
Abstract User Interfaces: A Model and Notation
to Support Plasticity in Interactive Systems

Kevin A. Schneider1 and James R. Cordy2

1 Department of Computer Science, University of Saskatchewan, 57 Campus Drive,
Saskatoon, Saskatchewan S7N 5A9 Canada,

kas@cs.usask.ca
2 Department of Computing and Information Science, Queen’s University, Kingston,

Ontario K7L 3N6 Canada,
cordy@cs.queensu.ca

Abstract. This paper introduces the Abstract User Interface (AUI)
model and notation for specifying abstract interaction in interactive soft-
ware systems with graphical, direct manipulation user interfaces. The
AUI model is aimed at improving the plasticity of an interactive system.
An interactive system is considered to be plastic when it is easily adapt-
able to concrete user interface styles. To support plasticity, an AUI spec-
ification defines the interaction between input, output and computation
in terms of the abstract elements of the user interface: a relation we refer
to as abstract interaction. Concrete characteristics of the user interface,
such as events, callbacks and rendering, are deliberately factored out so
that the abstract interaction relation can be exposed. Clearly defining
the abstract interaction ensures that consistent interaction semantics is
maintained independent of changes to the concrete user interface. To
demonstrate the AUI concept, a range of user interface styles are pre-
sented for a single AUI specification of a drawing tool, and examples of
commercial applications are presented.

1 Introduction

In 1999, David Thevenin and Joëlle Coutaz outlined a framework and research
agenda that introduced the notion of user interface plasticity [16]. Plasticity
addresses the requirement that an interactive system be accessed from a variety
of physical devices including ‘dumb’ terminals, personal computers and handheld
computers. The desire is to specify the interactive system once while preserving
its usability across the various physical environments, and at the same time
minimizing development and maintenance costs. A plastic interactive system is
one that adapts to a wide range of user interface styles.

The abstract user interface (AUI) model and notation described in this paper,
has been developed to help improve the plasticity of interactive systems. The
approach is intended to be used not only in the development of new interactive
systems, but also in adding plasticity to existing legacy applications. It is often
the case that existing interactive systems were developed with little or no notion
of plasticity.

The AUI model separates a user interface into concrete and abstract com-
ponents so that a number of concrete user interface styles may be specified for
a single abstract user interface. The AUI notation is an executable specification
language used to define the abstract user interface. By only specifying abstract
interaction once, it is hoped that development and maintenance costs will be
reduced and that interaction semantics of an interactive system will remain con-
sistent across multiple concrete user interfaces.

The primary goal of this paper is to introduce the AUI model and notation,
showing how the notation is used to define abstract interaction. A secondary
goal is to show how the model has been used to introduce plasticity into existing
interactive systems.

The paper is organized into seven sections. Section 2 describes the AUI model
and points out differences between the AUI model and other user interface mod-
els. The AUI language is presented in Section 3 using an example of a graphical
drawing editor. Section 4 describes a prototype of an AUI language compiler and
how it was used to implement the graphical drawing editor. Section 5 describes
the application of the AUI model to existing large-scale legacy systems. Section 6
relates the AUI work to other research presented in this volume and Section 7
concludes the paper, describing future research.

2 The AUI Model

The AUI model considers an interactive system to composed of three compo-
nents, the functional core of the application (or computation), the abstract user
interface (AUI) and the concrete user interface (CUI). Together, the AUI and
CUI form the user interface of the interactive system. To support plasticity of the
user interface, multiple CUI’s may be defined for one AUI specification (cf. Fig-
ure 1). By maintaining the distinction between abstract interaction and concrete
interaction, it is hoped that a large portion of an interactive system can be de-
signed, developed and evolved as a single entity and yet be usable across a wide
range of platforms and concrete interaction styles.

Computation
(Functional Core) AUI

CUI 1

CUI 2

CUI n

...

user actions

graphical elements

function arguments

function results

Fig. 1. AUI model. A number of concrete user interfaces (CUI’s) may be defined for
a single AUI. The combination of Computation, AUI and one of the CUI’s forms an
interactive system.

The AUI model is a synthesis of ideas from existing user interface architec-
tural models, such as the Seeheim model [15], Arch [18], ALV [11], Interactors
[14], Clock [8], TRIDENT [3] and PAC [5]. Traditionally the Seeheim model,
shown in Figure 2, is used to compare user interface architectures and models.

