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Abstract
ERLANG is a concurrent, dynamically typed, distributed, purely
functional programming language with non-purely functional li-
braries that is mainly employed in telecommunication systems.
This paper provides a contribution to the formal modeling and ver-
ification of programs written in Erlang. It presents a mapping of
Erlang programs to the π–calculus, a process algebra whose name–
passing feature allows representation of the mobile aspects of soft-
ware written in Erlang in a natural way.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms Languages, Theory, Verification

Keywords Functional Programming Languages, π–Calculus, Mo-
bile Systems, Translation Mapping

1. Introduction
In this paper we address the software verification issue in the con-
text of the functional programming language Erlang [1], which was
developed by Ericsson corporation to address the complexities of
developing large–scale programs in a concurrent and distributed
setting. Our interest in this language is twofold. On the one hand,
Erlang is often used in the design and implementation of real pro-
duction telecommunication systems. On the other hand, its com-
pact syntax and clean semantics make it particularly amenable to
the application of formal reasoning methods.
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Due to the presence of unbounded data structures, recursive
functions, dynamic process spawning and mobility, Erlang pro-
grams usually induce infinite–state systems. It is therefore natural
to employ interactive theorem–proving assistants such as the Er-
lang Verification Tool [6, 7] to establish desired system properties.

In this work we follow an alternative approach in which we
apply fully–automatic model–checking techniques [5] to establish
correctness properties of communication systems implemented in
Erlang. While simulation and testing explore some of the possible
executions of a system, model checking conducts an exhaustive
exploration of all its behaviors. In this paper we concentrate on
the first part of the verification procedure, the construction of the
(transition–system) model to be checked.

Our approach is based on a subset of Erlang, called PIErlang,
which is very close to the original language. We define a translation
mapping from PIErlang to the π–calculus [11], a process–algebraic
model of concurrent computation which concentrates on the mobile
aspects of systems. This work is an improvement over our previous
work [18] where an initial translation mapping from Core Erlang
[3] to π–calculus was presented with limitations. In that work we
approximated matches in case and receive expressions using
non–deterministic choices, and tuple based communications were
not modeled at all. In this paper we provide a detailed treatment
of the larger subset PIErlang using a translation mapping that deals
with both of these issues.

Our new translation exploits the strong connection between Er-
lang and the π–calculus in a number of ways. The sending of pro-
cess identifier information between Erlang processes, which sup-
ports implementation of dynamic mobile systems, directly corre-
sponds to the name–passing feature of the π–calculus. Since mes-
sage passing in Erlang is asynchronous, we can restrict ourselves to
the asynchronous variant of the process algebra. We represent most
data values such as numbers by a special value/name unknown,
which eliminates one potential reason for infinite state spaces.
However, other potential sources of infinite–state behavior, such as
unbounded mailboxes, recursive function calls and dynamic pro-
cess spawning, are still present in the π–calculus representation.

By employing tools supporting the π–calculus, such as the
Mobility Workbench [12], the HD–Automata Laboratory [8],
Pi2Promela [15] or Spatial Logic Model Checker (SLMC) [19], it



is possible to automatically derive the transition system of a given
Erlang program (at least in the finite–state case) and/or to apply the
model–checking features provided by these tools. Model–checking
tools such as Truth [9] can also be used to automatically verify
that the system meets certain requirements expressed as logical
formulae once the transition system is derived for a given Erlang
program. This, however, is outside the scope of this article.

The remainder of this paper is organized as follows. Section
2 presents the PIErlang, a subset of the Erlang programming lan-
guage by sketching its syntactic constructs. Section 3 introduces
the polyadic asynchronous π–calculus. Section 4 presents the ba-
sic mapping from Erlang into the monadic π–calculus. In Section
5 we present a method for avoiding non–determinism in the repre-
sentation of matches of receive and case expressions. Section 6
provides a detailed treatment of modeling non-nested tuples with
polyadic communications. A case study with the simplified Re-
source Manager example is undertaken in Section 7. Based on sev-
eral other case studies, a further refinements to match and send
expressions is provided in Section 8. Section 9 discusses related
work in the area of automated verification of Erlang programs, and
finally Section 10 concludes the paper by pointing out the limita-
tions of our study.

2. Erlang
Erlang/OTP is a platform for programming open distributed telecom-
munication systems. It consists of the functional language Erlang,
with support for communication and concurrency, and the OTP
(Open Telecom Platform) middleware, providing ready–to–use
components (libraries) and services such as a distributed database
manager, support for “hot code replacement”, and design guide-
lines for using the components.

Many commercially available products offered by Ericsson are
at least partly implemented in Erlang. The software of such prod-
ucts is typically organized into many relatively small source mod-
ules, which at runtime are executed as a dynamically varying num-
ber of processes operating in parallel and communicating through
asynchronous message passing. The highly concurrent and dy-
namic nature of such software makes it particularly difficult to de-
bug and test using manual methods.

In Figure 1, we consider a subset of the Erlang programming
language called PIErlang. It supports the implementation of dy-
namic networks of processes operating on data types such as atomic
constants (atoms), integers, tuples, and process identifiers (PIDs)
using asynchronous, call–by–value communication via unbounded
ordered message queues called mailboxes. Full Erlang has several
additional features such as higher–order functions, list comprehen-
sions, distribution of processes (onto nodes), and support for robust
programming and for interoperation with non–Erlang code written
in, e.g., C or Java. Each of the syntactic constructs of PIErlang will
be explained intuitively in the following sections in connection with
the translation mapping. For further details, please refer to [1, 16].

3. The Asynchronous π–calculus
In contrast to other approaches such as [7, 13, 14], we do not di-
rectly construct the transition–system model for the given Erlang
program. Rather we leverage on existing work by first translating
from Erlang to a specification language for which analysis and ver-
ification methods have already been developed. However, as we
indicated in the introduction, the dynamic and mobile communi-
cation structures which arise in many Erlang applications (such
as, in its simplest form, in the resource manager example in Fig-
ure 5) make a “static” language such as CCS [10] unsuitable for
this purpose. What we employ instead is the π–calculus, a process
algebra whose name–passing capability allows for representation

Program ::= Fdef1 . . .Fdefn ; n>0

Fdef ::= f(X1, . . . ,Xn)-> E ; n>=0

E ::= n | a | X
| X =E1 ,E2 | X =E | E1 ,E2

| f(A1, . . . ,An) | self () ; n>=0

| spawn(f , [A1, . . . ,An]) ; n>=0

| {A1, . . . ,An} ; n>0

| A1!A2 | A!{A1, . . . ,An} ; n>0

| receive M1; . . . ;Mn end ; n>0

| case E of M1; . . . ;Mn end ; n>0

M ::= P->E | {P1, . . . ,Pn}->E ; n>0

P ::= n | a | X
A ::= n | a | X | self ()

where the usual meaning of different symbols are as follows:

Fdef ,Fdef1, . . . ,Fdefn ∈ Function Definitions

E,E1, . . . ,En ∈ Expressions

M ,M1, . . . ,Mn ∈ Matches

P,P1, . . . ,Pn ∈ Patterns

A,A1, . . . ,An ∈ Arguments

a,f ∈ Atoms

X ,X1, . . . ,Xn ∈ Variables

Figure 1. PIErlang Syntax

Sys ::= Pdef1 . . .Pdefn

Pdef ::= i(x1, . . . ,xn) = Proc

Proc ::= nil

| x(z1, . . . ,zn).Proc

| x<y1, . . . ,yn>.nil

| Proc1 ‖ Proc2

| Proc1 + Proc2

| (new x)Proc

| [x=y]Proc

| [x<>y]Proc

| i(x1, . . . ,xn)

Figure 2. The syntax of the asynchronous π–calculus.

of concurrent systems with dynamically changing communication
topologies. More concretely, this feature can be used to model the
sending of an Erlang PID to another process.

