46 1,238.85 2,050.20 3,560.88 4,591.43

(b) Blocks
Elapsed time (sec)

Language System #Files #Lines #Blocks Extraction 0% 10% 20% 30%
C httpd 539 275,255 24,335 633.36 1,175.66 1,741.77 2,731.13 3,617.39

postgresql 322 201,686 13,972 508.27 995.51 1,404.64 1,983.93 2,600.88
C# Castle 2,419 130,565 23,311 449.03 640.09 881.07 1,314.93 1,658.40

RssBandit 316 166,495 16,145 684.87 357.47 548.29 854.47 1,018.05
Java eclipse-jdtcore 741 147,634 23,438 509.59 874.97 1,385.44 2,010.98 2,549.53

jEdit 539 173,792 15,679 361.12 530.23 813.72 1,244.30 1,525.93
JHotDraw 285 40,063 4,543 67.37 23.40 33.12 58.48 75.92

Python Django 1,343 140,117 20,583 430.77 868.64 1,257.53 1,973.27 2,622.24
Eric 743 196,513 26,870 837.46 1,433.57 2,114.20 3,407.49 4,475.06

Total All SystemsTotal All Systems 7,247 1,472,120 168,876 4,481.84 6,899.54 10,179.78 15,578.98 20,143.38

Table 1: Original NiCad prototype extraction and analysis times for the benchmark systems.

systems”) at each of four near-miss thresholds, 0% (exact clone), 10% (1 line
in 10 di↵erence allowed), 20% and 30%. We chose not to track CPU time, but
rather elapsed real (clock) time, since clone detector users will be interested in
real world throughput, not just CPU use. Throughout this paper all references to
“time” refer to elapsed clock time as measured by the Linux time command on
a quiet machine running only the NiCad process. While these measurements are
not exact, they vary by less than 10% in repeated runs, and we have reported times
for the average of five runs. While the test machine itself is a 2.66 GHz quad-core
Intel processor with 8 Gb of memory, all measurements have been made using a
single core in a 2 Gb memory partition. Except in the case of the first optimization,
reported improvements are incremental, that is, they are speedup factors relative
to the previous optimization rather than the original baseline.

While we tried to track improvements in memory use as well, they are di�-
cult to measure and reproduce in the Linux operating system environment, so we
only present them in qualitative summary terms. All versions handle all of these
example systems in less than 2 Gb, and our final version uses less than 2 Gb even

9

for Linux and other systems of over a million lines, making it easily practical on
laptop computers from a memory standpoint.

5. Reimplementation Using Memory-resident Comparison and Compiled Code

As outlined in Section 3 above, the original NiCad prototype uses large num-
bers of small files to represent and compare fragments (potential clones). Because
modern operating systems such as Linux optimize repeated access to the same
file using memory bu↵ering, for small systems this does not significantly a↵ect
performance since on second and subsequent accesses the potential clone files are
already bu↵ered in memory. However, there is nevertheless a significant amount
of time spent in system overhead accessing these small files, and for mid- to large-
sized systems this overhead rapidly becomes the dominant factor, accounting for
a large part of the observed elapsed times in Table 1.

Thus our first discovery in looking for “low hanging fruit” to optimize is the
observation that the total text of all potential clone files, even for all of the 156,000
functions of Linux, is only about 127 Mb – making it practical to avoid most of
the file access overhead by reading all of the potential clone files into memory
once, and then comparing them directly in memory as needed.

Our first optimization of NiCad was therefore a reimplementation using native
data arrays in a compiled language, Turing+ [20], a type-safe systems program-
ming variant of Pascal. We chose to use Turing+ because of its generated code
e�ciency (it uses the gcc code generator), its support for native memory arrays
(like C, but subscript-safe, making it easier to debug), and our local familiarity
with it because it is the implementation language used for TXL.

Table 2 shows the results of reimplementation using memory-resident frag-
ment comparison in Turing+. Conversion to reading the potential clone files once
and memory-resident comparison in a compiled language yielded a clone analysis
speed increase of a factor of a minimum of 57 times for all di↵erence thresholds,
and over 500 times for the case of exact clones.

The e↵ort to undertake this change was significant, requiring about one programmer-
month to design and code the new implementation using the original NiCad as a
reference. Much of the time was spent in understanding how the original Perl code
did what it did, a job that was made more di�cult because of the code obscurity
introduced by its previous parallelization optimization.

10

Elapsed time (sec)
All Systems #Files #Lines #Fcns Extraction 0% 10% 20% 30%

Original 7,247 1,472,120 55,772 1,483.46 1,238.85 2,050.20 3,560.88 4,591.43
Memory Res. 1,483.46 2.35 27.52 54.49 80.56
Speed up factor 1 527 75 65 57

#Files #Lines #Blocks Extraction 0% 10% 20% 30%
Original 7,247 1,472,120 168,876 4,481.84 6,899.54 10,179.78 15,578.98 20,143.38
Memory Res. 4,481.84 13.10 118.87 230.97 329.94
Speed up factor 1 527 86 67 61

Table 2: Extraction and clone analysis times in seconds after reimplementation to use memory-
resident comparison and compiled code.