Presentation
Layer

Dialogue
Control
Layer

Application
Interface

Application

screen
updates

tokenstokens callbacks

feedback calls

Fig. 2. The Seeheim model of user interface management systems.

The Seeheim model separates a user interface into Presentation Layer, Di-
alogue Control Layer and Application Interface. The Abstract User Interface
(AUI) model presented here differs in that it abstracts elements from each one
of these components (cf. Figure 3). Therefore, the AUI specification is not lim-
ited to describing a single Seeheim component, and can be used to describe the
relation between presentation, dialogue and application interface. That is, the
AUI specification defines the abstract interaction between input, output and
computation.

CUI: Concrete User Interface

AUI: Abstract User Interface

Application

- rendering - events - callbacks

- graphical elements - function calls
- lazy evaluation of user actions - display rewriting

Presentation Layer Application InterfaceDialog Control

Fig. 3. Separating Seeheim components into CUI and AUI components.

The AUI model is not a replacement for the Seeheim model, but rather an
orthogonal refinement of the Seeheim components into their abstract, environ-
ment independent aspects and their concrete, environment dependent ones. The
refinement is explicitly aimed at improving the plasticity of interactive systems.

The AUI approach is similar to research that separates the interactor portion
of a user interface into abstract and concrete components [6]. With such sepa-
ration, different concrete input and output mechanisms can be used depending
on user preferences, available resources or the context of the interactor. TRI-
DENT [3] separates presentation into abstract and concrete interaction objects

and uses matching tables to automatically transform the abstract interaction
objects to concrete interaction objects depending on the specific physical tar-
get environment. The AUI research focuses on the specification of the abstract
user interface. Approaches, such as that used in TRIDENT, may integrate well
with the AUI model for automatically generating the concrete user interface and
addressing ergonomic issues.

The AUI approach is also related to markup languages that are used to de-
scribe hypertext documents, such as XML [4], WML [10] and UIML [1]. These
markup languages separate the concrete presentation of a document from its
logical description. XML is intended for the communication of structured doc-
uments, WML is intended to describe documents for wireless appliances, and
UIML is intended to describe documents for a wide range of appliances in-
cluding personal computers with web browsers, hand held computers and cell
phones. Each style of user interface is often document and forms oriented. A
wider range of user interface styles is supported by the AUI approach, including
user interfaces with direct manipulation of application objects as exemplified by
a graphical drawing editor.

2.1 Abstract User Interface Component

The abstract user interface (AUI) component, models output as a sequence of
display values and input as a sequence of user actions. The AUI specification
provides pattern matching rules that recursively transform the current display
value and user action into a new display value (cf. Figure 4).

Resize box

Fig. 4. Display change resulting from a user action to resize a box.

The AUI considers a display to be composed of a set of graphical and inter-
active elements. The graphical elements, gels, are specified with a set of built
in constructor functions in the AUI language. Primitive gels have a shape, a
size and an optional set of attributes for specifying characteristics, such as, pen
width, fill colour and font. Some primitive gel shapes include box, oval, line, label
and point.

The composite graphical element canvas, is used to provide position to the
graphical elements. A canvas has a size, an optional set of attributes, and a set of
<gel,position> tuples. A <gel,position> tuple is referred to as a pin. An example
display value is shown in Figure 5.

This is a label

canvas <200,100> {
<box <35,25> (Fill Shaded),<50,40>>,

<oval <45,28> (Fill Clear),<100,20>>,

<line <50,0> (Arrows None),<110,70>>,

<label <Font Times)(FontSize 14) (Style Italic),<20,80>>}

Fig. 5. Example AUI display value and its possible rendering. The display consists of
a canvas and four pins. The canvas, box, oval, and line gels each have their size
specified by a <width,height> tuple. For example, the box has a size of <35,25>, is
shaded and is positioned on the canvas at <x,y> location <50,40>.