We first introduce the syntax of the asynchronous π–calculus,
which is parameterized with respect to a set I of agent or process
identifiers (represented by i ∈ I) and to a set X of names (x, y,
z etc.) which serve as both communication channels and data to
be transmitted along them. The syntactic categories Sys (process
systems), Pdef (single process definitions), and Proc (process
expressions) are defined by the grammar of Figure 2. A system in
the π–calculus is a sequence of one or more process definitions of
the form i(x1, . . . ,xn) = Proc where the right–hand side process
expression Proc can have the following forms:

• nil is an inactive or deadlock process – that is, a process that
can do nothing.

• The input–prefixed process x(z1, . . . ,zn).Proc has a single
capability, expressed by x(z1, . . . ,zn). The process Proc can-



not proceed until the capability has been exercised. It is a pos-
itive prefix where x is the input port of an agent. It binds the
names z1, . . . ,zn and denotes their reception along x .

• x<y1, . . . ,yn>.nil is an asynchronous output process. The
prefix x<y1, . . . ,yn> is a negative prefix. x can be thought of
as an output port of an agent which contains it. This process
outputs names y1, . . . ,yn on port x then behaves like nil that
can do nothing. We are using asynchronous π–calculus, and
therefore, only nil can follow an output action. This is exactly
the restriction that distinguishes the asynchronous π–calculus
from the general form.

• A parallel composition Proc1 ‖ Proc2 , represents the com-
bined behavior of Proc1 , and Proc2 executing in parallel. The
components of Proc1 and Proc2 can act independently, and
may also communicate if one performs an output and the other
an input along the same port. The effect of the communication is
the substitution of all (unbound) occurrences of an input name
by the corresponding output name, or formally (a variant of the
reaction rule):

x<y1, . . . ,yn>.nil ‖ x(z1, . . . ,zn).Proc
→ Proc[z1 7→ y1, . . . , zn 7→ yn]

where Proc[z 7→ y] denotes the replacement of every free oc-
currence of z in Proc by y . Note that communication is actu-
ally synchronous since the output and the input steps are simul-
taneously executed. However the requirement that the output
prefix can only be followed by the nil process makes it “non–
blocking”, i.e., it ensures no other action in the sending process
has to wait for the communication to complete. As we will see
later, this means that all other activities on the sending side have
to be executed in parallel with the output operation.

• A process of the form Proc1 + Proc2 represents a non–
deterministic choice between the two component processes,
that is, it non–deterministically executes either process Proc1

or process Proc2 . This construct will later be used to model
Erlang’s case and receive expressions.

• (new x)Proc means that x is declared as a new name local to
process Proc and is bound in Proc. It is not visible outside
Proc.

• Matching [x=y]Proc denotes a process that behaves as Proc
if x = y, and deadlocks otherwise.

• Mismatching [ x <> y ] Proc defines the opposite behavior of
matching, i.e. checks that x <> y.

• i(x1, . . . ,xn) represents the instantiation of a defined process
and will be used to model function calls.

• i(x1, . . . ,xn) = Proc (where i 6= j ⇒ xi 6= xj ) represents
the declaration of a process i in terms of process Proc. One can
think of it as a procedure declaration in traditional procedural
programming.

The (asynchronous) π–calculus has been given a formal semantics
in terms of labeled transition systems [11]. Thus, once the π–
calculus representation is constructed for a given Erlang program,
its transition system can be derived using existing tools such as
the Mobility Workbench [12], the HD–Automata Laboratory [8],
Pi2Promela [15] or SLMC [19], allowing for use of the model–
checking features of these tools.

4. Translating PIErlang Programs to the
π–Calculus

We will now formally explain the mapping by which Erlang pro-
grams are translated into π–calculus. This translation uses a series
of functions, one for each syntactic category of the source language.

Here we follow a bottom–up approach, starting with Erlang’s data
types (e.g. atoms and numbers) and variables. This differs from our
previous work [18] where a top–down approach was followed. We
reuse some of the mappings of [18] with a detailed explanation and
clarification behind the mapping. For further details the reader is
referred to [16]. In this section the syntactic constructs related to
tuples are not yet presented, in order to keep the mapping simple.
Tuple based mappings are discussed in Section 6.

The π–calculus is a canonical process algebra especially de-
signed for mobile concurrent computation in a very abstract way. It
is a name–passing calculus that allows for the description of con-
current and distributed systems with dynamically changing interac-
tion topology. Name communication together with the possibility
of declaring and exporting local names (scope extrusion) gives this
calculus great expressive power.

Because Erlang is a concurrent and distributed programming
language, processes in Erlang software tend to have a complicated
communication structure. Erlang processes manage concurrency
through asynchronous message passing, using PIDs as the links of
communication. This can be captured directly using the name pass-
ing feature of the asynchronous π–calculus. Erlang’s message pass-
ing primitives have another promising feature: they can pass PIDs
as messages to other process in communication. The π–calculus
achieves this goal using the same idea: passing channels as mes-
sages in communication. Indirect reference and dynamic creation
of new processes plays a prominent role in interaction between pro-
cesses in Erlang. For instance, one process can create a new child
process and then send the PID of the newly created process to a
second process by using asynchronous message passing. In Erlang,
links serve as both communication channel and PID. Such interac-
tions are typically hard to model using communicating finite state
machines. The asynchronous π–calculus provides a simple way to
model such interactions. In π–calculus, links are primitive names of
communication channels. The combination of fresh name genera-
tion (new name creation), and private channel (fresh name) passing
(scope extrusion) allows faithful modeling of several complicated
communication patterns between software agents.

The above striking similarities between Erlang and the π–
calculus lead us to the idea of performing Erlang verification tasks
using the π–calculus. Given the asynchronous message–passing
nature of Erlang, we are particularly interested in checking cor-
rectness/behavioral properties (like deadlock freedom, invariant
checking, message understood properties) of Erlang programs in
a way similar to the Behave Project [25] of Microsoft Research.
For example, the desirable correctness/behavioral properties of a
simplified Resource Locker [26] system are: the locker should
always be enabled to receive a new request or release (no dead-
lock), no two clients should gain access to the same resource
at the same time (mutual exclusion), and all clients should even-
tually get their demanded access (no starvation). These behav-
ioral/correctness properties can be checked using existing tools
[8, 9, 12, 15, 19]. However, in order to use these tools, one must
obtain a π-model for the given program. In order to obtain such a
π–model for Erlang programs, several functions are defined for the
mapping of Erlang programs to the π–calculus, as follows:

Two frequently used functions for translation mapping are
TrPIarg , and TrPIexp . TrPIarg is used to translate any Argument
of PIErlang. Its signature is:

TrPI arg: Argument → Name

This signature indicates that TrPIarg can translate any Num-
ber, Atom, Variable or the built–in–function self() to a name
into the π–calculus when they are used as the arguments of
function calls, spawn calls, and send expressions. This is
also used when working with patterns of receive and case ex-
pressions.



