
LDTA’04 Preliminary Version

TXL - A Language for Programming Language
Tools and Applications

James R. Cordy 1

School of Computing
Queen’s University
Kingston, Canada

Abstract

TXL is a special-purpose programming language designed for creating, manipulat-
ing and rapidly prototyping language descriptions, tools and applications. TXL
is designed to allow explicit programmer control over the interpretation, applica-
tion, order and backtracking of both parsing and rewriting rules. Using first order
functional programming at the higher level and term rewriting at the lower level,
TXL provides for flexible programming of traversals, strategies, guards, scope of
application and parameterized context. This flexibility has allowed TXL users to
express and experiment with both new ideas in parsing, such as robust, island and
agile parsing, and new paradigms in rewriting, such as XML markup, rewriting
strategies and contextualized rules, without any change to TXL itself. In this paper
I outline the history, evolution and concepts of TXL with emphasis on what makes
it different from other language manipulation tools, and give examples of its use in
expressing and applying recent new paradigms in language processing.

Key words: source transformation, term rewriting, grammars

1 What is TXL?

TXL[11,12] is a programming language specifically designed for manipulating
and experimenting with programming language notations and features using
source to source transformation. The underlying paradigm of TXL consists
of beginning with a grammar for an existing language, specifying syntactic
modifications to the grammar representing new language features or exten-
sions to the language, and rapidly prototyping these new features by source
transformation to the original language.

1 Email: cordy@cs.queensu.ca
2 This work is supported by the Natural Sciences and Engineering Research Council of
Canada

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Cordy

% Trivial coalesced addition dialect of Pascal

% Based on standard Pascal grammar
include "Pascal.Grm"

% Overrides to allow new statement forms
redefine statement

...
 | [reference] += [expression]
end redefine

% Transform new forms to old
rule main
 replace [statement]

V [reference] += E [expression]
 by

V := V + (E)
end rule

Fig. 1. An Example TXL Program

While TXL was originally designed to support experiments in program-
ming language design, its paradigm has proven much more widely applicable
and it has been used in a range of applications in programming languages,
software engineering, database applications, structured documents, web tech-
nology and artificial intelligence among many others, and with a range of
programming languages including C, C++, Java, COBOL, PL/I, RPG, Mod-
ula 2, Modula 3, Miranda, Euclid, Turing and many others. In particular
it was used as the core technology in the LS/2000 analysis and remediation
system[15], which processed over 4.5 billion lines (Gloc) of source code.

TXL programs (Figure 1) normally consist of three parts, a context-free
“base” grammar for the language to be manipulated, a set of context-free
grammatical “overrides” (extensions or changes) to the base grammar, and a
rooted set of source transformation rules to implement transformation of the
extensions to the base language.

2 How TXL Came to Be

While on the face of it TXL would seem to be like many other systems for
language processing, it is in fact quite different for two reasons: first, it is
not based in compiler technology, and second, both parser and transformer
algorithms are user programmable. TXL is often misunderstood in reviews of
source transformation systems. It has been said that TXL’s parser is limited
to LL(1), that it has no control over search traversal, that it does not provide
semantic guards, that it does not support attributes, that it has no access to
global information, and so on.

In order to see how TXL could be misunderstood in these ways, it’s nec-
essary to understand its history. TXL has a different heritage than most
other language manipulation and transformation tools, and its goals are fun-
damentally different. TXL does not originate with parsing, term rewriting or

2

Cordy

attribute grammar technology - rather its heritage is rapid prototyping and
first order functional programming.

TXL was born in the early 1980’s, in a time when the study of programming
language design was an active and productive area. Experimentation with
new programming languages and features was the order of the day, and many
languages, including C++, Modula 3, Eiffel, Ada, Perl, Prolog and Miranda
have their roots in that time. One such language was Turing[19].

2.1 The Turing Language Project

The goal of the Turing project was to design a general purpose language with
excellent ease-of-use, lightweight syntax and formal axiomatic semantics that
was also very accessible and easy to learn. The design of Turing was heavily
influenced by the “programming as a human activity” philosophy of Gerald
Weinberg’s Psychology of Computer Programming [34]. As a result the Turing
project adopted a “design by use” philosophy - when users made errors by
writing what they thought “ought to work”, we would study these errors to
look for opportunities to make the language more like what the users expected.

An example of this was the design of the substring features of the string
type in Turing. Original syntax to choose a character out of a string was simple
subscripting - so for example if the string variable s has value "hello", then
s(1) chooses the character "h". Because Turing has the notion of a subrange
of integers, for example 1..10, users naturally fell into writing s(1..4) to get
longer substrings, and this was the feature added to the language.

Turing uses an asterisk (*) to denote the upper bound of a parameter array
(as in array 1..* of int). Users therefore began to write s(3..*) to mean
the substring from position 3 to the end of the string, s(1..*-1) to mean
the substring from the first position to the second last, s(*-1..*) to mean
the substring consisting of the last two characters, and so on. As these forms
evolved, the language was modified to adapt to the users’ expectations.

This experimental style of language design proved very successful - the
features of the Turing language seemed “natural” because the users helped
to design them. Users would explain what they meant by showing an equiv-
alence - for example, when asked what s(2..*) meant to them, they would
say s(2..length(s)). This led to a by-example understanding of meaning -
a this-means-that style. Turing language proposals therefore most often con-
sisted of a pair drawn on the board - the syntax of an example use of the
new feature on one side, and its corresponding meaning in the syntax of the
current language on the other (Figure 2).

Adapting Turing to these new ideas involved the heavyweight process of
rebuilding each of the phases of the compiler to add the lexical, syntactic,
semantic and code generation changes for each new feature. This tended to
discourage experimentation, commit us too early to features we weren’t sure
about, and slow down the rapid evolution that we had in mind.

3

Cordy

Proposal for an Object-Oriented extension to Turing
module ID

type ID: IMPORTS
 class EXPORTS
 IMPORTS export DataRecord
 EXPORTS means type DataRecord:
 FIELDS record
 METHODS FIELDS
 end ID end record

 METHODS (fix field references)
end ID

(fix variable declarations and references)

Fig. 2. A “This-means-that” Turing New Feature Proposal

2.2 The Turing eXtender Language

Ideally what we wanted to have was something that would allow us to instantly
try out what we were writing on the board - simply show what we had in mind
by example, and presto! a rapid prototype should appear. Thus the TXL
idea was born - the Turing eXtender Language, a language for specifying and
rapidly prototyping new language ideas and features by example. As we shall
see, this vision drives all of the design decisions of TXL and its implementation.

It was clear that such a language could not be compiler technology based
- we wanted true rapid prototyping, with no generation or build steps, and a
cycle time measured in seconds. This implied a direct interpretive implementa-
tion, and we therefore looked to Lisp for inspiration. In particular, MkMac[22],
a language extension facility for the Scheme variant of Lisp, seemed to be
something like what we had in mind.

Lisp[26] is a pure functional programming language based on one simple
data structure: nested first-rest (car-cdr) lists. Lisp has a fast interpretive full
backtracking implementation that is widely used in artificial intelligence and
well suited to rapid prototyping. Its implementation is well understood and
heavily optimized for list processing. For these reasons we chose Lisp as the
model for the underlying semantics of TXL, using Lisp list structures as the
basis of its parse trees, grammars and patterns; pure value semantics with no
assignment or variables; function composition as the main control structure;
and functional programming with full backtracking for both the parser and
the transformer aspects of the language.