Input is abstracted as a sequence of choices. For example, selecting from
a menu or palette is modelled as choosing from a set of values or functions.
Changing a fill attribute of a rectangle could be expressed as

canvas <300,200> {<box <35,25> (Fill shading),<50,40>}
where

shading = choose {Shaded,Clear,Black}
end where

Output is abstracted as a sequence of user interface expressions, each to be
rendered by the concrete user interface. Evaluating the previous equations may
result in one of the following values:

canvas <300,200> {<box <35,25> (Fill Black),<50,40>}
canvas <300,200> {<box <35,25> (Fill Clear),<50,40>}

Instead of having the location predefined to be <50,40>, the location of the
rectangle may be chosen by the user. The function, location, is added to the
specification to denote choosing an <x,y> coordinate from a set of points. Each
time the user chooses a new location or shading for the rectangle a new canvas
expression will be passed to the CUI for rendering.

canvas size {<box <35,25> (Fill shading),location}
where

location = choose points
shading = choose {Shaded,Clear,Black}

end where

2.2 Concrete User Interface Component

The concrete user interface (CUI) component is concerned with issues of physical
layout, graphical rendering and input events. The CUI renders the AUI display
values as graphical objects on the screen and produces the user action sequence.
The translation of AUI input and output values to and from specific toolkits
or platforms is independent of a particular interactive system. Each choose ex-
pression is bound to an interaction technique; however a variety of concrete
representations are possible (cf. Figure 6).

Colour

Blue
Green
Red Green

Blue

Red
Colour

Fig. 6. Possible CUI elements for the AUI expression choose {Red,Green,Blue}.

The binding of the CUI and AUI is modelled as sequences of user choices and
sequences of expressions to be rendered (cf. Figure 7). For example, as the user
makes menu choices over time, the choices are passed to the AUI as a sequence
of menu choices. Based on the choices, a sequence of graphical expressions is
passed back to the CUI. The CUI renders the graphical expressions.

AUI
(Abstract User Interface)

choose

canvas

CUI
(Concrete User Interface)

Fig. 7. Abstract user interface/Concrete user interface communication.

2.3 Computation Component

Computation is modelled as external functions in the AUI. The computation
functions are used where needed in the AUI specification, and so the arguments
the computation depends on are clearly expressed. The signature of the compu-
tation functions are part of the AUI specification to ensure correct typing, but
the implementation of the functions is external.

Similar to the CUI binding, the binding of the AUI and computation is mod-
elled as streams of arguments and results (cf. Figure 8). Although computation
is modelled as function application, in practice the binding may update a vari-
able or be used to bring computation in-line. The definition of the computation

may not correspond to a function in the application language but may be a
procedure, a message or may correspond to the execution of a statement.

function results

function arguments
Computation

(Functional Core)
AUI

(Abstract User Interface)

Fig. 8. Abstract user interface/Computation communication.

3 AUI Language

This section introduces the AUI notation for specifying abstract interaction using
an example of a graphical drawing editor. The complete syntax of the language
is provided in the appendix.

The basic framework of the simple drawing editor includes a menu bar, a tool
palette, a pointer and a canvas. The AUI specification for the basic framework
of the drawing editor is

drawingEditor = choose {tool,menuBar}
where

tool = choose {pointerTool,boxTool,ovalTool,lineTool}
menuBar = choose {file,edit,fill,arrows}
file = choose {new,open,close,save,saveAs,print,quit}
edit = choose {undo,cut,copy,paste}
fill = fillAttr (choose {None,White,Shaded,Black})
arrows = arrowAttr (choose * {AtStart,AtEnd})

end where

Example concrete user interfaces for the AUI specification of the drawing
editor are shown in Figure 9.

The AUI language is similar to non-strict, pure functional languages like
Haskell [12] and Miranda [17]. Arguments to the choose function are only evalu-
ated when a value is required (lazy evaluation). When the value is required, the
AUI will wait for the concrete user interface to return a value. The CUI may do
one of three things:

1. A choice has already been made in the CUI and that choice is returned.
2. Although a choice has not yet been made in the CUI, the CUI returns a

default choice.
3. The interaction blocks, waiting for the user to make a choice using an inter-

action technique. The resulting choice is returned.

File Edit Fill Arrows

4

4

(a) (b)

Box

Circle

draw
Fill Arrows

Width:
Height:

Radius:

Length:
Angle:

Line

Select shape
1-Box 2-Oval 3-Line
? 1

Select fill
1-White 2-Black 3-Gray
? 3

Width? 30
Height? 40
X-position? 10
Y-position? 20

Select command
1-Draw 2-List 3-File
?

(c) (d)

Fig. 9. Possible CUI’s for the graphical drawing editor.