6. File Reduction

Our next optimization continues on the theme of file access. While we have
reduced file access by reading potential clone files into memory only once, we
still have to pass all of these files from the extraction phase to the clone analysis
phase. For small systems like JHotDraw which has only a few thousand potential
clones (functions or blocks), writing and reading them does not present a signifi-
cant overhead. However, for large systems, there can be hundreds of thousands or
even millions of these potential clone files. For example, there are over 156,000
nontrivial functions in the Linux kernel, and over 2 million in the 48 releases of the
FreeBSD kernel. The file systems of modern operating systems such as Linux’s
ext3 and Windows’ NTFS are simply not optimized to handle such large numbers
of small files well, particularly if they are stored in a single directory. Thus the
system overhead and elapsed times of NiCad can grow significantly with the size
of the system, due not to its own processor use, but to the file system overhead
incurred by writing and reading so many small files.

One solution to this problem which has been suggested by others is to change
the file system. For example, we could change operating systems (Mac OS X has
less of this problem), or we could reconfigure Linux to use, say, XFS or Apple’s
HFS+ file system, both of which handle directories with large numbers of files
more e�ciently. Yet another solution, used by Linux archival systems, is to orga-
nize the large sets of small files into trees of subdirectories to avoid the ine�cient
large directory problem.

In our case we have control of both the source (the parser/extractor) and the
sink (the clone analyzer) of the large numbers of small files, and our only issue
is communicating the outputs of one to the inputs of the other. We can not sim-
ply pass the files in memory, both because repeated extraction is expensive, and
because we may want to run many di↵erent code analyses on a single extraction.

11

<source file="example/egcfile.c" startline="2" endline="16">
file=void asn1_table_unset (apr_hash_t *table, char *key)
{
 ssize_t klen = strlen (key);
 asn1_t *asn1 = hash_get (table, key, klen);
 if (!asn1) {
 return;
 }
 free (asn1);
 hash_set (table, key, klen, NULL);
}
</source>

<source file="example/egcfile.c" startline="21" endline="26">
const char *asn1_keystr (int keytype)
{
 if (keytype >= SSL_AIDX_MAX) {
 return NULL;
 }
 return asn1_key_types [keytype];
}
</source>

<source file="example/egcfile.c" startline="28" endline="36">
const char *table_keyfmt (pool_t *p, char *id, int keytype)
{
 const char *keystr = asn1_keystr (keytype);
 return pstrcat (p, id, ":", keystr, NULL);
}
</source>

Figure 4: Example single XML file representation of the extracted potential clones of Figure 2.

For example, we may want to experiment with varying normalizations and near-
miss thresholds for clone detection, or use other tools such as feature and concept
analyzers. Thus in our next optimization, we changed the extraction process to
output all extracted potential clones from all source files to a single sequential
file in XML format. Figure 4 shows an example XML potential clones file cor-
responding to the three potential clones files shown in Figure 2. Each parsed and
pretty-printed potential clone is enclosed in <source> tags giving its original file
and line number information, all in a single file that is sequentially read into the
clone detection process. Since all modern operating systems are highly optimized
for sequential read and write of large files, this allows us to use the file system in
its most e�cient mode, first sequentially writing all the potential clones from the
extractor and then sequentially reading them into the clone detector.

This change should a↵ect both the extraction time (since the parser/extractor
writes only one file, not large directories of small ones) and the comparison time
(since clone analysis now reads only one large sequential file rather than thousands
of small ones). Table 3 shows the results of our change to use a single file for all
potential clones. Although this change has only a tiny e↵ect on clone analysis
time, it yielded a speed increase in extraction time of a factor of 3.90 and 7.92 for
functions and blocks respectively.

The di↵erence in e↵ect of this optimization on the two phases is not simply
due to the di↵erence in writing vs. reading of the many files, but rather to the

12

Elapsed time (sec)
All Systems #Files #Lines #Fcns Extraction 0% 10% 20% 30%

Memory Res. 7,247 1,472,120 55,772 1,483.46 2.35 27.52 54.49 80.56
Single File 380.00 1.39 26.75 54.37 80.14
Speed up factor 3.90 1.69 1.03 1.00 1.01

#Files #Lines #Blocks Extraction 0% 10% 20% 30%
Memory Res. 7,247 1,472,120 168,876 4,481.84 13.10 118.87 230.97 329.94
Single File 566.20 9.86 116.2 227.64 327.03
Speed up factor 7.92 1.33 1.02 1.01 1.01

Table 3: Extraction and clone analysis times in seconds after reduction to single file representation
of potential clones.

Linux operating system optimization that keeps recently accessed files bu↵ered
in memory, thus charging all of the access overhead to the producer of the files
(extraction) rather than the consumer (clone analysis). If in the original system
clone analysis had been run again later on the same extracted files, when they had
not been recently accessed, then a similarly large speed increase would have been
seen for clone analysis.

The e↵ort to implement this optimization was not large. It took less than
two programmer-days to modify the driver program for the TXL parse-extract to
concatenate all its outputs onto one file and the Turing+ clone analysis program to
read all the potential clones from one file rather than one per file. A regression test
of all of our previous results for the test systems insured that we had introduced
no unexpected changes in behaviour.