3 Design of the TXL Language

The design of the TXL language was driven almost entirely by the by-example
rapid prototyping goal. In this section we introduce basic TXL language
features and properties by the design goals that they meet.

4

Cordy

3.1 Goal: Rapid Prototyping

The Lisp heritage of TXL led to a parsing model similar to that often used in
Lisp and Prolog: direct top-down functional interpretation of the grammar.
Beginning with the goal nonterminal [program], a TXL grammar is directly
interpreted as a recursive functional program consuming the input as a list
of terminal symbols (tokens). The structure of the grammar is treated as a
combination of two kinds of lists: choice lists, representing alternation, and
order lists, representing sequencing. Alternate forms in choice lists are inter-
preted in the order they are presented in the grammar, with the first matching
alternative taken as a success. List representation makes backtracking easy:
when a choice alternative or sequence element fails, we simply backtrack one
element of the list to retry previous elements until a full parse is obtained.

The result of a parse is a parse tree represented in the same nested list
representation. This representation is used throughout TXL to represent the
grammar, parse trees, rules, patterns and replacements and is one of the main
reasons that TXL is so fast. Theory tells us that a full backtracking top-down
interpretive parse algorithm handles all context-free grammars. In practice of
course it is not practical for some grammars, notably those with left recur-
sion. For this reason TXL recognizes and interprets left-recursive definitions
as a special case, effectively switching to bottom-up interpretation of these
productions on the fly. Nevertheless it is still quite possible to write a TXL
grammar that is slow or impractical to use because of too much backtracking -
this is the price we pay for being able to directly interpret the grammar, which
as we will see plays a large role the power and flexibility of the language.

Specification of the grammar (Figure 3) uses a simple by-example nota-
tion similar to BNF, with nonterminals referenced in square brackets (e.g.,
[expression]) and unadorned terminal symbols directly representing them-
selves. Terminals may be quoted using a single prefix quote (e.g., ‘end) as in
Lisp, but only when necessary to distinguish them from a TXL keyword. In
keeping with the by-example goal, the contents of a TXL nonterminal define
statement are the direct unadorned sentential forms of the target language.

Because the grammar is interpreted in the order presented, the user has
complete control over how input is parsed. Alternatives are ordered, with ear-
lier forms taking precedence over later ones. Since the grammar is effectively
a program for parsing under user control, no attempt is made to analyze or
check the grammar - any grammar that can be written has some interpreta-
tion. In particular, since the grammar is now a programming language, TXL
does not attempt to restrict it in any way, and nonterminating parses are
intentionally the responsibility of the programmer.

Ambiguity in the grammar is allowed, and as we shall see, is very important
to the TXL paradigm. Because the grammar is interpreted in ordered fashion,
resolution of ambiguities when parsing is automatic. Ambiguous forms are
not necessarily redundant, since transformation rules may force construction

5

Cordy

% Trivial statement language grammar
define program

[repeat statement]
end define

define statement
var [id];

 | [reference] := [expression];
 | { [repeat statement] }
 | if [expression] then

 [statement]
[opt else_statement]

 | while [expression] do
 [statement]

end define

define else_statement
else [statement]

end define

define expression
[primary]

 | [expression] [op] [expression]
end define

define op
+ | - | * | /

 | = | > | < | >= | <=
end define

define primary
[id]

 | [number]
 | ([expression])
end define

Fig. 3. Example TXL Grammar

of any tree structure allowed by the grammar. Many advanced programming
techniques in TXL exploit ambiguity.

Several standard extended BNF structures are built in to TXL, notably
[opt X], which means zero or one items of nonterminal type [X], [repeat
X], meaning a sequence of zero or more [X]s, and [list X], meaning a
comma-separated sequence of zero or more [X]s. An important property of
the [repeat X] structure is that it is right-recursive, defined as either empty
or [X] followed by [repeat X] in Lisp first-rest style. This matches the
natural interpretation of declarations and statements in many programming
languages. For example, the scope of a declaration in Turing is from the dec-
laration itself to the end of the scope, captured by the parser as the rest of
the statements following the declaration.

The naive unrestricted form of TXL grammars is essential to the goal of
rapid prototyping - working grammars can be crafted quickly, often directly
from user-level reference manuals, without wasting time resolving ambiguities,
fighting shift-reduce conflicts or restructuring to adapt to parser restrictions.
A grammar for a substantial new language can be crafted and working in TXL
in less than a day, and the parse trees created can be in the natural form for
users of the language rather than the implementation grammar form used by
compilers, making it easier to understand and remember forms when crafting
patterns and transformation rules.

3.2 Goal: Language Experimentation

The main TXL goal of language experimentation requires that we have some
way to add new forms and modify old forms in an existing grammar. TXL
captures this idea with the notion of grammar overrides. TXL programs nor-
mally begin with a base grammar which forms the syntactic basis of the orig-

6

Cordy

% Some example grammar overrides based on the Java grammar
include "Java.Grm"

% Distinguish assignments from other expression statements
redefine expression_statement

[assignment_statement]
 | [expression];
end redefine

define assignment_statement
[assignment_expression];

end define

% Add optional XML tags on expressions
redefine expression

...
 | [xmltag] [expression] [xmlendtag]
end redefine

% Distinguish JDBC method calls from others
redefine method_call

[jdbc_call]
 | ...
end redefine

Fig. 4. TXL Grammar Overrides Using Redefines

inal language we are experimenting with. The base grammar is then modified
by overriding nonterminal definitions to change or extend their form using
grammar redefines (Figure 4).

Redefines replace the existing nonterminal definition of the same name in
the base grammar with the new definition, effectively making a new grammar
from the old. Overrides can either completely replace the original definition of
the nonterminal, or they can refer to the previous definition using the “...”
notation, which is read as “what it was before” (Figure 4). So for example
the redefinition “...|[X]” simply adds a new alternative form [X] to the
nonterminal, as when adding a new statement to a language. Because TXL
definitions are interpreted sequentially, new forms may be added as either
pre-extensions (“[X]|...”) or post-extensions (“...|[X]”), corresponding to
the new form being preferred over old ones in the former and old forms being
preferred over the new in the latter.

Redefinitions are interpreted in the order that they appear, which means
that later redefinitions can extend or modify previous redefinitions, allowing
for dialects of dialects and extensions of previous language extensions. The
effective grammar is the one formed by substituting each of the redefinitions
into the grammar in the order that they appear in the TXL program.

Grammar overrides are the key idea that distinguishes TXL from most
other language tools. They allow for independent exploration of many different
dialects and variants of a language without cloning or modifying the base
grammar or other existing dialects. As we shall see, they also allow for agile
parsing - the ability to independently modify grammars to suit each particular
transformation task.