3.1 Modelling Canvas Interaction

To model the interaction with the drawing canvas, a function, say draw, is re-
cursively applied to a canvas expression. Function draw is defined as a choice
between leaving the canvas as is (the base case) or applying the function recur-
sively to the drawingEditor function. The drawingEditor function will be defined
in terms of the original canvas and will return a new canvas. The functions are
defined as follows:

main = f (canvas <300,200> {})
draw c = choose {c,draw drawingEditor}

where
drawingEditor = ...c ...

end where

3.2 Computation

Computation, or application specific functionality, is added to the AUI specifi-
cation as external functions. By convention, the names of the external functions
are preceded with an underscore (). In the AUI specification only the signatures
of the external functions are specified. For example, the following signatures may
be defined:

new :: -> Gel
open :: String -> Gel
save :: Gel -> Gel
print :: Gel -> Gel

The external functions may then be used where appropriate in the AUI spec-
ification as long as their function signatures are respected. External functions do
not necessarily correspond to procedures or functions in traditional languages
but may correspond to changing a data value or transmitting a message. In the
simple drawing editor a number of the file menu functions are expanded to use
external functions.

3.3 Modelling the Pointer

To model drawing using a pointer requires a CUI interaction technique to accept
a sequence of pointer positions, such as

[<100,150>,<100,155>,<100,160>,<100,170>]

The first point in the sequence corresponds to a point on the drawing canvas
where the user first pressed the mouse button. The last point in the sequence
corresponds to a point on the drawing canvas where the user released the mouse
button. The intermediate points in the sequence correspond to the pointer posi-
tion on the drawing canvas while the mouse button is being held and moved. In
the CUI, a cursor will track the mouse movement. In the AUI, pointer interaction
is defined as choosing from a set of points:

pts = choose * points
points = {<x,y> | x<-[0..(width c)];y<-[0..(height c)]}

where
width (canvas <w,h> pins) = w
height (canvas <w,h> pins) = h

end where

For example, if the canvas is defined as ‘canvas <200,300> {}’ then the
results of the function width will be 200 and the results of the function height will
be 300. Points will have the value ‘{<0,0>,<0,1>,...,<200,299>,<200,300>}’.

Choosing from the points set may result in the following value which repre-
sents moving the mouse pointer from position <30,30> to position <130,130>.

[<30,30>,<30,31>,...,<130,129>,<130,130>]

3.4 Drawing

To create an object the user selects a tool from the tool bar, positions the pointer
on the canvas, presses the mouse button to specify the starting point of the object
and while holding the mouse button down, moves the pointer until the object
is the appropriate size and then releases the button. In this way objects are
specified with a list of <x,y> points.

The following functions construct a box shaped graphical element given two
points from the canvas. From these two points, the size and position of the box is
calculated. In a typical drawing editor, the first point, pt1, corresponds to where
the pointer was when the mouse button was pressed and the second point, pt2,
corresponds to where the pointer was when the mouse button was released.

boxPin pt1 pt2 = <gel,pos>
where

gel = box (gelSize pt1 pt2) attr
pos = gelPos pt1 pt2
gelSize <x1,y1> <x2,y2> = <abs (x1-x2),abs (y1-y2)>
gelPos <x1,y1> <x2,y2> = <min [x1,x2],min [y1,y2]>

end where

Figure 10 shows an example of pressing and holding the mouse button at
position <30,30> and releasing the mouse button at <130,130>. The result box
will have a width of 100 and a height of 100.

File Edit Fill Arrows

Mouse Button
Released Here

<130,130>

Mouse Button
Pressed and Held

Here <30,30>

Fig. 10. Drawing a box.

Normally, graphical elements are placed on the composite graphical element
canvas. Adding a pin to a canvas is accomplished with function, place.

place pin (canvas size pins) = canvas size (pin:pins)

The operator ‘:’ inserts its left operand into the set that is its right operand.
To provide rubber band feedback to the user, the following definitions are applied
to the place function:

boxTool = foldc (rubberBox (first pts)) c pts
rubberBox pt1 c pt2 = place (boxPin pt1 pt2) c

The function foldc reduces a list in the following way

foldc f c [x1,x2,...,xn] = (...((c f x1) f x2)...) f xn

Applying foldc to the canvas ‘canvas <192,192> {}’ and the pointer se-
quence

[<30,30>,<31,31>,<31,32>,<31,31>,...,<130,129>,<130,130>]

results in the sequence of canvases:

(1) canvas <192,192> {<box <0,0> attr,<30,30>>}
(2) canvas <192,192> {<box <1,1> attr,<30,30>>}
(3) canvas <192,192> {<box <1,2> attr,<30,30>>}
(4) canvas <192,192> {<box <1,1> attr,<30,30>>}
...
(n-1) canvas <192,192> {<box <100,99> attr,<30,30>>}
(n) canvas <192,192> {<box <100,100> attr,<30,30>>}

Rendering the sequence of canvases will provide the rubber band feedback
effect (cf. Figure 10).