TrPIexp is used to translate any expression of PIErlang to the
π–calculus. It has the following signature:

TrPI exp: Name X Expression → Process

This signature indicates that TrPIexp will take a name (normally
the PID for the corresponding expression) and an Erlang expression
as input and will produce a process as output. We will discuss both
of these functions in the following subsections.

A number of other functions, such as TrPImatch , TrPIfundef ,
and TrPIprog , are used during the translation procedure. Each of
them will also be discussed in detail below.

We use some global conventions during translation mapping.
These are as follows:

• When the evaluation of the process TrPI exp(self, E) is
terminated, it sends the value of the expression E along some
distinguishable channel. Normally, channel res is used for this
purpose. However, several case studies have shown that for
some expressions passing the evaluation result along res can
be omitted.

• The evaluation result of a function fun will be sent along the
fun res channel.

• Name dummy will frequently be used to receive the evaluation
result of an expression and will later be discarded. While work-
ing with tuples we will use dummy1, dummy2,. . . , dummyn for
dummy communications.

We now come to the central part of our translation mapping. In the
following we consider each of the syntactic constructs of PIErlang
and define a mapping to the π–calculus. We begin with the data
types of PIErlang.

4.1 Data Types
PIErlang has two simple data types, numbers (Integer and Float)
and atoms. We define a corresponding mapping in the π–calculus
for each of them. Although the π–calculus has only names, not
constants, we must nevertheless provide a translation for any Er-
lang integer number. Thus we have decided not to represent con-
stants in π–calculus semantically, rather, we have decided that an
integer number should be represented by the unknown name in the
π–calculus. In PIErlang, an integer number can be used as an argu-
ment or as an expression and so there are two kinds of mappings to
the π–calculus for integer numbers.

When an integer is used as an Argument (cf. Figure 1) we use a
direct mapping to unknown in the π–calculus, formally written as:

TrPI arg(n) := unknown

This mapping says that TrPIarg takes any number as input and
produces unknown, a name in the π–calculus as output.

When an integer is used as an expression, it is likely that it
will be used by subsequent expression(s). Having this in mind,
we introduce a new global name res in the π–calculus to store
the results of such atomic expressions. This is done by sending
the integer number as the argument of the send action of the π–
calculus along the res channel. This can be formulated as follows:

TrPI exp(self, n) := res<TrPI arg(n)>.nil

= res<unknown>.nil

A similar mapping is defined for floating point numbers.
Atoms are constant names in Erlang. The value of an atom is its

name, and two atoms are equivalent only when they have identical
names. Mapping of atoms to the π–calculus can be done directly
by name. We translate any atom in PIErlang to a new global name
in the π–calculus with the same spelling and context without any
changes. As for numbers, the translation is divided into two cases

depending on the context where the atom is used.

TrPI arg(a) := a

TrPI exp(self, a) := res<TrPI arg(a)>.nil

= res<a>.nil

4.2 Variables
Erlang variables are untyped, and a variable can be bound to any
term. The scope of a variable extends from its first appearance in
a clause through to the end of the clause in an Erlang function.
After analyzing the characteristics of Erlang variables, we have
found that any variable in Erlang can be translated to a name in π–
calculus with the same spelling and context. However, like numbers
and atoms, variables also have two different mappings depending
on whether they appear as an argument or as an expression.

TrPI arg(X) := X

TrPI exp(self, X) := res<TrPI arg(X)>.nil

= res<X>.nil

Erlang variables normally begin with an uppercase letter. Upper-
case names are allowed in the π–calculus, and uppercase and low-
ercase names are distinct names with same spelling. For example X
and x are two distinct names in the π–calculus.

4.3 Built-in Function self ()
The built-in function self() is another interesting construct which
is frequently used in Erlang to represent the current PID of the pro-
cess executing the expression. This function is used as an argument
for function calls, send, receive and case expressions. It
can also be used as an expression. The mappings are as follows:

TrPI arg(self()) := self

TrPI exp(self, self()) := res<TrPI arg(self())>.nil

= res<self>.nil

Here self in the π–calculus is not a new name, but is a predefined
global referring to the PID of the process executing the expression
where it is used.

4.4 Sequence of Expressions
An expression can also be the composition of two independent
sub–expressions. This is formally denoted as E1, E2 where the
evaluation of E2 is independent of evaluation of E1 but E2 will
be evaluated only after evaluation of E1 . The corresponding π–
calculus mapping of such sequences of expressions is formed as
follows:

TrPI exp(self, E1, E2)

:= (new res′)

0@TrPI exp(self, E1)
‖

res′(dummy).TrPI exp(self, E2)

1A
The π–calculus representation makes it clear that expression E1

must be evaluated first. In the 2nd process, we see that there is a
receive action along a new result channel res′ before evaluating
expression E2. This receive action cannot be performed without
evaluation of E1, as E1 is the only candidate that can send its
result along channel res′. As soon as E1 is evaluated, and its result
is passed through channel res′, receive action res′(dummy) will
be performed using the reaction rule of the π–calculus and then
evaluation of E2 will be started, thus forcing E2 to be evaluated
after E1. Note that the received value (in dummy) is discarded as
it is not needed in evaluation of E2. The global name self is
included in the input parameters list along with the expression in
order to provide the PID of the process that is currently executing
the expression.



4.5 Assignment Expressions
PIErlang has two forms of assignment expression, X = E1 , E2

where variable X can be used in expression E2, and X = E, where
there is no following expression. The first kind is mapped to the
π–calculus as follows:

TrPI exp(self, X=E1, E2)

:= (new res′)

0@TrPI exp(self, E1)
‖

res′(X).TrPI exp(self, E2)

1A
As in the mapping of sequence expressions in subsection 4.4 above,
the two processes are executed in parallel, one evaluating the ex-
pression E1 and the other expecting the value of the expression in
channel res′. As soon as the evaluation result of E1 is available
in res′ channel, it is received by the second process and execution
of the remaining expression E2 is started. We use the distinguished
channel name res′ to express explicitly that result of the evalua-
tion of expression E1 will be sent along channel res′ to the second
process, which receives the result in X . In this way, the evaluation
result of E1 can be used in expression E2. The π–calculus receive
action (here res′( X)) binds X and thus both res′ and X are
bound names for the two parallel processes.

The second kind of assignment expression is denoted as X=
E where X is a variable and E is an expression. The evaluation
result of E will be assigned to X after executing the expression. We
have written the corresponding translation mapping function for
expression X= E by sending the evaluation result of expression E
along the global channel res. Thereby, any process having receive
action along channel res can receive this result. The mapping is
formally defined as follows:

TrPI exp(self, X=E)

:= TrPI exp(self, E) ‖ res<X>.nil

4.6 Send Expression
The main expression for communication in PIErlang is the send
expression. The send expression is denoted by A1! A2 where
A1 and A2 are place holders for Arguments (numbers, atoms,
variables and self()) and the evaluation of A1 returns a PID to
which the message A2 is to be sent. The corresponding π–calculus
translation is as follows:

TrPI exp(self, A1!A2)

:=

0@TrPI arg(A1)<TrPI arg(A2)>.nil
‖

res<TrPI arg(A2)>.nil

1A
The translation of send expressions introduces two processes
working in parallel; one is a direct mapping of the send expres-
sion to the π–calculus and the other sends the message A2 to the
res channel so that any process waiting for a message from the
res channel can receive A2 with a receive action along res, in
particular when there is a sequence of expressions and the send
expression is the first expression, to be executed before the execu-
tion of the second expression. In this way, the message is sent to the
specific process identified by PID A1 and along the res channel.
However, in case studies it has been observed that use of the res
channel for send expressions is not mandatory since send expres-
sion processes can execute in parallel with other processes. Thus it
can be omitted, by contrast with the translation of [16, 18].