7

Cordy

% Part of transformation to implement OO extension to Turing

rule transformClasses
 replace [repeat deckaration_or_statement]

type ClassId [id] :
 class

Imports [repeat import_list]
Exports [repeat export_list]
Fields [repeat variable_declaration]
Methods [repeat procedure_delaration]

 end ClassId
RestOfScope [repeat declaration_or_statement]

 by
module ClassId [id] :
 Imports
 export DataRecord
 Exports
 type DataRecord:

record
 Fields
end record

 Methods [fixFieldReferences each Fields]
 [makeConstructorMethod]
 [addObjectParameterToMethods]

end ClassId
RestOfScope [transformClassReferences ClassId]

end rule

Fig. 5. The TXL By-example Style (adapted from [10])

3.3 Goal: By-example Patterns and Replacements

The this-means-that idea on which TXL is based requires a by-example style
for transformation rules, in which both patterns and replacements (post-
patterns) are specified in the concrete syntax of the target language, the style
recently referred to as native patterns [32]. In TXL patterns are effectively
unadorned sentential forms (examples) of the things we want to change and
what we should change them to (Figure 5).

TXL rules specify a pattern to be matched, and a replacement to substitute
for it. The nonterminal type of the pattern (the target type) is given at the
beginning of the pattern, and the replacement is implicitly constrained to be
of the same type. Patterns and replacements are parsed using the same direct
interpretive execution of the grammar that the input is parsed by, compiling
them into parse tree schemas in the same list form as the parse tree of the
input. Transformation rules are executed by searching their input (scope) for
parse subtrees matching their pattern tree, and replacing them with a copy of
their replacement tree with parts captured in the pattern copied to the result.

In patterns and replacements as in grammar defines, terminal symbols
simply represent themselves, and nonterminals are referenced using square
brackets (e.g., [expression]). Pattern nonterminals are “captured” in TXL
variables by labelling them with a variable name (e.g., Expn [expression]).
Variables are explicitly typed only at their first occurrence, which on each

8

Cordy

rule simplifyAssignments
 replace [statement]

V [reference] := V + E [term]
 by

V += E
end rule

Fig. 6. Rule Using Unification in the Pattern

pattern match binds them to the corresponding part of the matched input.
Subsequent references to a variable refer to its bound value.

Bound variables may be referred to in replacements, which allows for copy-
ing parts of the matched input to the substituted output, but they may also be
referred to later in the pattern in which they are bound or in other subsequent
patterns. References to bound variables have unification semantics, that is,
they can only be matched by an exact copy of their bound subtree (Figure
6). For efficiency reasons, TXL provides only one-way unification, that is, the
binding occurrence of a pattern variable must be the first occurrence.

3.4 Goal: Context-dependent Transformations and Relationships

A common difficulty with source transformation systems is control over the
scope of application of rules. It is frequently the case that desired transfor-
mations are phrased in terms such as “this means that, except within that we
substitute ...” or “this means that, except outside this we substitute ...”. An
example of this is the object-oriented Turing language extension of Figure 5.
In this transformation, once the basic substitution has been made, other trans-
formations need to be applied, some of which must be limited to the scope
inside the transformed part, and some of which must be limited to the scope
outside and following the transformed part. This limitation of scope of appli-
cation can be difficult to express in a pure term rewriting system, requiring
complex guards on rewrite rules.

In TXL, such scope limitations fall naturally from the decompositional
style of the functional paradigm. Rules are structured into a rooted pure
functional program in which lower level rules are applied as functions of sub-
scopes captured by higher level patterns. Higher level rules capture in their
pattern variables the subparts to which lower level rules are explicitly applied
as part of the construction of their replacement.

Invocation of a subrule is denoted by the subrule name in square brackets
following the name of the variable capturing the subtree to which it is to be
applied, for example Thing [changeit] where changeit is the name of the
subrule and Thing is the pattern variable containing the context within which
it is to be applied. In keeping with pure functional value semantics, the result
of a subrule invocation is a copy of the bound subtree as changed by the
subrule. Subrules may be applied to the result of a subrule invocation by
invoking another subrule on the result, as in X[F][G], denoting the function

9

Cordy

% Remove all literally false if statements

rule foldFalseIfStatements
 replace [repeat statement]
 IfStatement [if_statement] ;
 RestOfStatements [repeat statement]

 % Deep pattern match to find the if condition
 deconstruct * [if_condition] IfStatement
 IfCond [if_condition]

 % Pattern match to see if it is literally false
 deconstruct IfCond
 false
 by
 RestOfStatements
end rule

Fig. 7. Pattern Refinement Using Deconstructs

composition G(F(X)). This is a common occurrence in TXL rules, and allows
for separation of concerns in complex transformations.

The semantics of an entire TXL transformation is the application of the
distinguished rule called main to the entire input. The main rule typically
simply captures the highest level structure to be transformed (often the entire
input) and invokes several composed subrules on it to do the real work. In
complex transformations, this same paradigm is used again in the subrules,
and so on, to decompose and modularize the transformation.

3.5 Goal: Complex Scalable Transformations

TXL was expected to allow easy rapid prototyping of any possible Turing
language dialect or extension that could be imagined. As a result, it was de-
signed to allow for easy user refinement of patterns and replacements in order
to scale up to complex multi-stage transformations without losing readability.
For this reason, deconstructors and constructors were added to the language.

Deconstruct clauses constrain bound variables to match more detailed pat-
terns (Figure 7). Deconstructors may be either shallow, which means that
their pattern must match the entire structure bound to the deconstructed
variable, or deep, which means that they search for a match embedded in the
item. In either case, deconstructors act as a guard on the main pattern - if a
deconstructor fails, the entire main pattern match is considered to have failed
and a new match is searched for.

Replacements can also be stepwise refined, using construct clauses to build
results from several independent pieces (Figure 8). Constructors provide the
opportunity to build partial results and bind them to new variables, thus
allowing subrules to further transform them in the replacement or subsequent
constructs. They also provide the opportunity to explicitly name intermediate
results, aiding the readability of complex rules.

Complex transformations may depend not only on their point of their

10

Cordy

% Minimize adjacent Modula VAR declarations

rule mergeVariableDeclarations
 replace [repeat declaration]
 VAR VarDeclarations1 [repeat var_decl]
 VAR VarDeclarations2 [repeat var_decl]

 OtherDeclarations [repeat declaration]

 % First simply concatenate into one list
 construct NewVarDeclarations [repeat var_decl]
 VarDeclarations1 [. VarDeclarations2]

 % Then use subrule to merge the lists if types are the same
 by
 VAR NewVarDeclarations [mergeSameTypeLists]

 OtherDeclarations
end rule

Fig. 8. Replacement Refinement Using Constructs

% Eliminate named constants by replacing all references
% with their (compile-time) values
rule resolveConstants
 replace [repeat statement]
 % Capture name and value of constant declaration
 const C [id] = V [expression];
 RestOfScope [repeat statement]
 by
 % Pass them to subrule for expansion
 RestOfScope [replaceByValue C V]
end rule

rule replaceByValue ConstName [id] Value [expression]
 % Expand references given constant name and value
 replace [primary]
 ConstName
 by
 (Value)
end rule

Fig. 9. Subrule Parameters

application, but also on properties of other contexts remote from it. Thus a
transformation rule may depend on many parts of the input captured from
many different patterns. TXL allows for this using subrule parameters, which
play the same role as additional function parameters in standard functional
notation (Figure 9). Bound variables may be passed to a TXL subrule by
adding them to the subrule invocation using the notation X[F A B C] where
A, B and C are additional bound variables on which the subrule F may depend.