7. Text Line Hashing

Since di↵erences in commenting, formatting, line boundaries and spacing are
eliminated by the NiCad potential clone extraction process and the granularity of
comparison is chosen by the extractor as part of its pretty-printing, potential clone
comparisons are carried out at the line-of-text level, where each line to compare
is a normalized, pretty-printed line of text to be compared only for equality. Each
two potential clones of comparable size are compared line-by-line using a longest
common subsequence (LCS) length algorithm, comparing pairs of lines textwise.
Naturally, these comparisons dominate the cost of the LCS algorithm.

In compilers and interpreters, text comparison of identifiers is optimized and
avoided using hash tables, which reduce the text comparison for equality of iden-
tifiers to integer comparison. Since we are also only interested in equality (of
normalized, pretty-printed text lines), an obvious optimization for us is to do sim-
ilarly, using a hash table to convert lines to integer hash codes for comparison.

13

Elapsed time (sec)
All Systems #Files #Lines #Fcns Extraction 0% 10% 20% 30%

Single File 7,247 1,472,120 55,772 380.00 1.39 26.75 54.37 80.14
Line Hash 380.00 0.96 10.79 20.75 30.40
Speed up factor 1.00 1.45 2.48 2.62 2.64

#Files #Lines #Blocks Extraction 0% 10% 20% 30%
Single File 7,247 1,472,120 168,876 566.20 9.86 116.2 227.64 327.03
Line Hash 566.20 2.91 42.41 81.79 115.65
Speed up factor 1.00 3.39 2.74 2.78 2.83

Table 4: Extraction and clone analysis times in seconds after addition of text line hashing.

Fortunately, we already had a module that implements generalized text hashing in
the TXL source transformer, which also happens to be implemented in Turing+.
Having been tuned over decades of TXL use processing source code in a range
of languages, it is also a very fast and e�cient hashing algorithm. Our next opti-
mization therefore was to adapt this module to implement a line-of-text hash table
for NiCad, reducing all comparisons in the LCS algorithm to integer equality. In
retrospect, this is an obvious change, since in NiCad lines e↵ectively play the role
of tokens in token-based methods, all of which use hash codes.

The result of this optimization is shown in Table 4. While there is a slight
initial cost to entering potential clone text lines into the hash table on reading them
in, clearly it is more than made up for in the increased speed of line comparison.
As we can see, this optimization has a huge e↵ect in the simple case of comparison
for exact clones.

Because we were adapting an existing text hashing module from the TXL
implementation, the e↵ort to introduce line hashing required no more than two
or three programmer-days to adapt the module and modify the input of potential
clone text lines to use it. Regression testing of previous results once again made
sure that functional behaviour had not been a↵ected.

8. Bounded LCS

Our final optimization is algorithmic. NiCad’s near-miss criterion is based
on a longest common subsequence (LCS) length di↵erence threshold, called the
UPIT (unique percentage of items threshold). At a UPIT of 0.10, for example, up
to 10% of the normalized pretty-printed lines between two fragments (potential
clones) may di↵er for them to be considered near-miss clones. This criterion is
implemented by the formula [5]:

uniqueLines(PC1)
totalLines(PC1)

 UPIT, and
uniqueLines(PC2)
totalLines(PC2)

 UPIT

14

where uniqueLines(PC1) is defined as :

totalLines(PC1) � LCS length(PC1, PC2)

and similarly for PC2, and LCSlength(PC1,PC2) is the length of the longest com-
mon subsequence of the lines in PC1 and PC2.

In the original NiCad prototype, the threshold is implemented by computing
the LCS length using an open source Perl implementation of the Unix di↵ algo-
rtihm [21] and then comparing the di↵erence between the number of lines in the
LCS with the numbers of lines in each of the potential clones. In our Turing+ im-
plementation, the threshold is computed using a direct translation of the standard
dynamic programming solution for LCS length [22] (Figure 5).

Since the cost of near-miss clone detection is dominated by the computation
of the LCS length (or similar measure), the question arises, can we specialize the
LCS length algorithm to improve our overall performance? As in many applica-
tions of LCS length, we are really only interested in the question of whether two
potential clones are close enough according to the threshold. In general, the vast
majority of the comparisons we make will fail – that is, the two fragments will
not be clones. Thus performance is dominated by LCS length comparisons that
fail. The earlier we recognize that we are going to fail, the faster we can make the
near-miss decision.

Figure 5 also shows the simple changes for a new algorithm for LCS length,
“bounded LCS length” that takes this into account. We have added an upper limit
to the LCS di↵erence, which limits the number of items (in our case lines) that
may be di↵erent before we give up because it is hopeless. The bound is pre-
computed from the lengths of the fragments to be compared. For example, if the
fragments to be compared are 9 and 10 lines respectively, and the threshold is 0.20
(20%), then the bound is 2 lines – that is, if the fragments di↵er by more than 2
lines then they are surely not near-miss clones. This basic idea was first described
by Hirschberg [23] in 1977, and we have simply adapted it to our algorithm.