4.7 Function Calls
There are two different kinds of function calls in PIErlang: n–ary
functions and n–ary spawn functions. An n–ary function call is an
expression in Erlang. These can be translated to (n+1)–ary process

calls in the π–calculus where the first argument is self, the global
name representing the PID of the process executing the function
expression. Translation of an n–ary function call is as follows:

TrPI exp(self, f(A1, . . . ,An))

:= f(self, TrPI arg(A1), . . . ,TrPI arg(An))

Only Arguments i.e. variables, numbers, atoms and the built-in
function self() can be used as the arguments of the function
expression. To have a proper translation depending on the types
of the arguments, the TrPIarg translation function is applied for
each of the arguments. Unlike [18] res is omitted here. Similarly,
for 0–ary function expressions the mapping is as follows:

TrPI exp(self, f()) := f(self)

4.8 Spawn Calls
A spawn call is like a function call except that a new child pro-
cess is constructed to execute the call rather than the current pro-
cess. The child process runs in parallel with the current process,
performing the function call. A spawn call returns the PID of the
newly created process that executes the function given as parameter
of the spawn. If the function call terminates, the process executing
it will end. If the function call returns a value, this value will be
ignored. In PIErlang, spawn is simplified by omitting the module
in which the function is placed. The syntax of this restricted form
of spawn is as follows:

spawn(f , [A1, . . . ,An]) ; n>=0

Like function call arguments, only numbers, atoms, variables and
the built-in function self() can be used as arguments of the
function in a spawn call. Depending on the context there can be
two versions of spawn; one that stores the newly returned PID in a
variable and another that ignores it. The mapping for the first kind
of spawn call is as follows:

TrPI exp(self, X=spawn(f , [A1, . . . ,An]), E)

:=

0@(new fpid, f res, p)�
p<fpid>.nil ‖ TrPI exp(fpid, f(A1, . . . ,An))
‖ f res(dummy).nil ‖ p(X).TrPI exp(self, E)

�1A
where process identifiers fpid 6= self.

As before, self is included along with the spawn as one of the
arguments of the translation function to represent that the spawn
function is executed by the current process i.e. the process which
has PID self(). After executing the spawn, the newly created PID
will be stored in the variable X and the function f will be executed
by the newly created process in parallel with the process containing
the spawn call.

In the translation mappings, three new names, fpid, p and
f res, are created. fpid represents the PID of the newly created
process which will execute function f , p is used to send/receive
the fpid and f res is the channel through which the result of the
evaluation of the spawn will be sent. Bound name X is used to re-
ceive the fpid along p for further use. One process (p<fpid>.nil)
sends the PID fpid along p and the same PID is used in the
translation mapping of the function f(A1, . . . ,An) by the second
parallel process (TrPI exp(fpid,f(A1, . . . ,An))) which clearly
specifies that the newly created process with PID fpid will exe-
cute the function f . There are also two more processes working in
parallel; one of which waits to receive something (the return value
of the function call) from the f res channel and then discards it,
and another that waits to receive fpid in X. After receiving fpid
in X, the current process (here self) will execute the remaining ex-
pression E. In this way, using the reaction rule of the π–calculus,
any use of variable X in expression E will be replaced by the PID



fpid which meets the semantics of the simplified spawn function
and the intention of our translation mapping.

In the second form of spawn, the newly created PID is ignored
rather than storing it to a variable, and it is assumed that the PID
of the newly created process will no longer be used in subsequent
expression(s). Here is the translation mapping:

TrPI exp(self, spawn(f , [A1, . . . ,An]), E)

:=

0@(new fpid, f res)�
TrPI exp(fpid, f(A1, . . . ,An)) ‖

f res(dummy).nil ‖ TrPI exp(self, E)

�1A
where process identifiers fpid 6= self.

The only major difference between this mapping and the map-
ping above is that the remaining expression E is executed without
waiting to receive the new PID fpid along p, since the evaluation
of E does not depend on the PID fpid. However, case studies have
shown that in both cases the use of f res can be omitted with no
effect on the translated system.

4.9 Receive Expression
The counterpart of the send expression is the receive expres-
sion and the two jointly implement communication between two
processes. It has the branching feature of a case expression and
also has to match the reception semantics of PIErlang. Because
of the limited set of statements available in the π–calculus, our
naive translation is not a completely accurate reflection of Erlang
reception semantics. Because we have chosen the asynchronous
π–calculus as our target specification language, order of the re-
ceived messages can not be directly respected. Instead we use non–
deterministic choice among the translated matches of the receive
statement as the translation of receive statements.

TrPI exp(self, receive M1; . . . ;Mn end)

:= TrPI match(self, M1)+ . . . +TrPI match(self, Mn)

The receive expression is modeled using a non–deterministic
choice between the individual match expressions where TrPImatch ,
a function for mapping matches (c.f. subsection 4.10), is applied
to each of the matches. self, the PID of the process that executes
the receive is used in the matches as well.

4.10 Match
Pattern matching is used for assigning values to variables and for
controlling the flow of a program. Erlang is a single assignment
language, which means that once a variable has been assigned a
value, the value can never be changed. Pattern matching is used
to match patterns with terms. If a pattern and term have the same
shape then the match will succeed and any variables occurring in
the pattern will be bound to the data structures which occur in the
corresponding positions in the term. In PIErlang, a match is of the
form P -> E, where pattern P can be a variable, an atom or a
number. To translate such a match to the π–calculus, a TrPImatch

function is used with the following signature:

TrPI match: Name X Match → Process

A name and the match are used as the input and a process in
the π–calculus is produced as output. The name will be self, the
process identifier of the process executing the receive expression
and hence the match.

We apply the name matching feature of the π–calculus to handle
pattern matching in PIErlang. First, consider a match of the form
a -> E, where the pattern a is an atom and the expression E
can be any valid PIErlang expression. The match a -> E and the
name self are provided to the TrPImatch function as input. Along
channel self the target message will be received in the bound

name input which will be matched against the pattern (here the
atom a) of the given match, and similarly for numbers as patterns.

Now consider the match X -> E where variable X is used
as pattern. As a variable can be matched with any term, no name
matching is required for a variable as pattern. We use the same
variable name X as the received name along the channel self.
The intention of doing so is that variable X can then be used in the
evaluation of E. The complete mapping for atoms, numbers and
variables as patterns can be defined as follows:

TrPI match(self, P -> E)

:=

8>>><>>>:
self(input).[input=TrPI arg(P )]TrPI exp(self, E)

if P ∈ Numbers ∪ Atoms

self(P).TrPI exp(self, E)
if P ∈ Variables

4.11 Case Expression
Another useful construct of PIErlang is the case expression, whose
syntax resembles the receive expression in the sense of using
matches. Matches in the case expression can be tackled with the
same way as presented for receive expressions above. Therefore,
we can map the case expression to the receive expression and
use the translation mapping of receive expression.