3.5 Selecting

In typical graphical drawing editors, a pointer tool is provided to select one or
more graphical elements for the purpose of repositioning, deleting or changing
their attributes. The user selects an element by clicking on it. When a previously
selected element is clicked on, the element becomes deselected. By holding the
mouse button down while moving the pointer, the selected graphical elements
are repositioned. The pointerTool is defined as follows:

pointerTool = foldc (repositionGels (first pts))
(selectGels (first pts) c) pts

The function selectGels selects (or deselects) the graphical element(s) that
the pointer is within. The function repositionGels computes a new position for
each of the selected graphical elements, relative to the position of the pointer.
The functions selectGels and repositionGels are defined as follows:

selectGels xy (canvas size pins) = c’
where

c’ = canvas size (map (selectWithin xy) pins)
selectWithin xy pin = select pin, if within xy pin
selectWithin c pin = pin % otherwise

end where

repositionGels xy1 (canvas size pins) xy2 = c’
where

c’ = canvas size (map (reposition xy1 xy2) pins)
reposition xy1 xy2 <gel Sel,pos> = <gel Sel,pos’>
reposition xy1 xy2 pin = pin
pos’ = newpos xy1 xy2 pos
newpos <x1,y1> <x2,y2> <x,y> = <x+x2-x1,y+y2-y1>

end where

select :: PIN -> PIN % select - turns on or off the selected gel’s attribute
select <gel Sel,pos> = <gel,pos> % deselect
select <gel,pos> = <gel Sel,pos> % select

within :: XY-POSITION -> PIN -> BOOLEAN
within <x1,y1> <shape <w,h> attrs,<x2,y2>> = True,

if x1 >= x2 and x1 <= (x2+w) and y1 >= y2 and y1 <= (y2+h)
within xy pin = False

4 Implementation

The graphical drawing editor specified in the previous section has been imple-
mented on the Apple Macintosh platform. A concrete user interface was de-
veloped similar to the drawing component of the commercial software package
AppleWorks [2]. An AUI language interpreter was developed based on the Gofer
runtime engine [13]. Gofer is functional language environment for a dialect of
the functional programming language Haskell [12].

The choose expressions are bound to common Apple Macintosh interaction
technique routines written in C/C++ that access the Apple Macintosh tool-
box. The graphical elements are rendered using the Apple Macintosh imaging
language, Quickdraw. Computation functions are also written in C/C++.

4.1 Runtime Architecture

The communication between the CUI and the AUI, and the AUI and the com-
putation is through the input and output streams of the functional language and
the input and output features of C/C++. Input to the CUI runtime is a stream
of built-in functions to be evaluated (rendered) and the output from the CUI
runtime is a stream of choose values and computation function results.

The input/output mechanism of the AUI runtime was modified to use mon-
itored queues, and these queues were also accessed by the CUI runtime instead
of using input and output routines (cf. Figure 11). The queues can be thought
of as channels, input/output streams or message passing facilities.

CUI Runtime

Apple Macintosh Toolbox

Output
Stream

I/O Queues

AUI Runtime

Input
Stream

Input
Stream

Output
Stream

Fig. 11. Runtime Architecture.

4.2 AUI Evaluation

Since the AUI notation is based on pure functional languages, it is relatively easy
to translate most of the language features directly into previously implemented
functional language, such as Haskell and Miranda. As with those languages, the
AUI language has structured types, pattern matching, function application, and
higher order functions. And like both Haskell and Miranda, the AUI notation
has a non-strict semantics (lazy evaluation) and is strongly typed.

The communication between the AUI and the CUI is modelled as a stream
of values. The streams of choices, canvases, arguments and results are commu-
nicated between the CUI, AUI and computation through the input and output
mechanisms of the implementation languages. In this way, the semantics of each
implementation language does not need to be altered. To enhance responsiveness
separate threads of control are used for the user interaction and computation,
and the input and output mechanisms are replaced with reads and writes to
monitored queues (cf. Figure 11).

A functional language runtime engine based on Gofer [13] is provided to
interpret the AUI specification. The runtime engine has been modified to com-
municate input and output through the monitored queues instead of through
the file system.