In general, we can compute the bound using the formula:
round(max(totalLines(PC1), totalLines(PC2)) ⇥ UPIT)

The bounded LCS algorithm takes this information into account by checking after
processing each row (corresponding to a line of the first fragment) whether we al-
ready know that we have exceeded the bound. Because the dynamic programming
algorithm accumulates the LCS length in the last element of each row of the com-
parison matrix, we can check this simply by subtracting the row number (number
of lines checked so far) from the last element of the row (the length of the LCS so

15

% Standard dynamic programming version of the LCS length algorithm
var dpmatrix : array 0 .. maxclonelines, 0 .. maxclonelines of int

function lcs (pc1, pc2 : PC, m, n: int, difflimit: int) : int
 for i : 0 .. m
 dpmatrix (i, 0) := 0
 end for
 for j : 0 .. n
 dpmatrix (0, j) := 0
 end for

 for i : 1 .. m
 for j : 1 .. n
 if lines (pc1.firstline + i) = lines (pc2.firstline + j) then
 dpmatrix (i, j) := dpmatrix (i - 1, j - 1) + 1
 elsif dpmatrix (i - 1, j) >= dpmatrix (i, j - 1) then
 dpmatrix (i, j) := dpmatrix(i - 1, j)
 else
 dpmatrix (i, j) := dpmatrix (i, j - 1)
 end if
 end for

 % Optimize by cutting off when it's hopeless
 if i - dpmatrix (i, n) > difflimit then
 result 0
 end if
 end for

 result dpmatrix (m, n)
end lcs

Figure 5: LCS length in Turing+, and the changes for the bounding optimization.

far), and comparing this to the bound (Figure 5). If the bound has been exceeded,
we immediately return zero from the function, corresponding to the case where
no lines match at all. This will certainly cause the near-miss criterion to fail at any
di↵erence threshold.

On the face of it, the bounded LCS function now completely implements the
near-miss test. However, the bound we computed above is actually not an exact
representation of the near-miss formula. Rather, it is rounded up to the closest
exact number for the length of both fragments, and so we must still check the
near-miss formula on return to yield results identical to the unbounded LCS.

Table 5 shows the e↵ect of using the bounded LCS algorithm in place of the
original LCS length in our near-miss comparisons. Of course there is no e↵ect on
the exact clone (0%) case because it does not use LCS.

Clearly the e↵ort to introduce this optimization was minimal – only about
one programmer-day was used to make the minor changes to add the threshold
parameter to the LCS algorithm and modify the call to it to compute and pass
the threshold for each pair of compared potential clones. As always, regression
testing made sure we had not changed behaviour.

16

Elapsed time (sec)
All Systems #Files #Lines #Fcns Extraction 0% 10% 20% 30%

Line Hash 7,247 1,472,120 55,772 380.00 0.96 10.79 20.75 30.40
Bounded LCS 380.00 0.96 2.55 6.10 11.34
Speed up factor 1.00 1.00 4.23 3.40 2.68

All Systems #Files #Lines #Blocks Extraction 0% 10% 20% 30%
Line Hash 7,247 1,472,120 168,876 566.20 2.91 42.41 81.79 115.65
Bounded LCS 566.20 2.91 11.25 28.21 49.57
Speed up factor 1.00 1.00 3.77 2.90 2.33

Table 5: Extraction and clone analysis times in seconds after bounded LCS optimization.

9. Summary and Analysis

Table 6 summarizes our detailed results for all systems in our test set. Since
we have not changed the parser / extractors for any language, the improvement
in extraction speed is consistent across all systems, and since the near-miss clone
analysis is language independent, we see similar improvements as a result of our
optimizations for all systems and languages. Total clone detection times have
improved radically – for example, httpd has gone from a total of 148.41 + 695.97
seconds = about 14 minutes (Table 1) to 33.95 + 3.06 = 37 seconds at the 30%
di↵erence threshold level. Clone analysis alone has improved even more, going
from 695.97 seconds (11 and a half minutes) to 3.06 seconds for a near-miss
threshold of 30%. The improvement in overall time for all of the systems together
is shown at the bottom of the table.

The preceding sections have addressed each of our original research questions,
with the exception of the last one: “What is the relative e↵ect of each of these tech-
niques on overall performance?” In order to consider this question, we will view
our improvements using two overall performance metrics: (i) overall processing
speed in lines per second for the entire process, including both parsing/extraction
and clone analysis, and (ii) clone detection speed in fragments per second for the
clone analysis part alone at various near-miss thresholds (Table 7). We consider
each of these metrics at the two most common clone granularities – functions and
blocks. In reading these numbers, recall that all runs measured elapsed clock time
using a single core of a 2.66 GHz Intel quad-core processor in a 2 Gb partition.

Overall Processing Speed. Figure 6 shows the improvements in overall lines
per second processing speed for parse/extract alone and parse/extract plus clone
analysis for our four test thresholds at each granularity, attributed by proportion
contributed by each optimization. As we can see, the change to single file repre-
sentation dominates the improvements in overall processing speed. For near-miss
clone analysis, the change to memory residence of potential clones has the second

17

(a) Functions
Elapsed time (sec)

Language System #Files #Lines #Fcns Extraction 0% 10% 20% 30%
C httpd 539 275,255 5,752 33.95 0.14 0.49 1.46 3.06

postgresql 322 201,686 4,685 27.22 0.10 0.39 1.00 2.02
C# Castle 2,419 130,565 9,529 84.64 0.16 0.39 0.84 1.33