TrPI exp(self, case E of M1; . . . ;Mn end)

:=

0BB@(new cres)0@TrPI exp(self, E)
‖

TrPI exp(cres, receive M1; . . . ;Mn end)

1A
1CCA

=

0BBB@
(new cres)0B@TrPI exp(self, E)

‖�
TrPI match(cres, M1)+ . . .
+ TrPI match(cres, Mn)

�1CA
1CCCA

One process evaluates the case head expression and sends the re-
sult along fresh channel cres, which is then used in evaluating the
matches of the case expression in place of self in the translation
of receive expressions. Using this rule any expression can be the
case head provided that evaluation rule(s) are available for it.

4.12 Function Definitions
Every PIErlang program is a sequence of one or more function def-
initions. Each function definition is translated into a corresponding
process definition in the π–calculus. The signature of the mapping
function is:

TrPI fundef: Name X Function Def . → Process Def .

Each n–ary function definition in Erlang is translated to an (n+1)–
ary process definition in the π–calculus, where the first argument is
self, the current process executing the function definition. Unlike
our previous method [18], res is omitted here. The mappings for
n–ary and 0–ary function definitions are as follows:

TrPI fundef (self, f(X1, . . . ,Xn)-> E)

:=
�

f(self, X1, . . . ,Xn) = TrPI exp(self, E)
�

TrPI fundef (self, f()-> E)

:=
�

f(self) = TrPI exp(self, E)
�

4.13 PIErlang Programs
Now that we have given the translation mappings for each of
the syntactic constructs (except tuple related constructs) of PIEr-
lang, we can describe the translation of a complete PIErlang



program into a π–calculus system. We define a translation func-
tion TrPIprog that takes a name (here self) and a PIErlang
program as input and will return a system in the π–calculus as
output. Its signature and formal definition are as follows:

TrPI prog: Name X Program → System

TrPI prog(self, F1, . . . ,Fn)

:=

�
Main=(new self, OtherNames)TrPIexp(self, f 0),
TrPI fundef (self, F1), . . . ,TrPI fundef (self, Fn)

�
where f 0 is the left hand side of F1 and OtherNames is the set of
names/atoms used in the system.

A PIErlang program is composed of a sequence of function
definitions. When a program is translated to a π–calculus
system/π–model, each of the function definitions becomes
a process definition of the system/model. Along with the
sequence of process definitions for the corresponding function def-
initions, a new process Main is introduced, which declares the
parameters (e.g. self) of the f 0 process and other atoms/names
(e.g. res, unknown, dummy, cres etc.) used in the system.

In PIErlang f 0 is a 0–ary function and normally the left hand
side of the first function definition F1 . For observing the behavior
of the obtained π–model (System) of a PIErlang program, the initial
call is set to the process Main. For details about this we refer to
the case studies undertaken in [16]. However, in [16] a different
representation was made for mapping a complete PIErlang program
to π–calculus system.

4.14 Verification of the Obtained π-Model
The standard approach to evaluating correctness of a π–calculus
specification is through the use of a bisimulation equivalence. A
more complex process representing an implementation is shown to
be bisimilar to a simpler process representing a specification. The
simpler process should be so clear that it can be regarded as sat-
isfying correctness requirements in an intuitive sense, without rig-
orous mathematical proof. Once the desired safety, liveness and/or
fairness properties can be expressed in a suitable temporal logic
(equipped with model–checking algorithm), it possible to deter-
mine whether or not those properties hold for a given π–calculus
specification with existing tools [8, 9, 12, 15, 19]. However, as all
numbers (and data in general) in our translation are modeled by
a special name unknown, any faults in an Erlang program due to
incorrect manipulation of data will not be picked up by our transla-
tion.

A question still remains in terms of generating counter–examples.
Model–checking tools should provide counter example(s) if a given
property (specified in a suitable temporal logic formula) is shown
not to be satisfied. Although most of the tools mentioned above can
generate (a kind of) counter–examples, none of them can provide
counter example directly in Erlang. For example, HAL [8] gener-
ates counter–examples in the ordinary automata world and hence
to have the counter example in Erlang, a mapping from ordinary
automata to Erlang would be required. Similar restrictions apply to
MWB [12]. Once it finds a deadlocked process/agent, it shows the
agent and the transition trace that leads to the deadlocked agent.
To get the counter example to Erlang, a tool would be required to
providing a mapping from the π–calculus to Erlang.

However, once the transition–system is obtained for a given π–
calculus specification, it would be most suitable to use Truth [9]
for verification/model–checking and generating counter–examples.
Truth is a verification platform for concurrent systems. It aims to
serve as a kind of building set of verification tools in which new
concepts for system specification, models of concurrency, prop-
erty logics, and model–checking algorithms can easily be tested.
As usual, in order to get counter–examples in Erlang an improve-

ment to Truth is required. Moreover, the abstraction of numbers to
unknown will have side effects on the generated counter–examples.
The actual details of the verification/model–checking of the π–
model for a given Erlang program, however, is beyond the scope
of this article.

5. Dealing with Non–determinism Among
Matches

In this section we present a way to replace the non–deterministic
choice among the clauses of a case or receive expression by
a deterministic top–down strategy that more accurately reflects
the semantics of Erlang. This section also explores the similarity
and dissimilarity between the mappings of receive and case
expressions in an indirect way.

We have addressed the issues of sending and receiving mecha-
nisms of PIErlang along with their mappings to π–calculus in sub-
sections 4.6 and 4.9 respectively. Our mapping of send expression
is sound enough to meet its semantics in Erlang. However, the re-
ceiving mechanism in Erlang is not so straightforward. The general
syntax for a receive expression is as follows:

receive
Pattern1 ->Body1;
. . . ;
PatternN ->BodyN;

end
The receiver process receives messages sent to its mailbox by a
sender process with the send operator (!). The patterns Patterni

are sequentially matched against the first message in time order in
the mailbox, then the second, and so on. If a match succeeds, the
corresponding Body is evaluated. The matching message is con-
sumed (removed from the mailbox), while any other messages in
the mailbox remain unchanged. The return value of Bodyi is the
return value of the receive expression. Receive never fails. Ex-
ecution is suspended, possibly indefinitely, until a message arrives
that matches one of the patterns.

This receive construct is mainly used to allow processes to
wait for messages from other processes. The receive expression
mapping to π-calculus presented in subsection 4.9 is not suffi-
cient to meet the reception semantics of PIErlang. In Erlang the
evaluation order of the clauses of the receive is a major issue
but this order is not preserved by our mapping to the π–calculus
since the clauses are represented as non–deterministic choices.
We have not explicitly modeled the mailbox of the Erlang pro-
cess in the π–calculus, rather it is modeled implicitly by consid-
ering the PID of the receiver process (PID of the destination pro-
cess to which the message is to be sent) as a channel and send-
ing the potential message over this channel asynchronously. This
asynchronous message-passing and the non–deterministic choices
among the matches essentially breaks the send–receive semantics
of Erlang programs in the π–calculus representation.

Similar situations arise with the mapping of case expressions
discussed in subsection 4.11, since case expressions are mapped
using the receive expression mapping. Although there is no ques-
tion of modeling mailboxes for case expression mapping, the se-
mantics of case expressions cannot be preserved in the π-calculus
as the matches are represented by non–deterministic choices. To
clarify this, let us consider the general form of a case expression.

case Expr of
Pattern1 ->Body1;
. . . ;
PatternN ->BodyN;

end

First, case head Expr is evaluated, then the value of Expr is se-
quentially matched against the patterns Pattern1, . . . , PatternN



receive
true -> work;
false -> rest;
Y -> Y

end.