Inside the subrule, deconstructs can be used to pattern match the addi-
tional parameters in the same way that the main pattern matches the scope.
This allows the subrule to restrict its application based on the properties of
many different contexts, and generalizes transformation rules to handle trans-
formations based on arbitrary combinations of information spread across the
input.

11

Cordy

4 User Refinement of the TXL Language

In keeping with the user-oriented design philosophy of the Turing project from
which it sprang, TXL was allowed to evolve for some years based on user feed-
back. In this section we briefly outline some of the language refinements that
have come about due to user experience with TXL. With these refinements,
the TXL language has been more or less stable since about 1995.

4.1 Functions and Rulesets

TXL rules by default use the fixed-point compositional semantics of pure
rewriting systems. A rule searches its scope for the first instance of its pat-
tern, makes a replacement to create a new scope, and then re-searches the
result for the next instance, and so on until it can no longer find a match.
In most cases, this is the most general and appropriate semantics for source
transformations. However, as TXL began to be used for more and more com-
plex transformations, the limitations of this single rule semantics began to be
stretched. In particular, the need for pure (apply once only) functions and for
modular rule abstractions was quickly evident.

Both of these needs were met by a single new feature: functions. TXL
functions act like functions in any other language - they simply match their
arguments (i.e., scope and parameter patterns), compute a result value (i.e.,
make a replacement) and halt. Like rules, TXL functions are total - that
is, if their pattern does not match then they simply return their unchanged
scope as result. With the addition of functions, TXL provides four separate
basic transformation semantics: match and transform the entire scope once
(a function), match and transform within the scope once (a deep function),
match and transform the entire scope many times (a recursive function), and
match and transform searching within the scope many times (a rule).

One of the most common uses for functions in TXL is rule abstraction, in
which a function is used to gather a number of related rules to be applied to
a scope together (Figure 10). In TXL such a function is often referred to as a
ruleset, with the semantics that application of the function to a scope applies
the composition of all of the rules in the ruleset. Combinations of functions
and rules allow for complex programmed control over application and scoping
of transformation rules.

4.2 Explicit Guards

Complex transformations often require computed constraints on the applica-
tion of a rule even when the scope matches its pattern. For example, a sorting
rule may match pairs of elements of a sequence, but should make its trans-
formation only if the values of the elements are misordered. In general, such
constraints may be very complicated, involving significant additional compu-
tation or information gathered remotely from other sources.

12

Cordy

% Ruleset to create a new Turing module for a given set of variables

function createModule ModuleId [id] VarsToHide [repeat id]
 replace [repeat statement]
 Scope [repeat statement]
 by
 Scope [createEmptyModule ModuleId]
 [hideVarsInModule ModuleId VarsToHide]
 [createAccessRoutines ModuleId each VarsToHide]
 [moveRoutinesIntoModule ModuleId VarsToHide]
 [qualifyExportedReferences ModuleId VarsToHide]
 [createImportExports ModuleId VarsToHide]
 [relocateModuleInProgram ModuleId VarsToHide]
end function

Fig. 10. Ruleset Abstraction

% Base case of a vectorizing ruleset

rule vectorizeScalarAssignments
 replace [repeat statement]
 V1 [id] := E1 [expression];
 V2 [id] := E2 [expression];
 RestOfScope [repeat statement]

 % Can only vectorize if independent
 where not
 E2 [references V1]
 where not
 E1 [references V2]

 by
 < V1,V2 > := < E1,E2 > ;
 RestOfScope
end rule

% Condition rule to check

rule references V [id]
 match [primary]
 V
end rule

Fig. 11. A Guarded Rule Using where

To meet this need, where clauses, which can impose arbitrary additional
constraints on the items bound to pattern variables, were added to TXL.
Where clauses use a new special kind of TXL rule called a condition rule.
Condition rules have only a pattern, usually with additional refinements and
constraints, but no replacement - they simply succeed or fail (that is, match
their pattern and constraints, or not). A number of built-in condition rules
provide basic semantic constraints such as numerical and textual value com-
parison of terminal symbols. Figure 11 shows an example assignment vec-
torizing rule that uses a simple condition rule to test whether an expression
references a variable.

Because condition rules are themselves TXL functions or rules, they may
use additional deconstructs, constructs, subrules, where clauses and so on,
allowing for arbitrary computation in guards, including tests involving global
or external information (4.4).

13

Cordy

4.3 Lexical Control

As we have seen, TXL was originally designed to support dialects and ex-
periments with only one language - Turing. For this reason, the lexical rules
of Turing were originally built in to TXL. Once it began to be used more
generally for implementing source transformations of other languages such
as Pascal, C, and so on, the need to allow for specification of other lexical
conventions became clear.

As a result, features were added to TXL to allow specification of lexical
rules in terms of keywords (reserved identifiers), compounds (multi-character
sequences to be treated as a unit), comments (specification of commenting
conventions) and most generally tokens, regular expression patterns for arbi-
trary character sequences. Like nonterminal definitions, token definitions may
be ambiguous and are interpreted in the order they are specified, with earlier
patterns taking precedence over later. In addition, a char mode was added to
TXL to allow for scannerless parsing of raw input, either by character, line or
character class (e.g., alphabetic, numeric, space, etc.).

4.4 Global Variables and Tables

Perhaps the most extensive user addition to the TXL language has been global
variables. Many transformation tasks are most conveniently expressed using
some kind of symbol table to collect information which is then used as a
reference when implementing the transformation rules. Implementation of
symbol tables in pure functional languages is problematic, involving passing
the structure around explicitly as an additional parameter in a deeply recursive
“continuation passing” style of rule invocation.

In order to allow TXL to more easily handle this class of transformation
and avoid the overhead and inefficiency associated with extra rule parameters
and complex guards, global variables were added. TXL globals are modelled
after the Linda blackboard style of message passing[18]. In this style, bound
local variables are exported to the global scope by a rule or function for later
import by some other rule or function. Exported variables may be of any
nonterminal type, including new types not related to the main grammar, and
when a variable is imported in another rule it must be as the same type.

TXL globals have a great many uses in transformations, but the most
common is the original use: symbol tables. Symbol tables in TXL are typ-
ically structured as an associative lookup table consisting of a sequence of
(key, information) pairs. Both the key and the information can be of any
nonterminal type, including new types defined solely for the purpose. Often
the key is of type [id] (i.e., an identifier). TXL deconstructs are used to
associatively look up the information given the key (Figure 12). Because they
use pattern matching, table lookups are also two-way; if one wants to know
the key associated with some information, the deconstruct can just as easily
pattern match that way also.