RssBandit 316 166,495 4,580 23.42 0.09 0.15 0.27 0.46
Java eclipse-jdtcore 741 147,634 7,696 23.09 0.12 0.35 0.85 1.54

jEdit 539 173,792 6,251 22.43 0.09 0.26 0.50 0.98
JHotDraw 285 40,063 2,536 6.44 0.03 0.04 0.07 0.10

Python Django 1,343 140,117 7,084 57.18 0.10 0.22 0.48 0.69
Eric 743 196,513 7,659 101.62 0.13 0.29 0.65 1.17

Total All SystemsTotal All Systems 7,247 1,472,120 55,772 380.00 0.96 2.55 6.10 11.34
Original TotalOriginal Total 1,483.46 1,238.85 2,050.20 3,560.88 4,591.43
Speedup FactorSpeedup Factor 3.90 1,291.81 804.00 583.37 404.92

(b) Blocks
Elapsed time (sec)

Language System #Files #Lines #Blocks Extraction 0% 10% 20% 30%
C httpd 539 275,255 24,335 35.85 0.45 2.43 6.72 12.37

postgresql 322 201,686 13,972 34.86 0.31 1.81 4.48 7.84
C# Castle 2,419 130,565 23,311 84.27 0.39 1.13 2.38 3.99

RssBandit 316 166,495 16,145 19.52 0.28 0.65 1.46 2.30
Java eclipse-jdtcore 741 147,634 23,438 23.26 0.34 1.56 3.66 6.08

jEdit 539 173,792 15,679 20.99 0.25 0.87 2.12 3.63
JHotDraw 285 40,063 4,543 6.20 0.05 0.09 0.16 0.22

Python Django 1,343 140,117 20,583 90.59 0.32 0.70 1.81 3.51
Eric 743 196,513 26,870 250.67 0.53 2.02 5.45 9.64

Total All SystemsTotal All Systems 7,247 1,472,120 168,876 566.20 2.91 11.25 28.21 49.57
Original TotalOriginal Total 4,481.84 6,899.54 10,179.78 15,578.98 20,143.38
Speedup FactorSpeedup Factor 7.92 2,367.72 905.27 552.29 406.34

Table 6: Final tuned NiCad extraction and clone analysis times in seconds for benchmark systems.

Functions Extraction 0% 10% 20% 30%

Original (sec) 1,483.48 2,722.31 3,533.66 5,044.34 6,074.89
Lines/sec 992.34 540.76 416.60 291.84 242.33
Frags/sec 45.02 27.20 15.66 12.15

Final (sec) 380.00 380.96 382.55 386.10 391.34
Lines/sec 3,874.01 3,864.25 3,848.18 3,812.76 3,761.75
Frags/sec 58,156.41 21,871.37 9,136.96 4,918.60

Blocks Extraction 0% 10% 20% 30%

Original (sec) 4,481.84 11,381.38 14,661.62 20,060.82 24,625.22
Lines/sec 328.46 129.34 100.41 73.38 59.78
Frags/sec 24.48 16.59 10.84 8.38

Final (sec) 566.20 569.11 577.45 594.41 615.77
Lines/sec 2,600.00 2,586.69 2,549.37 2,476.62 2,390.69
Frags/sec 57,953.33 15,017.87 5,986.81 3,406.61

Table 7: Original and final extraction and overall processing (parse/extract + clone analysis)
speeds.

18

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Extract Only Extract,0% Extract,10% Extract,20% Extract,30%

Overall Lines / Second Extract + Analyze Functions

Original
Memory Resident
Single File
Line Hashing
Bounded LCS

0

500

1,000

1,500

2,000

2,500

3,000

Extract Only Extract,0% Extract,10% Extract,20% Extract,30%

Overall Lines / Second Extract + Analyze Blocks

Original
Memory Resident
Single File
Line Hashing
Bounded LCSFigure 6: Change in overall NiCad processing speed, including both extract and clone analysis

(lines per second), for function (left) and block clones (right). Note that we include extraction
time for every near-miss threshold. In practice extraction need only be done once for all.

greatest e↵ect at the function granularity. Not surprisingly, our improvements to
the comparison algorithm itself, line hashing and LCS optimization, become in-
creasingly important at finer granularity (blocks), and the overall improvement in
processing speed is much greater (at a near-miss threshold of 30%, about 39 times
faster for blocks compared to about 14 times for functions).

Clone Analysis Speed. Figure 7 shows the improvements in fragments per
second clone analysis speed for our four test thresholds at each granularity. As
we can see, by far the greatest improvement is at the 0% (exact clone) thresh-
old. At first this was puzzling, since the exact clone detection algorithm should
not have changed. However, on inspection we discovered that, for generality, the
original NiCad prototype actually was using its LCS length function to test for
exact clones, which of course the new implementation does not. The overall im-
provements in clone analysis speed are large – a factor of over 800 times faster for
functions and 900 times for blocks at the 10% threshold for example. For the rea-
son above, the improvement at the 0% (exact) threshold level is much larger than
even those factors. In the near-miss cases, clearly the e↵ect of our bounded LCS
optimization is the dominant factor, accounting for about four fifths of the overall
improvement at the 10% threshold at each granularity, and about two thirds at the
30% threshold.