Figure 3. A receive expression code segment in Erlang

case Status of
true -> work;
false -> rest;
Y -> Y

end.

Figure 4. A case expression code segment in Erlang

until a match is found. If a match is found, then the correspond-
ing call Body is evaluated. The value of the case primitive is then
the value of the selected Body. As in the receive expression, the
order of the clauses is crucial.

If there is only one matching pattern in each execution of the
receive or case expression then the non–deterministic mappings
discussed in subsections 4.9 and 4.11 handle the Erlang semantics
accurately. However, if more than one patterns match in an execu-
tion then the corresponding receive/case body evaluation choice
would be non–deterministic in our π-calculus representation. For
example, consider the mapping of the receive expression of Fig-
ure 3.

TrPI exp(self, (Code segment of Figure 3))

=

0@ TrPI match(self, true -> work) +
TrPI match(self, false -> rest) +
TrPI match(self, Y -> Y )

1A
=

0@ self(input).[input=true]res<work>.nil +
self(input).[input=false]res<rest>.nil +
self(Y).res<Y>.nil

1A
The mapping of this example demonstrates the problem. Let us
suppose that there is a sending process self<false>.nil that
sends the atom false along channel self. If both the receiver
process and this sender process execute in parallel then sender
process will non–deterministically communicate with either the
second or the third match since the second matches false directly
and the third matches any input term. This is not consistent with
the semantics of Erlang, in which only the second match should
succeed since it appears before the thrid.

Similarly, consider the mapping of the case expression of Fig-
ure 4.

TrPI exp(self, (Code segment of Figure 4))

=

0BBBBB@
(new cres)0BBB@

TrPI exp(self, Status)
‖

(TrPI match(cres, true -> work) +
TrPI match(cres, false -> rest) +
TrPI match(cres, Y -> Y ) )

1CCCA
1CCCCCA

=

0BBBBB@
(new cres)0BBB@
cres<Status>.nil

‖
(cres(input).[input=true]res<work>.nil +
cres(input).[input=false]res<rest>.nil +
cres(Y).res<Y>.nil )

1CCCA
1CCCCCA

This mapping is also problematic. Let us suppose that atom true
is bound with the variable Status of case head somewhere in the
body of the corresponding function. In Erlang, only the first match

(true -> work) succeeds because of ordered matching. But in
the π–calculus translation, we have used non–determinism among
different matches and hence, there is a possibility that variable
Status will match with either the first or the third match.

In order to avoid such non–determinism between the match-
ing clauses, we have designed a refined mapping using negated
(mismatch) conditions for the preceding codematch clauses in each
following match, so that a clause/match that comes after another
clause in order will not be selected if the preceding one can be se-
lected. To implement this, the receive and case expression map-
pings of subsections 4.9 and 4.11 respectively are refined by pro-
viding the index number of the matches as follows:

TrPI exp(self, receive M1; . . . ;Mn end)

:= TrPI match1(self, M1)+ . . . +TrPI matchn(self, Mn)

TrPI exp(self, case E of M1; . . . ;Mn end)

:=

0BBB@
(new cres)0B@TrPI exp(self, E)

‖�
TrPI match1(cres, M1)+...
+ TrPI matchn(cres, Mn)

�1CA
1CCCA

where the mapping of the ith match, TrPImatchi is as follows:

TrPImatchi(self, Pi -> Ei)

:=

8>>>>><>>>>>:
self(input).[input<>TrPI arg(P1)] . . .
[input<>TrPI arg(Pi−1)][input=TrPI arg(Pi)]
TrPI exp(self, Ei); if Pi ∈ Numbers ∪ Atoms

self(Pi).[Pi<>TrPI arg(P1)] . . . [Pi<>TrPI arg(Pi−1)]
TrPI exp(self, Ei); if Pi ∈ Variables

The mapping of the receive expression of Figure 3 can now
be rewritten as follows, avoiding non–determinism among the
matches:0B@self(input).[input=true]res<work>.nil +

self(input).[input<>true][input=false]
res<rest>.nil +

self(Y).[Y<>true][Y<>false]res<Y>.nil

1CA
It is now clear that the sender process self<false>.nil can

communicate only with the second match, avoiding the problems
introduced by non–determinism. Similarly, the refined mapping of
the case expression of Figure 4 is as follows:0BBBBBBB@

(new cres)0BBBBB@
cres<Status>.nil
‖0B@cres(input).[input=true]res<work>.nil +

cres(input).[input<>true][input=false]
res<rest>.nil +

cres(Y).[Y<>true][Y<>false]res<Y>.nil

1CA
1CCCCCA
1CCCCCCCA

6. Mapping Tuples with Polyadic
Communications

In our previous work Erlang tuples were simply abstracted away
using an unknown name [18]. In this section we outline a mapping
for tuples appearing in messages of send expressions and match
patterns of receive and case expressions to polyadic commu-
nication in the π-calculus. A detailed treatment is provided for all
non–nested tuple-based expressions.

PIErlang can create compound data structures using tuples. Tu-
ples are used for storing a fixed number of items and are written as
sequences of items enclosed in curly brackets. Tuples are similar
to records or structures in conventional programming languages.



There is a strong similarity between the polyadic sending of mul-
tiple names/channels over a channel in the π–calculus and tuple-
based expressions in PIErlang.

6.1 Tuple Expressions
Erlang programs commonly use tuples as expressions. Tuples are
data structures for grouping variables and values and therefore, an
intrinsic part of the expressions in which they are used. In PIErlang,
only numbers, atoms, variables and the built-in function self()
can be used as tuple elements. Using the polyadic π–calculus such
tuple expressions are mapped as follows:

TrPIexp(self, {A1, . . . ,An})
:= res<TrPI arg(A1), . . . ,TrPI arg(An)>.nil

Using this mapping, tuple elements are translated using the TrPIarg
function and then sent as names along the res channel in polyadic
form. The result channel res is refined to handle the polyadic com-
munication.

6.2 Tuple-based Sequences of Expressions and Spawn Calls
Our original mapping of sequence of expressions in subsection
4.4 cannot be used for tuple expressions, because the new channel
res′ in that mapping is in monadic form, whereas the evaluation
of the expression E1 could be polyadic when handling tuples.
However, if we refine the mapping to allow the channel res′ to
deal with polyadic communication then the evaluation result of the
tuple-based expression E1 can be sent along it and received along
the same channel for dummy communication in polyadic form. The
refined mapping of the sequence of expressions is as follows:

TrPI exp(self, E1, E2)

:=

0BB@(new res′)0@TrPI exp(self, E1)
‖

res′(dummy1, . . . ,dummyn).TrPI exp(self, E2)

1A
1CCA

Similarly, we can refine the mapping of spawn calls to use
polyadic communication along the f res channel, as follows:

TrPI exp(self, X=spawn(f , [A1, . . . ,An]), E)

:=

0BB@(new fpid, f res, p)0@p<fpid>.nil ‖ TrPI exp(fpid, f(A1, . . . ,An))
‖ f res(dummy1, . . . ,dummyn).nil
‖ p(X).TrPI exp(self, E)

1A
1CCA

TrPI exp(self, spawn(f , [A1, . . . ,An]), E)

:=

0BB@(new fpid, f res)0@TrPI exp(fpid, f(A1, . . . ,An))
‖ f res(dummy1, . . . ,dummyn).nil
‖ TrPI exp(self, E)

1A
1CCA

Note that only the dummy communications need be refined to deal
with polyadic communication. The value n in dummy communi-
cation is based on the evaluation of the spawn function calls (for
spawn calls) or the evaluation of expression E1 (for the sequence of
expressions E1, E2). This contrasts with our previous work [16],
where a modification to the π–calculus semantics was proposed to
deal with this case.