Connecting the CUI, AUI and computation involves simply connecting the
streams of choices and canvases to enqueue and dequeue routines. The interaction
techniques, rendering routines and computation functions access the queues as
necessary.

4.3 CUI Interaction Techniques

To build the CUI, each of the choose expressions are associated with an in-
teraction technique. In the prototype interactive elements commonly available
in the Macintosh toolbox, such as menus, are used. On the Apple Macintosh,
each file has a data fork and a resource fork. The resource fork may contain
icon, window and menu definitions. An Apple supplied visual specification tool,
ResEdit, is used to draw the icons and define the menus for the CUI. Figure 12
shows ResEdit windows for defining the icons in the application. Figure 13 shows
images of the menu bar and pull down menus, also defined with ResEdit.

Fig. 12. The Macintosh ResEdit tool was used to define the CUI’s visual resources.

Fig. 13. Concrete interaction techniques of drawing editor.

The interaction technique in the concrete use interface enqueues the user’s
choice on the queue assigned it. The C/C++ code to handle a mouse event and
place the point selection on a queue is:

GetMouse(&mouseLoc); /* Apple Toolbox Routine */
enqueue(ch9,mouseLoc.h); /* ch9 is the choose queue for pts */
enqueue(ch9,mouseLoc.v);

4.4 CUI Rendering

The stream of canvas values is monitored by a render function in the CUI. The
canvas value is translated into calls to Apple Quickdraw routines. For example,
the following C/C++ code renders a pin of type line:

/* c1 is the queue assigned to the canvas */
if (dequeue(c1) == linePin) {

pin.shape = linePin;
pin.w = dequeue(c1);
pin.h = dequeue(c1);
pin.x = dequeue(c1);
pin.y = dequeue(q);
pin.selected = dequeue(q);
/* Apple Quickdraw routines to draw Line */
PenMode(patCopy);
RGBForeColor(&black);
MoveTo(pin.x,pin.y);
Line(pin.w,pin.h);
if pin.selected {.../* draw handles */...}

}

Fig. 14. Drawing editor prototype running on the Apple Macintosh.

5 Application to Legacy Systems

The AUI model has recently been used in a commercial setting for increasing
the plasticity of legacy applications. In one example, the AUI model was used
to separate business and user interface logic so that the business rules could be
adapted to a wide range of user interfaces through a multi-channel messaging
architecture (cf. Figure 15). In a second example, the AUI model was used to
migrate a legacy application from a single session to a multiple session web-
based architecture (cf. Figure 16). In both cases, the AUI modelled the interface
between application functionality (computation) and concrete user interface.

Messaging
AUI

Channel 1

Channel 2

Channel n

Legacy Program

Business
Logic

Screen
Logic

CUI 1

CUI 2

CUI n

Fig. 15. Multi-channel messaging to add plasticity to a legacy system. The user inter-
face is modelled with the AUI and the concrete user interface components communicate
through a multi-channel messaging architecture. The concrete user interfaces may be
automated teller machines, personal computers, telephones, etc.

Legacy Program

Business
Logic

Screen
Logic

Dumb
Terminal

CUI

Web
Interface

CUI

AUI
Business

Logic

Fig. 16. Multi-session architecture for adding plasticity to a legacy system. The AUI
models the interface between the user interface logic and the business logic. The AUI
also manages the state necessary to achieve multi-session processing.

6 Connections

The abstract user interface notation provides a means of investigating and ex-
pressing abstract interaction. To further the research, the notation needs to be
used to express a variety of interaction relations to determine common patterns
and the usability of the notation. Research presented at this workshop into ‘Tem-
poral Patterns for Complex Interaction Design’ will aid in identifying some of
these common patterns. As well, the idea of ‘Symmetry as a Connection Between
Affordance and State Space’ may help establish criteria for connecting CUI and
AUI.

To aid in practically exercising the AUI notation a supporting user inter-
face builder should be designed and implemented. With an AUI development
environment the AUI notation could be further exercised and accessible to a
larger audience. The AUI development environment will need to integrate with
other user interface tools. Ideas for such integration have been presented at this
workshop in the chapter on ‘Tool Suite for Integrating Task and System Models
Through Scenarios.’

Related to user interface plasticity is the notion that user interfaces may
need to adapt to different contexts of use. The chapter on ‘Task Modelling for
Context-Sensitive User Interface’ addresses this issue.