Scalability. One of our original motivations for tuning NiCad was its inability
to process really large systems in reasonable time, so while we can observe large
speed increases, it is important to consider what e↵ect our e↵orts have had on the
processing of large systems. Table 8 shows our results for function clones in two

19

0

10,000

20,000

30,000

40,000

50,000

60,000

0% 10% 20% 30%

Clone Analysis Fragments / Second Functions

Original
Memory Resident
Single File
Line Hashing
Bounded LCS

0

10,000

20,000

30,000

40,000

50,000

60,000

0% 10% 20% 30%

Clone Analysis Fragments / Second Blocks

Original
Memory Resident
Single File
Line Hashing
Bounded LCS

Figure 7: Change in NiCad clone analysis speed (fragments per second).

large systems – the Linux 2.6.24.2 kernel, and an artificial system consisting of
all 48 source releases of the FreeBSD kernel from release 1.0 to the current 8.0
release. (The latter is being analyzed as part of a longitudinal study of functions
in FreeBSD.) As we can see, the processing of the Linux kernel has improved
enormously, down from 7 days to 33.5 minutes for function clones at the 30%
near-miss threshold. For the amalgamated FreeBSD system, the times are much
longer, at about 5.7 hours for the 30% threshold, which seems disproportionately
slow compared to the Linux times until one realizes that such an amalgamated
system is the worst case for our clone detection algorithm, since it has so many
clones. This reduces the e↵ect of the LCS length optimization, since it is aimed at
comparisons that fail. Nevertheless, clearly our optimizations have taken NiCad
from barely useable on large systems to practical for much larger systems.

Next Steps. Having tuned clone analysis, for most mid-sized systems the over-
all NiCad processing time is now dominated by the parse / extract stage, which
is dependent on the TXL parser, which has already been tuned over many years.
While there remain some opportunities for tuning the grammars to increase TXL
parsing speed, two other strategies come to mind. First, since the extraction of
potential clones from source files is independent for each source file, we can par-
allelize the extraction all the way down to the individual source file, and for exam-
ple on our quad-core machine we can improve extraction speed by a factor of four
simply by running four file parses at the same time, and even on a dual core laptop
we can double the extraction speed. For future 8- and 16-core processors, this can
clearly be a viable option. Alternatively, we can use a lighter weight algorithm,
such as Cox’s lexical approximation [24], to parse and extract potential clones.

Memory Issues. We have purposely not tried to estimate memory improve-

20

System #Files #Lines #Fcns Extract 0% 10% 20% 30%

Linux 2.6.24.2 9,714 463,198 155,556 Old time 58m 2.5 days* 3.5 days* 5 days* 7 days*
New time 13m 23s 7.29s 4m 25s 15m 58s 33m 32s

* 4 way parallel* 4 way parallel Clone pairsClone pairs 3,281 4,659 10,907 20,017
Clone classesClone classes 932 1,674 3,977 6,735

FreeBSD 1.0 - 8.0 78,485 60,578,220 1,031,346 Old time 36h 2 weeks* 3 weeks* 4 weeks* 6 weeks*
(all 48 releases) New time 9h 47m 3s 1h 27m 2h 49m 4h 41m

* minimum estimate* minimum estimate Clone pairsClone pairs 6,265,179 7,634,671 9,343,159 11,039,686
Clone classesClone classes 108,428 89,642 76,273 68,510

Table 8: Original and new processing times for Linux and amalgamated FreeBSD releases.

ments in this work, instead limiting our new system to 2 Gb, the memory size of
a typical modern laptop. In addition to running on our Intel Linux test machine,
all of our runs, with the exception of the original NiCad, have been duplicated on
a 2 Gb dual core Apple MacBook Pro to validate performance and memory use.
The reason we have not statistically compared memory use is mainly because it
is very di�cult to measure, particularly for the original Perl-based NiCad rapid
prototype, which uses multiple processes to perform the comparisons.

10. Related Work

While it is not the purpose of this paper to compare tools or processing speeds
with other systems, it is important to set our results in a rough context. There are
many fast clone detection tools, and we do not have room to review them all here.
For a complete set see our recent survey of the state of the art [4].

Token-based systems such as CCFinder [25] and CPMiner [26] have been
shown to be even faster than our tuned NiCad using token-based comparison for
exact and renamed clones, handling relatively large systems in seconds by avoid-
ing parsing. While their recall and scalability are unmatched, in general token-
and text-based systems do not exhibit high precision without post-filtering, and
also do not return structurally meaningful fragments without post-processing of
results. Their e↵ective overall performance can be much reduced by taking these
extra costs into account. They also do not handle line-level near-miss clones.
Metrics-based clone detectors such as Mayrand’s [12], on the other hand, do well
with near-miss clones and exhibit speeds similar to tuned NiCad. However, they
can have even greater di�culties with precision.

In general, other successful parser-based systems, such as CloneDr [27] and
the Bauhaus clone detector [11], use AST-based tree comparison to yield results
that have been shown to be high precision, although sometimes at the cost of
perfect recall. A lot of research has gone into tuning and optimizing them using

21

techniques such as su�x trees [11], and recently they have become very fast,
processing large systems in a matter of seconds. Semantic Designs’ CloneDr [27]
handles a wide range of di↵erent languages and exploits parallelization [13] to
achieve throughput and scalability to even the largest systems at high accuracy.