14

Cordy

% Simple example global table

% The type of entries (can be anything)
define table_entry
 [stringlit] -> [stringlit]
end define

% Export initial table from main rule
function main
 export Table [repeat table_entry]
 "Veggie" -> "Celery"
 "Veggie" -> "Broccoli"
 "Fruit" -> "Orange"
 "Fruit" -> "Pear"
 replace [program]
 P [program]
 by
 P [Rule1] [Rule2] [Rule3]
end function

% Updating the global table
function addAsFruit
 match [stringlit]
 NewFruit [stringlit]
 import Table [repeat table_entry]
 export Table
 "Fruit" -> NewFruit
 Table
end function

% Querying the global table
function isAVeggie
 match [stringlit]
 Item [stringlit]
 import Table [repeat table_entry]
 deconstruct * [table_entry] Table
 "Veggie" -> Item
end function

Fig. 12. A Global Table in TXL

With the addition of functions, guards, lexical control and global variables,
the TXL language was essentially complete - a general purpose language for
programming source transformations. In the rest of this paper we demonstrate
this generality by showing how TXL has been able to express new ideas in
language processing, source analysis and source transformation.

5 Expressing New Paradigms in TXL

Because of its fully programmable nature, new ideas and paradigms in source
manipulation can be experimented with directly by TXL users, without the
need to change TXL or its implementation. The interpretive parser means
that this applies as well to new ideas in parsing as it does to transformation.
In this section we look at a number of recently popular new ideas in grammars,
parsing and transformation and their implementation in TXL.

5.1 Robust Parsing

In recent years source code analysis and manipulation techniques have been
widely applied to large scale legacy systems written in Cobol, PL/I and RPG.
A difficulty with such languages is that they are challenging to parse because
of the wide range of dialects, variants, preprocessors and local enhancements.
It is frequently the case that analysis tools fail due to a parse error on these
differences. In most cases such differences are minor, and the main problem
is simply coming up with a parse.

Robust parsing[2] is a method for automatically providing the ability to
complete a parse even in the presence of sections of input that cannot be
interpreted. The original method for robust parsing involved a customized
LL(1) algorithm to correct syntax errors in input by substituting or ignoring

15

Cordy

% Example of robust parsing in TXL

% This time for C dialects with strange new statements
include "C.Grm"

% If all statement forms fail, fall throught to unknown
redefine statement
 ...
 | [unknown_statement]
end redefine

% Accept anything at all before the next semicolon or brace
define unknown_statement

[repeat not_semicolon_brace]
end define

define not_semicolon_brace
[not ';] [not '}] [token] % any single token not ; or }

 | [key] % any keyword
end define

Fig. 13. Example of Robust Parsing in TXL

a minimal section of input to continue the parse. For example, when coming
to a statement of an unrecognized form, the method might simply ignore the
input symbols in the statement up to the next semicolon or other end marker.

Grammar overrides allow the TXL user to directly program robust parsing
without any change to the TXL parser. For example, we can extend the non-
terminal definition for statement to include an additional uninterpreted case
that accepts anything at all until the next end of statement marker (Figure
13). This solution takes advantage of two properties of direct interpretation of
the grammar: ordered alternatives (because it is the last alternative, the un-
interpreted case will never be used unless no other statement form can match)
and ambiguity (because the uninterpreted case is ambiguous with respect to
all other statement forms).

5.2 Island Grammars

Island grammars[17,27] are a related idea borrowed from natural language
processing. Island grammars allow for robust, efficient semi-parsing of very
large inputs when we are only interested in parts of them. Island grammars
are used to pick out and parse only those items of interest (the islands) in a
stream of otherwise uninteresting input (the water). This idea is extended to
multiple levels, in which islands may contain uninterpreted lakes which in turn
may contain smaller islands and so on. Island parsing is particularly useful
when we are interested in only one aspect of a complex input, for example, if
we are only interested in processing the embedded ASP aspect of HTML web
pages, or if we are only interested in embedded SQL aspect of Cobol programs.

Island grammars can be coded in TXL either directly or as dialects of a
base language in which the islands are embedded. Figure 14 shows a TXL
grammar that uses an island grammar to process embedded SQL in Cobol

16

Cordy

% Begin with Cobol
include "Cobol.Grammar"

% Extend to allow SQL
redefine statement
 ...
 | [sql_statement]
end redefine

define sql_statement
 EXEC SQL
 [repeat sql_item]
 [end_exec]
end define

define end_exec
 END-EXEC
end define

% Use lake and island parsing to parse
% only parts of SQL we’re interested in
define sql_item
 [host_variable]
 | [water]
end define

define host_variable
 : [ref_name]
end define

define water
 % Bounded by END-EXEC shoreline
 [not end_exec] [token_or_key]
end define

define token_or_key
 % TXL idiom for "any input"
 [token] | [key]
end define

Fig. 14. Island Grammar for Embedded SQL in Cobol (adapted from [16])

programs as uninterpreted lakes (the SQL code) containing interesting islands
(SQL references to Cobol host variables). The key feature in this grammar is
the nonterminal modifier not. The TXL expression [not end exec] tells the
parser that the following grammatical form must not match the same sequence
of tokens that the nonterminal [end exec] matches. [not] is essentially a
lookahead check; it does not consume any input. This prevents the parser
from consuming non-SQL tokens in error. In island grammar terminology,
this can be thought of as a breakwater that prevents the lake from consuming
the shoreline.

5.3 Union Grammars

Due to concerns about “legacy languages” and migration to the world wide
web, source-to-source translation has been a very hot topic in recent years.
Unlike the language extension tasks for which TXL was designed, this re-
quires transformations that deal with not one language grammar, but two -
the source language and the target language. Moreover, because TXL rules
are constrained to be homomorphic (grammatical type preserving), it is not
obvious how TXL can serve this kind of multi-grammar task.

One solution is union grammars, which mix the nonterminals of the two
languages at “meet” points appropriate to natural levels of translation - for
example procedures, statements and expressions. In a union grammar, the
[statement] nonterminal allows both the input language statement forms
and the output target language statement forms, with the parse of input being
constrained to the former and the resulting output being constrained to the
latter.

Union grammars can be coded as TXL grammar overrides, for example by

17

Cordy

% Start with both base grammars
include “Pascal.Grm”
include “C.Grm”

% In the union we accept either
% kind of program
redefine program
 [pascal_program]
 | [c_program]
end redefine

define pascal_program
 ‘program [id] [file_header]
 [repeat decl]
 [block] ‘.
end define

define c_program
 [repeat decl]
end define

% Either kind of block
redefine block
 [begin_or_brace]
 [repeat decl]
 [repeat statement]
 [end_or_brace]
end redefine

define end_or_brace
 ‘end | ‘}
end define

define begin_or_brace
 ‘begin | ‘{
end define

% Either kind of if statement
redefine if_statement
 ‘if [expression] [opt ‘then]
 [statement]
 ‘else
 [statement]
end redefine

Fig. 15. Part of a Union Grammar for Pascal and C (adapted from [16])

redefining the [statement] nonterminal to list the input language alternatives
first and the output language alternatives second. Because the grammar is
directly interpreted in ordered fashion, the parse of the input will be as input
language statements even if the output language statements are ambiguously
similar. However, because the nonterminal [statement] allows both input
and output language forms, statement transformation rules can move freely
between the two. Figure 15 shows a part of a language translation from Pascal
to C using this technique.

5.4 Agile Parsing

Agile parsing[16] refers to the idea of overriding a base grammar to provide
a parse more appropriate or convenient to each individual application. This
idea can radically simplify software analysis and transformation tasks by using
a custom grammar that structures the parse of the input into an ideal form
for the task at hand, rather than the usual standard form for the language.