6.3 Tuple-based Send Expressions
In Erlang tuples are frequently used as messages in send expres-
sions. The send expression syntax is A ! {A1, . . . , An}. From
this syntax, it is clear that a tuple–based send expression can send
a non–nested tuple of number(s), atom(s), variable(s) and the built-
in function self() as a message to a process’s mailbox, which has

a PID identified by A. Polyadic π–calculus can be used to model
such tuple-based send expressions as follows:

TrPI exp(self, A!{A1, . . . ,An})

:=

0@TrPI arg(A)<TrPI arg(A1), . . . ,TrPI arg(An)>.nil
‖

res<TrPI arg(A1), . . . ,TrPI arg(An)>.nil

1A
As before, the passing of the tuple message through the res chan-
nel can be omitted.

6.4 Tuple-based Receive and Case Expressions: Refinements
of Match

With the change to the mapping of send, a codesender process can
now send tuple-based messages to a receiver process. To refine
receive/case expressions to receive such tuple-based messages,
we need only refine receive/case to deal with polyadic reception
of messages against the patterns of their matches. We handle this
pattern matching for a match tuple pattern using the name match-
ing feature of the polyadic π–calculus. We can receive a tuple of
message(s) using the receive action translation rule in the polyadic
π–calculus along a channel (say self) where the message ele-
ments are bound to corresponding input names and then applying
the name matching feature on the bound names against the cor-
responding patterns of the receive action. Of course, we must use
TrPIarg to get a corresponding translation of the patterns (elements
of the tuple pattern) before applying name matching. This general
scenario can be formally presented as follows for atoms or numbers
as tuple pattern elements:

TrPImatch(self, { P1, . . . ,Pn }-> E)

:=

0@self(input1, . . . ,inputn).[input1=TrPI arg(P1)]
. . . [inputn=TrPI arg(Pn)]TrPI exp(self, E)
if P1, . . . ,Pn ∈ Numbers ∪ Atoms

1A
As before, if there is a variable in the tuple pattern then name
matching is not required for that element and the variable itself can
be used in the polyadic receive action along the self channel. For
example:

TrPImatch(self, {a, X, b, Y }-> E)

:=

�
self(input1, X, input2, Y).[input1=a]
[input2=b]TrPI exp(self, E)

�
In this example, pattern variables X and Y are directly used in
the received action and their corresponding name matchings are
omitted. This general scenario can be formally expressed to support
numbers, atoms and variables as pattern elements of a tuple pattern
where the complete mapping is obtained by taking into account all
the Pi’s:

TrPImatch(self, { P1, . . . ,Pi, . . . ,Pn }-> E)

:=

8>>><>>>:
self(..,input i,..). . . . [input i=TrPI arg(Pi)] . . .

TrPI exp(self, E); if Pi ∈ Numbers ∪ Atoms

self(..,Pi,..). . . .TrPI exp(self, E)
if Pi ∈ Variables

7. Resource Manager Example: A Case Study
As a case study in the application of our new representation, let
us consider the simplified resource manager example from [18] but
making use of our new mapping to polyadic communication. Figure
5 shows such a small PIErlang resource manager program using
tuple–based communication.

In Figure 5 the start function first spawns a resource and
a manager process and then invokes the client function. The



start() ->
Rsr = spawn(resource, []),
Mgr = spawn(manager, [Rsr]),
client(Mgr).

resource() ->
receive

Req->
action

end.

manager(Rsr) ->
receive
{C, grantaccess} ->

C!Rsr
end.

client(Mgr) ->
Mgr!{self(), grantaccess}
Receive

R ->
R!request

end.

Figure 5. Simple resource manager in PIErlang

Main

= (new self)(start(self))

start(self)

= (new rPID, mPID, cPID, p, q)

(p<rPID>.nil ‖ resource(rPID) ‖
p(Rsr).(q<mPID>.nil ‖ manager(mPID,Rsr) ‖
q(Mgr).client(cPID, Mgr)))

resource(self)

= self(Req).res<action>.nil

manager(self, Rsr)

= self(C,input).[input=grantaccess]C<Rsr>.nil

client(self, Mgr)

= Mgr<self, grantaccess>.nil ‖
self(R).R<request>.nil

Figure 6. Simple resource manager in the π–calculus

PID of resource is initially not known to client, and it there-
fore first needs to retrieve this information from the manager. Hav-
ing received the PID it sends a simple request to resource. This
program is a simple example of a dynamic or mobile system: the
required communication channel between client and resource
is not available from the beginning, it must first be established
by passing the corresponding “handle”. Traditional modeling ap-
proaches, which lack this name–passing capability, are doomed to
fail in this setting.

Figure 6 shows the result of applying our new translation map-
pings to the simple resource manager example of Figure 5. For sim-
plicity, we have avoided showing all the new names in the system.
To examine the behavior of this generated π–calculus model, we
start from the Main process.

Main := (new self)(start(self))

Following instantiation of the start process and applying the
π–calculus reaction rule on channels p and q, we omit the nil

processes and get,0BBBBB@
(new rPID, mPID, cPID)0BBB@
resource(rPID)

‖
manager(mPID, rPID)

‖
client(cPID, mPID)

1CCCA
1CCCCCA

This means that upon invocation of the start process, the
resource and manager processes are spawned and the initial pro-
cess runs the client function. Upon instantiation of the manager
and client processes we then get,0BBBBBBB@
(new rPID, mPID, cPID)0BBBBB@
resource(rPID)

‖
mPID(C,input).[input=grantaccess]C<rPID>.nil

‖
mPID<cPID, grantaccess>.nil ‖
cPID(R).R<request>.nil

1CCCCCA
1CCCCCCCA

In the first transition of the system, client asks the manager
for the handle to resource. The resulting state is obtained by
applying the reaction rule on channel mPID. As a result C is bound
with cPID and input with grantaccess.0BBBBB@

(new rPID, mPID, cPID)0BBB@
resource(rPID)

‖
[grantaccesst=grantaccess]cPID<rPID>.nil

‖
nil ‖ cPID(R).R<request>.nil

1CCCA
1CCCCCA

The name matching grantaccess = grantaccess is found
and consequently, process client is now enabled (react on cPID)
to receive the PID of the resource sent by manager. The received
PID is bound to the name R.0BBBBB@

(new rPID, mPID, cPID)0BBB@
resource(rPID)

‖
nil
‖

nil ‖ rPID<request>.nil

1CCCA
1CCCCCA

After invoking the resource process we get,0BBBBB@
(new rPID, mPID, cPID)0BBB@
rPID(Req).res<action>.nil

‖
nil
‖

nil ‖ rPID<request>.nil

1CCCA
1CCCCCA

Now the client process can send the actual request (react on
rPID) to resource.0BBBBB@

(new rPID, mPID, cPID)0BBB@
res<action>.nil

‖
nil
‖

nil ‖ nil

1CCCA
1CCCCCA

After ignoring the nil processes we get,

(new rPID, mPID, cPID) res<action>.nil

Note that this was not possible before since the corresponding
PID (rPID) of resource was not known to client. After having
the request from client, process resource can now perform the
request. In this simplified Resource Manager System, the atom



action is used as an expression to indicate the requested job. The
global name res is used for the mapping of this atomic expression.