11. Implications for Other Tools, and Lessons Learned

As the scale of software systems grows from individual applications, to whole
systems, to multi-version repositories and now to entire internet software corpora,
the ability for analysis tools such as clone detectors to scale becomes increasingly
important. Applications such as mining software repositories, reverse engineering
large software systems, web service discovery, software evolution and migration
to the semantic web all pose problems of scale involving processing and compar-
ison of large numbers of individual source fragments or other artifacts for which
our experience and observations can be brought to bear. Even if scale is not an
issue, in smaller analysis applications the speed of source analysis can be a dom-
inant consideration when interaction is involved, as for example for embedded
analysis in an IDE, or when used in software maintenance for incremental analy-
sis of changes for potential bugs.

Three particular applications of direct interest are the analysis of large bod-
ies of software code for malware detection [28], in which source code must be
searched for instances of patterns using normalization and similarity comparison
in a way very much analogous to clone detection; analysis of commercial soft-
ware code for copyright and licensing issues such as open-source license “con-
tamination” [29], in which the code of a software system must be compared to
the entire open source corpus (e.g., the eight distribution DVDs of Debian Linux
[16]); and analysis of student assignment code for plagiarism of solutions from
the web. Each of these problems involves both large numbers of small source files
and large numbers of approximate comparisons which can benefit from both our
file-reduction strategy and our use of the bounded LCS optimization. The results
reported here can directly help guide implementers in how they can expect each of
these strategies to be e↵ective in scaling these source code analysis applications.

Our experience tuning NiCad has taught us a number of valuable lessons that
can be used in tuning the performance of any tool. First, remember to measure.
Our initial assumption with the original NiCad Perl implementation was that it
was using machine resources as well as it could, and that our only choice was
to use concurrency to speed up the clone analysis process. While introducing
multi-processing did improve the performance of our original prototype tool by

22

a small factor, the change was nothing compared to the kinds of optimizations
reported in this paper. By using system tools such as Linux’s time, top and ps to
observe and measure the actual use of machine resources, we were able to see that
the majority of CPU time was actually being spent in system overhead related to
file input/output and inter-process communication, which is only made worse by
multi-processing.

Once we had moved to an in-memory comparison algorithm to reduce file in-
put/output, measuring again using these same tools also allowed us to observe the
large system overhead associated with large numbers of files, an operating-system
dependency that we did not expect. This leads to our second lesson: reduce sys-
tem overhead first. There is no point in optimizing your own algorithms if most
of the time is taken up by system tasks associated with memory management,
input/output and inter-process communication. These aspects must be addressed
first, in our case by reducing the number of files and file accesses to a minimum,
first using in-memory rather than file-level comparison, and second by using sin-
gle XML-encoded large files to represent the thousands of small ones.

Once system overhead is brought to a minimum, which can be evaluated by
measuring to see that at least 95% of CPU time is spent in “user mode” as mea-
sured by time or top, the third lesson is: tune data representation to minimize
repeated computations before tuning algorithms. In our case, simply by changing
to a hash-based line representation rather than raw text, we avoided repeated text
comparisons and were able to speed up the comparison phase by a factor of three
without any change to the algorithms.

After measuring to identify actual performance bottlenecks, optimizing file
input/output to minimize system overhead, and tuning data representation to min-
imize repeated computations, the final step and last lesson is: specialize general
algorithms to the task. In our case, because we were interested only in whether the
length of the longest common subsequence between two sets of lines was greater
than a certain threshold, we could look inside the LCS algorithm and optimize to
cut o↵ as soon as we knew that the di↵erence was too large. Exposing the details
of such standard algorithms or library routines is normally considered bad practice
in software engineering, but when optimizing for performance, such specializing
can have huge e↵ects.

Finally, there is a tuning meta-lesson to be had from our experience: don’t
parallelize until you’ve done everything else. In the modern mutli-core world it
is easy to believe that the best solution to tuning performance of research tools is
concurrency. Our first attempt at tuning our research prototype involved both a
significant e↵ort to parallelize the process and the use of a larger, more expensive

23

multi-core computer to run it. While this strategy did allow us to run our first
large experiments and publish our initial results, applying the lessons above led to
a solution that was easier to implement, more scalable, hundreds of times faster,
and required only the single core processor and 2 Gb memory of a standard laptop.

12. Conclusions and Future Work

In this paper we have shared our experience in tuning a naive research rapid
prototype source analyzer, the NiCad clone detector, to scalable production speeds
using a number of practical and technical optimizations. We have analyzed the
e↵ect of each of our changes and their relative importance to the overall improve-
ment. Finally, we have outlined some lessons we have learned about performance
tuning in general. It is our hope that others may be able to gain from our ex-
perience some hints on how they might improve the performance of their own
program analysis systems and tools, and avoid the pitfalls of early parallelization.

Our work continues, and we have begun exploring optimization of the extrac-
tion phase by parser specialization (that is, by customizing the TXL parser and
grammars to the extraction task), in a way analogous to the way we specialized
the LCS algorithm for near-miss comparison. NiCad’s potential clone extraction
architecture lends itself very well to incremental clone detection [30], and we
have recently adapted NiCad to an incremental version that can add new source
files and update clone detection results in interactive real time, even for quite large
systems (e.g., on the order of one second for JHotDraw and httpd). The result of
our tunings has been released publicly as a research tool available to all [15, 31].