7 Conclusion

The abstract user interface (AUI) model and supporting notation provide a
means of specifying abstract interaction to aid in the design and development of
plastic interactive systems. The AUI model separates an interactive system into
three components, the concrete user interface (CUI), the abstract user interface
(AUI) and the computation. The CUI is concerned with issues of events and
display updates, the computation is concerned with issues of application specific
functionality, and the AUI relates the two.

The AUI approach is conducive to producing alternative user interfaces for an
application, since much of the interaction can be specified in the AUI. A textual
CUI, a graphical CUI and CUI’s for multiple platforms could be constructed for
the same AUI.

By having a clearer and more structured way of expressing application in-
teraction using the AUI notation, iterative development of interactive systems
may prove to be easier and less error prone. As well, having clearly stated the
relation between user interface and application, an interactive system may be
more robust since the dependencies are more easily accounted for.

Temporal issues are not addressed in the AUI notation. The AUI notation
can be used to specify some simple sequential dependencies but complex tem-
poral dependencies must be managed either by the concrete user interface or
by the computation component. Unfortunately there may be cases where it is
desirable to express temporal constraints in the AUI in terms of AUI elements.
For example, some temporal constraints may need to be maintained regardless

of the given CUI or application bindings. It would be interesting to investigate
an orthogonal notation based on ideas from Clock [7] for expressing temporal
constraints. The AUI notation supplemented with temporal constraints would
be conducive to demonstrational techniques, especially for specifying sequencing.
As well, a notation based on UAN [9] for expressing the concrete user interface
could provide a CUI complement to the AUI notation.

Although the research has focused on single user, non-distributed user inter-
faces with a direct manipulation style, the techniques are not necessarily limited
to that domain and may be found useful for distributed, multi-user, multi-media
or network based software. The AUI notation could be expanded to model these
non-WIMP user interfaces.

Using the AUI model to improve the plasticity of existing legacy systems is
an exciting area for future research. The techniques that have been used com-
mercially need to be generalized so they may be easily applied to a range of
legacy systems.

The AUI model is hoped to be a preliminary step in expressing abstract
interaction as a foundation for building more elaborate user interfaces with rich
semantic feedback and for improving the plasticity of interactive systems.

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Coun-
cil of Canada for their support. We also wish to thank T. C. N. Graham for his
valuable comments and feedback.

References

1. M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams and J. E. Shus-
ter. UIML: An Appliance-Independent XML User Interface Language. WWW8,
Toronto May 1999.

2. AppleWorks 6, Copyright c©2000 Apple Computer. Apple Computer, 2000.

3. F. Bodart, A.-M. Hennebert, J.-M. Leheureux, and J. Vanderdonckt. A Model-
Based Approach to Presentation: A Continuum from Task Analysis to Prototype.
In Proceedings of 1st Eurographics Workshop on Design, Specification and Ver-
ification of Interactive Systems DSVIS’94 (Bocca di Magra, Jun 8-10, 1994). F.
Paternó (ed.). Eurographics Series, Berlin, 1994, pp. 25-39.

4. T. Bray, J. Paoli, and C. M. Sperberg-McQueen, eds. Extensible Markup Language
(XML) 1.0. W3C Recommendation, 1998.

5. J. Coutaz, L. Nigay and D. Salber. PAC: An Object Oriented Model for Imple-
menting User Interfaces. ACM SIGCHI Bulletin, vol. 19, 1987, pages 37-41.

6. M. Crease, P. Gray and S. Brewster. A Toolkit of Mechanism and Context Inde-
pendent Widgets. In Design, Specification and Verification of Interactive Systems
(Workshop 8, ICSE 2000), Limerick, Ireland, 2000, pp. 127-141.

7. T. C. N. Graham. Declarative Development of Interactive Systems. Volume 243 of
Breichte der GMD. R. Oldenbourg Verlag, July 1995.

8. T. C. N. Graham and T. Urnes. Integrating Support for Temporal Media into an
Architecture for Graphical User Interfaces. In Proceedings of the International
Conference on Software Engineering (ICSE97). IEEE Computer Society Press,
Boston, USA, May 1997.

9. H. R. Hartson, A. C. Siochi and D. Hix. The UAN: A User-Oriented Representa-
tion for Direct Manipulation Interface Designs. ACM Transactions on Information
Systems, 1990, 8(3):181-203.