Figure 16 shows a very simple example using agile parsing to identify and
isolate the JDBC (database) aspect of Java programs by overriding the gram-
mar to categorize and parse JDBC method calls differently from other method
calls. Again, this solution exploits the programmable handling of ambiguity
in TXL to modify the grammar to the task. Using the power of the parser
to identify items of interest and abstract them into custom grammatical cate-
gories can significantly reduce the cost and complexity of an analysis ruleset.

18

Cordy

% Java base grammar
include "Java.Grm"

% Use parser to identify JDBC calls for us
% (simplified for demonstration purposes)
redefine method_call
 [jdbc_call]
 | ...
end redefine

define jdbc_call
 [jdbc_name] [arguments]
end define

define jdbc_name
 ‘createStatement | ‘prepareStatement
 | ‘executeUpdate | ‘executeQuery | ‘getRow
end define

Fig. 16. Customizing Grammar to Task Using Agile Parsing (adapted from [16])

5.5 Parse Tree Annotations

Parse tree annotations[30] is an idea that has recently gained new attention
in the software re-engineering community[23]. The challenge is to provide the
ability to add, preserve and manipulate complex annotations in parse trees in
order to allow for concerns such as layout preservation, reversible preprocessing
and other separate factors of the source code[25] in reverse- and re-engineering
transformations.

TXL’s ordered ambiguity makes it easy to specify and manipulate parse
tree annotations. Using grammar overrides, optional annotations can be added
to nonterminals of an existing base grammar. The annotations can be of
any structure at all, specified using new nonterminal definitions, and can be
manipulated either separately or together with the items they annotate using
standard TXL patterns and replacements.

Figure 17 uses overrides to allow for addition of statistical annotations on
method declarations in Java. Normal rules can be used to add or manipulate
these annotations. Such annotations can later be gathered (extracted) from
the parse tree to form a table of information using TXL’s extract built-in
function and then used in guards on later transformations of the methods or
written to a file.

An example application of parse tree annotations is source fact extraction,
also known as design recovery[5,13]. Design recovery consists of analyzing
software system source to identify and extract a database of data and pro-
gram entities such as variables, classes and methods, and the higher level
design relationships between these entities, such as the containment, use, call-
ing, reading, writing or parameterizing of one entity by another. The result
of a design recovery is a high level design database representing the actual
architecture of the software system.

When it was first proposed to apply TXL to this problem it was not at all

19

Cordy

% Java base grammar
include "Java.Grm"

% Structure of statistical information annotation
% (syntactic sugar optional)
define method_stats

{ [list method_stat] }
end define

define method_stat
[method_label] = [number]

end define

define method_label
‘static_calls | ‘indirect_static_calls

 | ‘fan_in | ‘fan_out | ‘in_depth | ‘out_depth
end define

% Allow optional statistics annotation on methods
redefine method_declaration

...
 | [method_declaration] [opt method_stats]
end redefine

Fig. 17. Parse Tree Annotations

obvious how it could be done. TXL’s search and pattern match capabilities
could encode the complex interrelationships that indicate the presence of the
required relationships, but it had no notion of output of facts representing the
result. In retrospect the solution to this is remarkably simple - use grammar
overrides to allow for design fact annotations in the source code itself, and
then extract the facts when done. Higher level rules and patterns establish the
context for each inference, and then annotate the evidence for each relationship
with its fact using a local pattern match (Figure 18).

5.6 Source Code Markup and XML

One of the most important new ideas in source code analysis in recent years is
the advent of source code markup and the introduction of the standard markup
notation XML[8]. From the TXL standpoint, XML is just another language
whose grammar can be described, and source code markup is simply another
kind of grammar override, so programmers could begin generating and working
with XML markup without any change to TXL. TXL’s polymorphism allows
for the definition of generic XML markup that can be added to any language as
an independent subgrammar (Figure 19). Rules to create either full or partial
XML markup of simple parse trees or complex source inferences can then be
coded in a fashion similar to the inference of facts in design recovery[14].

5.7 Traversals

Control of traversal of the parse tree when applying source transformations can
be a serious issue. For example, in a transformation that resolves references

20

Cordy

% Simple example of design recovery in TXL
rule processProcedureRefs
 replace $ [declaration]
 procedure P [id] ParmList [opt parameter_list]
 Scope [repeat statement]
 'end P
 by
 procedure P ParmList
 Scope [embedProcCalls P]
 [embedFuncCalls P]
 [embedVarParmRefs P]
 [embedPutRefs P]
 [embedGetRefs P]
 'end P
end rule

% Annotate embedded argument uses with design fact giving procedural context
rule embedVarParmRefs ContextId [id]
 replace $ [argument]
 ReferencedId [id] Selectors [repeat selector] : var FormalId [id]
 by
 ReferencedId Selectors : var FormalId [id]
 $ ‘vararguse (ContextId, ReferencedId, FormalId) $
end rule

Fig. 18. Design Recovery (adapted from [13])

to declarations, the traversal must proceed from the bottom up, whereas in
a transformation that restructures architecture, we normally want to proceed
from the top down. Similarly, some transformations should apply only once,
some only at a single level and not below, and so on. Both ASF+SDF[4] and
Stratego[33] provide explicit facilities for defining and using generic traversals
to control transformations.

In TXL the notion of traversal is in general under programmed user con-
trol using functional programming style (Figure 20). Traversals are implicitly
programmed as part of the functional decomposition of the transformation
ruleset, which controls how and in which order subrules are applied. Bottom-
up traversal is simply a directly recursive function or rule, apply-once rules are
simply TXL functions, single level traversal is explicit recursion on a sequence,
and so on. In general, any required traversal can be programmed directly and
compactly in traditional recursive functional programming style.

5.8 Rewriting Strategies and Scoped Application of Rules

As the sophistication and complexity of source transformation tasks has grown,
the necessity of providing some method for limiting the scope of rewrite rules
to only a part of the input in response to previous analysis has become in-
creasingly important. One of the important innovations in the recent Stratego
language[33] was to address this issue in term rewriting. Stratego uses the
powerful notion of rewriting strategies for this purpose.

In TXL the scoping of rules falls out naturally from the functional pro-

21

Cordy

% Simple example of XML markup using TXL

% This time we’re marking up C++
include "Cpp.Grm"

% Simplified syntax of XML tags
define xmltag
 < [id] >
end define

define endxmltag
 </ [id] >
end define

% Allow statements to be marked up
redefine expression

...
 | [xmltag] [expression] [endxmltag]
end define

% Example rule to mark up interesting statements
rule markExpressionsUsing InterestingId [id]
 % Mark only outermost expressions, and only once
 skipping [expression]
 replace $ [expression]
 E [expression]
 % It’s an interesting one if it uses the interesting thing
 deconstruct * [id] E
 InterestingId
 by
 <interesting> E </interesting>
end rule

Fig. 19. Generic XML Source Markup (adapted from [14])

rule topdownleftrightrescan
 % Top-down left-right rescan
 replace [T]

Instance [T]
 by

Instance [dotransform]
end rule

rule bottomuprightleftrescan
 % Bottom-up right-left with rescan
 replace [repeat T]

Instance [T]
RightContext [repeat T]

 construct NewRightContext [repeat T]
RightContext [bottomuprightleftrescan]

 by
Instance [bottomuprightleftrescan]
 [dotransform]
NewRightContext

end rule

function toplevelleftright
 % Left-right top level no rescan
 replace [repeat T]

Instance [T]
RightContext [repeat T]

 by
Instance [dotransform]
RightContext [toplevelleftright]

end function

rule bottomupleftrightrescan
 % Bottom-up left-right rescan
 replace [repeat T]

Instance [T]
RightContext [repeat T]

 by
Instance [bottomupleftrightrescan]

 [dotransform]
RightContext

end rule

Fig. 20. Sample Traversal Paradigms

22

Cordy

gramming paradigm. TXL functions and rules are applied explicitly to scopes
consisting of bound variables selected from the patterns matched by the func-
tions and rules that invoke them. As pure functions these subrules cannot
see any other part of the input, and their scope is necessarily limited to the
subtree to which they are applied.