This model of the communication between the client and
manager then between client and resource accurately reflects
the semantics of the corresponding PIErlang program.

8. Further Refinements to Match and Send
Expressions

Several case studies have been performed based on the mappings
discussed above. Unfortunately, it was observed that the mappings
of match discussed in subsections 4.10 and 6.4 are inadequate
when handling Erlang bound variables. In Erlang a bound variable
has the same behavior as an atom when it is used as a pattern or
as an element of a tuple pattern in case and receive expressions
and should retain this same meaning in the translated π–calculus
system. Initially, we handled this situation by identifying all of the
bound variables in a function before beginning its mapping and
then treating them as atoms while translating. However, this was
found to be infeasible for larger Erlang systems.

Instead, it is also possible to handle the problem of bound and
unbound variables as part of translation mapping by maintaining
a set of bound names while mapping. When a variable is used in
the translation, we can then check whether there is a name with the
same spelling and context in the Bound Name Set (BNS). If the
name of the variable is already in the BNS, we consider that it is
already bound with some value and can treat it as an atom rather
than an unbound variable in match and tuple patterns. Initially, for
each function in Erlang, the BNS is empty and a name y is added
whenever y is used in a receive action (as in y in x(y)) or with the
new operator (as in z in ( new z ) ) in the π–calculus perspective.

However, we have observed that it is not necessary to include
those added due to the new operator because we are modeling
the binding of a variable in PIErlang, and this can only be done
with a receive action in the π–calculus. We have also observed
that we need not consider all names bound by the receive action,
we need only to consider those that are original variables of the
PIErlang program. Thus, we can refine the definition of BNS and
have renamed the Bound Name Set (BNS) as Bound Names Set
with π–calculus Receive Actions of Erlang Variables (BNSRAV).

The mapping of the match expression can now be formally re-
fined using the BNSRAV as follows, where the complete mapping
is obtained by taking into account all the Pi’s:

TrPImatch(self, { P1, . . . ,Pi, . . . ,Pn }-> E)

:=

8>>>>><>>>>>:
self(..,input i,..). . . . [input i=TrPI arg(Pi)] . . .

TrPI exp(self, E); if Pi ∈ Numbers ∪ Atoms
or if Pi ∈ Variables and namePi ∈ BNSRAV

self(..,Pi,..). . . .TrPI exp(self, E)
if Pi ∈ Variables and namePi /∈ BNSRAV

where BNSRAV={X|y(X) is a receive action in the π–calculus and
X is a variable in the Erlang function for which X is considered as a
name in the π–calculus.}

This new mapping covers both monadic (if n=1) and polyadic
communications, so it can be used for all pattern matching in
matches of receive and case expressions. The non–determinism
among matches can be avoided using the same approach as dis-
cussed in Section 5 and a further improvement to this approach is
currently under development.

Another important issue left to consider is the equality seman-
tics (w.r.t. tuple size) of send–receive expressions. The transla-
tion mappings for send and receive expressions with tuples dis-
cussed above must meet the equality semantics of send–receive
expressions with respect to the size of tuples used i.e., if a tuple of

size n is sent with a send expression, then on the receiving side
(receive/case expression), there must be at least one matching
tuple pattern of size n. But in Erlang, the situation is different as a
variable pattern can be matched with anything. If this semantics of
Erlang cannot be preserved in the translated π–calculus system, the
system will reach a deadlock state.

In order to overcome this problem of semantic matching be-
tween Erlang and the π–calculus, the mapping of the tuple-based
send expression is refined as follows:

TrPI exp(self, A!{A1, . . . ,An})

:=

0BBB@
(TrPI arg(A)<TrPI arg(A1), . . . ,TrPI arg(An)>.nil

+ TrPI arg(A)<unknownTuple>.nil)
‖

(res<TrPI arg(A1), . . . ,TrPI arg(An)>.nil
+ res<unknownTuple>.nil)

1CCCA
Along with the previous definition, two more subprocesses are
added using non–deterministic choices. Whenever a tuple–based
message is sent, a name unknownTuple is also sent non–determini-
stically so that the problem mentioned above can be solved. The
reason for sending the message tuple along the res channel has al-
ready been discussed. For the same reason name unknownTuple is
also sent along the res channel for the second non–determinism.
As before, dealing with res can be avoided unless explicitly re-
quired to maintain the sequence of evaluation of expressions.

9. Related Work
Our work in using the π–calculus for verifying Erlang programs
should be seen in the context of several similar projects. A number
of similar approaches using different tools have been proposed by
others.

This work is directly related and an extension to our previous
work [18], a translation from a subset of Core Erlang [3, 4] to the
asynchronous π–calculus with monadic communications, meta–
level definitions of processes and name comparison. However, in
that work the order of clauses in the evaluation of receive and
case expressions was ignored and tuples were not modeled at all.
In this work, we present an approach that accurately preserves the
order of clauses in receive and case expressions and provides
a detailed treatment of non–nested tuple–based expressions using
polyadic communication in the π–calculus. Our initial approach
in [18] handled only a subset of Core Erlang (an intermediate
language in the Erlang compiler) whereas in this work handles a
significant subset of Erlang [1] that can be further extended to cover
the whole language in a more direct way. In order to provide a
complete new framework for the mapping of Erlang, in this paper
we have repeated some of the mappings of [18] using a more
detailed presentation.

In [2, 20], a translation from Erlang to µCRL [23] is presented.
The language µCRL is a process algebra with data. Several veri-
fication tools (e.g. CADP [24]) are available for µCRL, including
a tool to create labelled transition systems from µCRL specifica-
tions. Using a translation from Erlang to µCRL, verification tools
for process algebras and labelled transition systems can be applied
to industrial code.

In [17], a translation of Erlang to Promela and model–checking
of Promela using SPIN [22] has been prototyped. The main out-
come of this experiment was that Promela (and hence SPIN) seems
too semantically distant from Erlang to effectively use them to-
gether. Both these process–algebraic models [2, 17] for Erlang lack
the capability to directly represent the sending of process identifier
information between Erlang processes. Our approach overcomes
this limitation using the name–passing feature of the π–calculus.



10. Conclusion
In this paper we have introduced a process–algebraic model for the
functional programming language Erlang. We have chosen the π–
calculus as a process algebra which is particularly appropriate for
specifying mobile systems with dynamically changing communica-
tion topologies. We have seen that its name–passing feature makes
it superior to other approaches which lack this capability since it
allows direct representation of the sending of process identifier in-
formation between Erlang processes. This was not possible with
previous attempts to use process–algebraic models for Erlang such
as the work based on Promela/SPIN [17] or µCRL [2, 20].

The techniques of this paper improve on our previous work [18]
in that we now support (non–nested) tuples as communication mes-
sages and deterministic pattern matching. However one has to keep
in mind that we still have not dealt with all the syntactic constructs
of the full Erlang language such as nested tuples and lists, which we
abstract using the special unknown value. An attempt to refine our
model can be found in [16]. Moreover we have not explicitly rep-
resented the mailbox aspect of Erlang processes, thereby abstract-
ing away the ordering of messages. Currently, we are investigating
possible ways of covering the full Erlang language. We are also
working on real time Erlang [21] with a view to having a complete
translation system for the Erlang language.
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