Acknowledgements

This work is supported in part by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), and by an IBM Center for Advanced Studies
faculty award.

References

[1] C. Kapser, M. W. Godfrey, “Cloning considered harmful” considered harmful: pat-
terns of cloning in software, Empirical Softw. Eng. 13 (6) (2008) 645–692.

[2] J. R. Cordy, Comprehending reality - practical barriers to industrial adoption of
software maintenance automation, in: IWPC, 2003, pp. 196–206.

[3] E. Juergens, F. Deissenboeck, B. Hummel, S. Wagner, Do code clones matter?, in:
ICSE, 2009, pp. 485–495.

24

[4] C. K. Roy, J. R. Cordy, R. Koschke, Comparison and evaluation of code clone de-
tection techniques and tools: A qualitative approach, Sci. Comput. Program. 74 (7)
(2009) 470–495.

[5] C. K. Roy, J. R. Cordy, NiCad: Accurate detection of near-miss intentional clones
using flexible pretty-printing and code normalization, in: ICPC, 2008, pp. 172–181.

[6] C. K. Roy, J. R. Cordy, A mutation / injection-based automatic framework for eval-
uating code clone detection tools, in: Mutation, 2009, pp. 157–166.

[7] C. K. Roy, J. R. Cordy, Near-miss function clones in open source software: An
empirical study, J. Softw. Maint. and Evol. 22 (3) (2010) 165–189.

[8] C. K. Roy, J. R. Cordy, Are scripting languages really di↵erent?, in: IWSC, 2010,
pp. 17–24.

[9] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and evaluation
of clone detection tools, IEEE Trans. Softw. Eng. 33 (9) (2007) 577–591.

[10] F. Franchetti, Keynote address: Towards automating black belt programming, in:
iWAPT, 2011.

[11] R. Koschke, R. Falke, P. Frenzel, Clone detection using abstract syntax su�x trees,
in: WCRE, 2006, pp. 253–262.

[12] J. Mayrand, C. Leblanc, E. M. Merlo, Experiment on the automatic detection of
function clones in a software system using metrics, in: ICSM, 1996, pp. 244–253.

[13] I. D. Baxter, Parallel support for source code analysis and modification, in: SCAM,
2002, pp. 3–14.

[14] C. K. Roy, J. R. Cordy, Scenario-based comparison of clone detection techniques,
in: ICPC, 2008, pp. 153–162.

[15] J. R. Cordy, C. K. Roy, The NiCad clone detector, in: ICPC, 2011, pp. 219–220.
[16] J. R. Cordy, C. K. Roy, DebCheck: E�cient checking for open source clones in

software systems, in: ICPC, 2011, pp. 217–218.
[17] J. R. Cordy, Exploring large-scale system similarity using incremental clone detec-

tion and live scatterplots, in: ICPC, 2011, pp. 151–160.
[18] J. R. Cordy, T. R. Dean, N. Synytskyy, Practical language-independent detection of

near-miss clones, in: CASCON, 2004, pp. 1–12.
[19] J. R. Cordy, The TXL Source Transformation Language, Sci. Comput. Program.

61 (3) (2006) 190–210.
[20] R. C. Holt, J. R. Cordy, The Turing Plus report, Tech. Rep. CSRI-214, Univ. of

Toronto (1988).
[21] N. Konz et al., Algorithm::Di↵,

http://search.cpan.org/˜nedkonz/Algorithm-Di↵-1.15/ (2002).
[22] Longest common subsequence length, http://en.wikipedia.org/wiki/Longest common

25

subsequence problem#Computing the length of the LCS (2010).
[23] D. S. Hirschberg, Algorithms for the longest common subsequence problem, J.

ACM 24 (4) (1977) 664–675.
[24] A. Cox, C. L. A. Clarke, Syntactic approximation using iterative lexical analysis,

in: IWPC, 2003, pp. 154–163.
[25] T. Kamiya, S. Kusumoto, K. Inoue, CCFinder: A multilinguistic token-based code

clone detection system for large scale source code, IEEE Trans. Softw. Eng. 28 (7)
(2002) 654–670.

[26] Z. Li, S. Lu, S. Myagmar, Y. Zhou, CP-Miner: Finding copy-paste and related bugs
in large-scale software code, IEEE Trans. Softw. Eng. 32 (3) (2006) 176–192.

[27] I. D. Baxter, A. Yahin, L. M. de Moura, M. Sant’Anna, L. Bier, Clone detection
using abstract syntax trees, in: ICSM, 1998, pp. 368–377.

[28] A. Walenstein, A. Lakhotia, The software similarity problem in malware analysis,
in: Duplication, Redundancy, and Similarity in Software, Vol. 06301 of Dagstuhl
Seminar Proceedings, 2006.

[29] D. M. Germán, M. Di Penta, Y.-G. Guéhéneuc, G. Antoniol, Code siblings: Tech-
nical and legal implications of copying code between applications, in: MSR, 2009,
pp. 81–90.

[30] N. Göde, R. Koschke, Incremental clone detection, in: CSMR, 2009, pp. 219–228.
[31] J. R. Cordy and C. K. Roy, NiCad download page,

http://www.txl.ca/nicaddownload.html (2011).

26