In TXL rewriting strategies are expressed as an integral part of the func-
tional decomposition of the rules. While generalized abstract strategies and
traversals are a certainly a concept, TXL has no ability to directly express
them in the sense of Stratego. In future it would be natural to address this
by adding second-order functions and rules to the language.

5.9 Contextualized Rules and Native Patterns

It is frequently the case that rules need to be parameterized by a previous
context, for example in a transformation that inlines functions or folds ex-
pressions. Stratego [33] has recently introduced the notion of dynamic rules
to address this situation by allowing for rules parameterized by context to
be generated and applied on the fly as part of a transformation. As we have
already seen (Figure 9), in the functional programming paradigm of TXL pa-
rameters bound from previous contexts in higher level rules or patterns can be
explicitly passed to subrules, allowing for arbitrary contextualization in the
natural functional programming style.

Traditional term rewriting and program transformation tools express their
rewriting rules in explicit abstract syntax, which can become cumbersome and
difficult to understand when patterns are large or complex. For this reason
there has been much recent interest in the notion of native patterns [32], the
idea that patterns should be expressed in the concrete syntax of the target
language. This is of course the original goal of TXL and the coming of age of
the by-example paradigm (which brings us up to date, almost 20 years later).

6 Transformational Programming

As the range of applications of source transformation languages grows, the role
of transformational programming as a general purpose computing paradigm for
a range of applications becomes an increasingly interesting possibility. TXL
has been used in many applications outside the domain of programming lan-
guages and software engineering, including VLSI layout, natural language un-
derstanding, database migration, network protocol security and many others.

Perhaps the most unusual application of TXL is its recent use in the recog-
nition and analysis of two dimensional mathematical formulas from hand-
written graphical input[35]. In this application TXL is used in several stages:
to analyze two dimensional image data for baseline structure, to associate sym-
bols into local structural units such as subscripted symbols, to combine these
units into higher level mathematical structures such as summations and inte-

23

Cordy

grals, to associate meaning with these structures based on domain knowledge,
and to render this meaning into equivalent LATEX formulas and Mathematica
or Maple programs. This work has been generalized into a transformational
paradigm for diagram recognition tasks[6].

The surprising and highly successful application of TXL to a range of
very different problem domains in electrical engineering, artificial intelligence,
database applications and so on, and the success of other transformational
tools and languages in applications to biology and medicine, lead one to won-
der if there are not many other problems for which this paradigm might serve.
Work in the TXL project has begun on the next generation of such languages,
with the aim of a more generally accessible and usable general purpose trans-
formational programming paradigm. In the meanwhile, we continue to explore
the use of TXL itself in a wide range of new and diverse applications.

7 Related Work

While as we have seen TXL has its own particular paradigm and way of doing
things, there are many other tools and languages that are similar in various
ways. ASF+SDF[4,7] is a very general toolset for implementing programming
language manipulation tools of many kinds, including parsers, transformers,
analyzers and so on. While it is very different in its methods and implemen-
tation, using a GLR parsing algorithm, providing grammar-based modularity
and so on, most tasks appropriate to TXL can be expressed in ASF+SDF.

ANTLR[28] is an LR-based language manipulation system that grew out
of the PCTSS compiler project and is primarily aimed at implementing com-
pilers, interpreters and translators. ANTLR’s tree construction and walk-
ing capabilities can be used to implement many tasks done using TXL, and
ANTLR’s SORCERER[29] tree walker generator allows similar flexibility in
specifying tree manipulations, albeit in a radically different way.

Stratego[33]is similar to TXL in many ways. Stratego augments pure
rewriting rules with the separate specification of rewriting strategies, in a
way somewhat analogous to the use of functional programming to control ap-
plication of rewriting rules in TXL. Both ASF+SDF and Stratego support the
notion of traversal independently of the types to be traversed, whereas in TXL
it is most natural to program traversal as an inherent part of the functional
decomposition of the rules. Like TXL, Stratego supports the specification of
native patterns in concrete syntax, and Stratego’s overlays support the no-
tion of application-specific pattern abstractions, which play a role somewhat
similar to agile parsing in TXL.

XSLT[9] is the W3C standard for source transformation of XML docu-
ments. While not a general purpose source transformation system (and not
intended to be one), XSLT nevertheless shares many ideas with TXL and its
related systems. In particular, XSLT is a user programmable transformation
language, it is primarily a pure functional language, and it uses the notion of

24

Cordy

pattern-replacement pairs applied in term rewriting style.

Other related work includes Rigal[1], a language for implementing com-
pilers that shares with TXL a list-oriented implementation, transformation
functions and strong pattern matching, Gentle[31], a comprehensive compiler
toolkit that supports source to source transformation, and the commercial
DMS toolkit and its Parlanse language[3], which uses a very different paradigm
to implement similar software analysis applications. Many other source trans-
formation tools and languages can be found on the program transformation
wiki, http://www.program-transformation.org.

8 Conclusion

From its roots in experimental language design almost 20 years ago, TXL has
grown into a powerful general purpose source transformation programming
system. It has been used in a wide range of applications, including industrial
transformations involving billions of lines of source code. TXL’s flexible gen-
eral purpose functional programming style distinguishes it from most other
source to source transformation systems in that it leaves all control over pars-
ing and transformation in the hands of the programmer. While not without
its drawbacks, this flexibility has proven very general, allowing TXL users to
express and experiment with evolving new ideas in parsing and transformation
on their own, without the necessity of moving to new languages and tools.

9 Acknowledgments

The original Turing eXtender Language was designed by Charles Halpern-
Hamu and the author at the University of Toronto in 1985, and the first prac-
tical implementations were developed by Ian Carmichael and Eric Promislow
at Queen’s University between 1986 and 1988. The modern TXL language
was designed and implemented by the author at GMD Karlsruhe and Queen’s
University between 1990 and 1995. Andrew Malton developed the formal se-
mantics of TXL at Queen’s University in 1993. Development of TXL has been
funded by the Natural Sciences and Engineering Research Council of Canada,
Communications and Information Technology Ontario, ESPRIT project REX,
GMD Karlsruhe, the University of Toronto and Queen’s University.

References

[1] M. Auguston, “RIGAL - A Programming Language for Compiler Writing”,
Lecture Notes in Computer Science 502, 529–564 (1991).