10. J. Herstad, D. Van Thanh and S. Kristoffersen. Wireless Markup Language as a
Framework for Interaction with Mobile Computing and Communication Devices.
In Proceedings of the First Workshop on Human Computer Interaction with Mobile
Devices, Glasgow, Scotland, 1998.

11. R. D. Hill. The Abstraction-Link-View Paradigm: Using Constraints to Connect
User Interfaces to Applications. In Human Factors in Computing Systems (Mon-
terey, California, USA), 1992, pages 335-342.

12. P. Hudak, S. P. Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel, M. M. Guzman,
K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz, R. Nikhil, W. Partain and J.
Peterson. Report on the Programming Language Haskell. Technical Report, Yale
University, USA, 1988.

13. M. P. Jones. An Introduction to Gofer. Functional programming environment, Yale
University, 1991.

14. B. A. Myers. A New Model for Handling Input. ACM Transactions on Information
Systems, 1990, 8(3):289-320.

15. G. E. Pfaff, editor. User Interface Management Systems. Springer-Verlag, Berlin,
November 1983.

16. D. Thevenin and J. Coutaz. Plasticity of User Interfaces: Framework and Research
Agenda. In Proceedings of INTERACT’99. (IFIP TC.13 Conference on Human-
Computer Interaction, 30th August-3rd September 1999, Edinburgh, UK), Tech-
nical Sessions, 1999, pages 110-117.

17. D. A. Turner. Miranda: A non-strict functional language with polymorphic types.
In Proceedings IFIP International Conference on Functional Programming Lan-
guages and Computer Architecture (Nancy, France), 1985, pages 1-16.

18. The UIMS Tool Developers Workshop. A Metamodel for the Runtime Architecture
of an Interactive System. SIGCHI Bulletin. Volume 24, Number 1, 1992, pages 32-
37.

Appendix. AUI Syntax

auiSpecification ::= { equation }
equation ::= functionDef | functionSignature | typeDef | typeSynonyn | matchEqn
functionDef ::= functionName { pattern } = expression [whereClause]
whereClause ::= where { equation } end where
functionSignature ::= functionName :: typeName1 { -> typeName2}
typeDef ::= typeName { typeVar } ::= constructorExpr { | constructorExpr }
constructorExpr ::= constructor { typeExpr }
typeSynonym ::= typeName == typeExpr
matchEqn ::= match identifier = pattern
expression ::= identifier | literal | functionName { expression } |

unaryOperator expression |

expression binaryOperator expression | choose | gel |
expression , if expression | comprehension | (expression)

list ::= [[expression { , expression }]]
set ::= { [expression { , expression }] }
tuple ::= < [expression] { , expression } >
unaryOperator ::= - | not | first | rest
binaryOperator ::= arithmeticOps | logicOps | listOps | functionComposition
arithmeticOps ::= + | - | / | * | ^ | div | rem
logicOps ::= == | <= | >= | = | < | > | and | or
listOps ::= : | ++
functionComposition ::= .
comprehension ::= listComprehension | setComprehension
listComprehension ::= [expression | generator { , generator }]
setComprehension ::= { expression | generator { , generator } }
generator ::= name <- listOrSetExpression |

< name , name > <- 2-tupleListOrSetExpression |
< name , name , name > <- 3-tupleListOrSetExpression | . . .

listOrSetExpression ::= listExpression | setExpression
listExpression ::= [number .. number] | [char .. char] | [type]
setExpression ::= { number .. number } | { char .. char } | { type }
pattern ::= identifier | literal | |

< [pattern { , pattern }] > | [[pattern { , pattern }]] |
{ [pattern { , pattern }] } | ([pattern { , pattern }]) |
pattern : pattern | constructor { pattern } | (pattern)

gel ::= canvas { attribute } { [pin { , pin }] } | shape { attribute }
shape ::= circle | line | box | point | label
pin ::= < gel , xy-offset > | gel xy-offset
xy-offset ::= < number , number > | X number Y number
attribute ::= < number , number > | (Fill fill) | (Arrows arrows) |

(Font font) | . . .
choose ::= choose [name] [cardinality] setOrList
cardinality ::= * | number | min .. max | min .. *
externalFunction ::= external functionName | ext functionName | functionName

Note: functionName, typeName, typeVar, typeExpr and name are all identifiers.

	Header: Proc. DSVIS 2001 - 6th International Conference on Document Analysis and Recognition, Glasgow, June 2001, pp. 40-59