[2] D.T. Barnard and R.C. Holt, “Hierarchic Syntax Error Repair”, International
Journal of Computing and Information Sciences 11(4), 231–258 (1982).

25

http://www.program-transformation.org

Cordy

[3] I.D. Baxter, “Parallel Support for Source Code Analysis and Modification”,
Proc. IEEE 2nd International Workshop on Source Code Analysis and
Manipulation, 3–15 (2002).

[4] J.A. Bergstra, J. Heering and P. Klint, Algebraic Specification, ACM (1989).

[5] T. J. Biggerstaff, “Design Recovery for Maintenance and Reuse”, IEEE
Computer 22(7), 36–49 (1989).

[6] D. Blostein, J.R. Cordy and R. Zanibbi, “Applying Compiler Techniques to
Diagram Recognition”, Proc. 16th IAPR International Conference on Pattern
Recognition, vol. 3 127–130 (2002).

[7] M. van den Brand, J. Heering, P. Klint and P.A. Olivier, “Compiling Language
Definitions: the ASF+SDF Compiler”, ACM Transactions on Programming
Languages and Systems 24(4), 334–368 (2002).

[8] T. Bray, A. Paoli and C.M. Sperberg-McQueen (eds.), “Extensible Markup
Language (XML) 1.0”, http://www.w3.org/TR/1998/REC-xml-19980210.pdf
(1998).

[9] J. Clark (ed.), “XSL Transformations (XSLT) Version 1.0”, W3C
Recommendation, http://www.w3.org/TR/1999/REC-xslt-19991116 (1999).

[10] J.R. Cordy and E.M. Promislow, “Specification and Automatic Prototype
Implementation of Polymorphic Objects in Turing Using the TXL Dialect
Processor”, Proc. 1990 IEEE International Conference on Computer Languages,
145–154 (1990).

[11] J.R. Cordy, C.D, Halpern and E. Promislow, “TXL: A Rapid Prototyping
System for Programming Language Dialects”, Computer Languages 16(1), 97–
107 (1991).

[12] J.R. Cordy, T.R. Dean, A.J. Malton and K.A. Schneider, “Source
Transformation in Software Engineering using the TXL Transformation
System”, J. Information and Software Technology 44(13), 827–837 (2002).

[13] J.R. Cordy and K.A. Schneider, “Architectural Design Recovery Using Source
Transformation”, Proc. CASE’95 Workshop on Software Architecture, (1995).

[14] J.R. Cordy, “Generalized Selective XML Markup of Source Code Using
Agile Parsing”, Proc. IEEE 11th International Workshop on Program
Comprehension, 144-153 (2003).

[15] T.R. Dean, J.R. Cordy, K.A. Schneider and A.J. Malton, “Experience Using
Design Recovery Techniques to Transform Legacy Systems”, Proc. 2001 IEEE
International Conference on Software Maintenance, 622-631 (2001).

[16] T.R. Dean, J.R. Cordy, A.J. Malton and K.A. Schneider, “Agile Parsing in
TXL”, Journal of Automated Software Engineering 10(4), 311–336 (2003).

[17] A. van Deursen and T. Kuipers, “Building Documentation Generators”, Proc.
1999 International Conference on Software Maintenance, 40–49 (1999).

26

http://www.w3.org/TR/1998/REC-xml-19980210.pdf
http://www.w3.org/TR/1999/REC-xslt-19991116

Cordy

[18] G. Gelernter, “Generative Communication in Linda”, ACM Transactions on
Programming Languages and Systems 7(1), 80-112 (1985).

[19] R.C. Holt and J.R. Cordy, “The Turing Programming Language”,
Communications of the ACM 31(12), 1410–1423 (1988).

[20] R.C. Holt, P.A. Matthews, J.A. Rosselet and J.R. Cordy, The Turing
Programming Language - Design and Definition, Prentice-Hall (1987).

[21] M.A. Jenkins, “Q’Nial: A Portable Interpreter for the Nested Interactive Array
Language, Nial”, Software - Practice and Experience 19(2), 111–126 (1989).

[22] E. Kohlbecker, “Using MkMac”, Computer Science Technical Report 157,
Indiana University (1984).

[23] J. Kort and R. Laemmel, “Parse-Tree Annotations Meet Re-Engineering
Concerns”, Proc. IEEE 3rd International Workshop on Source Code Analysis
and Manipulation, 161–171 (2003).

[24] A.J. Malton, “The Denotational Semantics of a Functional Tree Manipulation
Language”, Computer Languages 19(3), 157–168 (1993).

[25] A.J. Malton, K.A. Schneider, J.R. Cordy, T.R. Dean, D. Cousineau and J.
Reynolds, “Processing Software Source Text in Automated Design Recovery
and Transformation”, Proc. IEEE 9th International Workshop on Program
Comprehension, 127-134 (2001).

[26] J. McCarthy et al., LISP 1.5 Programmer’s Manual, MIT Press (1962).

[27] L. Moonen, “Generating Robust Parsers using Island Grammars”, Proc. IEEE
8th Working Conference on Reverse Engineering, 13–22 (2001).

[28] T.J. Parr and R. W. Quong, “ANTLR: A Predicated LL(k) Parser Generator,”
Software, Practice and Experience 25(7), 789–810 (1995).

[29] T.J. Parr, “An Overview of SORCERER: A Simple Tree-parser Generator”,
Technical Report, http://www.antlr.org/papers/sorcerer.ps (1994).

[30] J.J. Purtilo and J.R. Callahan, “Parse-Tree Annotations”, Communications of
the ACM 32(12), 1467–1477 (1989).

[31] F. Schroer, The GENTLE Compiler Construction System, Oldenbourg (1997).

[32] M.P.A. Selink and C. Verhoef, “Native Patterns”, Proc. IEEE 5th Working
Conference on Reverse Engineering, 89–103 (1998).

[33] E. Visser, “Stratego: A Language for Program Transformation based on
Rewriting Strategies”, Proc. Rewriting Techniques and Applications (RTA’01),
Lecture Notes in Computer Science 2051, 357–361 (2001).

[34] G.M. Weinberg, The Psychology of Computer Programming, Dorset House
(1971).

[35] R. Zanibbi, D. Blostein and J.R. Cordy, “Recognizing Mathematical
Expressions Using Tree Transformation”, IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(11), 1455–1467 (2002).

27

http://www.antlr.org/papers/sorcerer.ps

	What is TXL?
	How TXL Came to Be
	The Turing Language Project
	The Turing eXtender Language

	Design of the TXL Language
	Goal: Rapid Prototyping
	Goal: Language Experimentation
	Goal: By-example Patterns and Replacements
	Goal: Context-dependent Transformations and Relationships
	Goal: Complex Scalable Transformations

	User Refinement of the TXL Language
	Functions and Rulesets
	Explicit Guards
	Lexical Control
	Global Variables and Tables

	Expressing New Paradigms in TXL
	Robust Parsing
	Island Grammars
	Union Grammars
	Agile Parsing
	Parse Tree Annotations
	Source Code Markup and XML
	Traversals
	Rewriting Strategies and Scoped Application of Rules
	Contextualized Rules and Native Patterns

	Transformational Programming
	Related Work
	Conclusion
	Acknowledgments
	References

