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Abstract. Software Product Lines (SPL) are widely used to manage
variability in the automotive industry. In a rapidly changing industrial
environment, model transformations are necessary to aid in automating
the evolution of SPLs. However, existing transformation technologies are
not well-suited to handling industrial-grade variability in software arti-
facts. We present a case study where we “lift” a previously developed
migration transformation so that it becomes applicable to realistic in-
dustrial product lines. Our experience indicates that it is both feasible
and scalable to lift transformations for industrial SPLs.

1 Introduction

The sprawling complexity of software systems has lead many organizations to
adopt software product line techniques to manage large portfolios of similar prod-
ucts. For example, modern cars use software to achieve a large variety of func-
tionality, from power train control to infotainment. To organize and manage the
huge variety of software subsystems, many car manufacturers, such as General
Motors (GM), make extensive use of software product line engineering tech-
niques [14].

At the same time,model-based techniques are also actively used by companies,
especially in domains such as automotive and aerospace, as a way to increase
the level of abstraction and allow engineers to develop systems in notations they
feel comfortable working with [25]. That also entails the active use of model
transformations – operations for manipulating models in order to produce other
models or generate code.

Currently, GM is going through the process of migrating models from a legacy
metamodel to AUTOSAR [2]. In previous work, we have presented the trans-
formation GmToAutosar [31]. Given a single GM legacy model, GmToAutosar
produces a single AUTOSAR output model, based on a set of requirements fol-
lowed by GM engineers. In order to study its correctness, GmToAutosar was
implemented in DSLTrans [30,21], a model transformation language that spe-
cializes in helping developers create provably correct transformations.



Because of the extensive use of product lines, GM is now faced with the
problem of migrating an entire product line of legacy models to a new product
line of AUTOSAR models. To do this, GM engineers need to create purpose-
specific migration transformations. Yet transforming product lines is inherently
di�cult: the relationships between the products need to be preserved, and a
variety of properties between the input and output models in the transformation
need to be established. Thus, the task of a product-line level transformation is not
only to maintain relationships between the features and relationships between
the products but also to make sure that the transformation maintains certain
properties, expressed in terms of pre- and post- conditions. Existing tools and
methodologies do not facilitate model transformations in the context of product
lines.

In our earlier work [27], we presented a technique for “lifting” a class of
model transformations so that they can be applied to software product lines.
Lifting here means reinterpretation of a transformation so that instead of a
single product, it applies to the entire product line.

The goal of this paper is to demonstrate, using an empirical case study from
an automotive domain, that it is tractable to lift industrial-grade transforma-
tions. Specifically, we report on an experience of lifting a previously published
transformation [31], GmToAutosar, used in the context of automotive software
and applying it to a realistic product line. We lifted GmToAutosar using the
theory of lifting presented in [27]. In order to do this, we had to adapt parts of
the existing model transformation engine, DSLTrans. The resulting lifted version
of GmToAutosar is capable of transforming product lines of legacy GM models
to product lines of AUTOSAR models, while preserving the correctness of indi-
vidual product transformations. We also stress-tested the lifted GmToAutosar
to investigate the e↵ect of the size of the model and the variability complexity
on the lifted transformation. Due to limitations to publication of sensitive in-
dustrial data, the product line we analyzed was created using publicly available
data and calibrated with input from GM engineering.

The rest of the paper is organized as follows: we introduce background on to
software product lines in Sec. 2. The GmToAutosar transformation is described
in Sec. 3 and its lifting – in Sec. 4. We discuss the experience of applying the
lifted transformation in Sec. 5. In Sec. 6 we present lessons learned and Sec. 7
discusses related work. We conclude in Sec. 8 with a summary of the paper and
discussion of future work.

2 Product Lines in the Automotive Industry

Product Lines in GM.Modern cars at GM can contain tens of millions of lines
of code, encompassing powertrain control, active and passive safety features, cli-
mate control, comfort and convenience systems, security systems, entertainment
systems, and middleware to interconnect all of the above. In addition to soft-
ware complexity, the variability is high – over 60 models with further variation
to account for requirements di↵erences in 150+ countries. The number of prod-
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Fig. 1. A fragment of the exemplar automotive product line model. The left side
shows the domain model annotated with presence conditions and the right side
shows the feature model.

uct variants produced is in the low tens of thousands. GM is re-engineering its
variability tooling to use the commercial product line tool Gears by BigLever
Software1 [14]. To help manage the complexity, product lines will be decom-
posed into modules corresponding to the natural divisions in the automotive
system architecture to produce a hierarchical product line. For example, the
subsystems dealing with entertainment, climate control, etc. will have their own
product lines, and these will be merged into parent product lines to represent
the variability for an entire vehicle.
Case Study Product Line. We applied a transformation on a realistic product
line exemplar (as opposed to the actual product line used in GM) due to reasons
of confidentiality. We started with publicly available models [1] and built an
exemplar model conforming to the GM metamodel in Fig. 2 and consisting of six
features and 201 elements. With the help of our industrial partners, we validated
that our exemplar is realistic in terms of its structure and size. Since our goal is to
do transformation lifting, the product line we produced is annotative [10,18,26].
We formally review the definition of the annotative product line approach below.

Definition 1 (Product Line) A product line P consists of the following parts:
(1) A feature model that consists of a set of features and the constraints between
them; (2) a domain model consisting of a set of model elements; and, (3) a map-
ping from the feature model to the domain model that assigns to each element of
the domain model a propositional formula called its presence condition expressed
in terms of features. We call any selection of features that satisfy the constraints
in the feature model to be a configuration and the corresponding set of domain
elements with presence conditions that evaluate to True given these features is
called a product. We denote the set of all configurations of P by Conf(P ).

Note that the Gears product lines used at GM are annotative but use a
slightly di↵erent terminology than in Def. 1. Fig. 1 shows a fragment of the ex-
emplar product line to illustrate the components of an annotative product line. It

1 www.biglever.com



shows three of the six features: feature F2 representing Adaptive Cruise Control
(ACC), F8 representing Anti-lock Braking System (ABS), and F3 represent-
ing Smart Control (SC), an integrated system for assisted driving. The relevant
fragment of the feature model is shown on the right of the figure and the solid
bar connecting the three features expresses the constraint that the features are
mutually exclusive.

The domain model is a class diagram showing the architectural elements. The
BodyControl PhysicalNode runs Partitions such as the HumanMachineInterface.
The HumanMachineInterface Partition contains the Display Module which runs
multiple ExecFrames at the same or di↵erent rates. The De ActivateACC Ex-
ecFrame allows controlling the ACC feature by invoking Services for variable up-
dates (e.g., TurnACCon and TurnACCo↵ Services). The BrakingControl Phys-
icalNode runs the SituationManagement Partition. The SituationManagement
Partition contains the ABScontroller Module which runs theDe activateABS Ex-
ecFrame. The De activateABS ExecFrame provides the TurnABSo↵ and SetAB-
Sstate Services to control the ABS feature. The De activateABS ExecFrame
provides a Service (i.e., TurnABSo↵ ) that is required by the De ActivateACC
ExecFrame, and the two ExecFrames require a common Service (i.e., TurnAC-
Co↵ ).

The presence conditions mapping the features to the elements of the domain
model are shown directly annotating the architecture elements. For example,
the element BodyControl has the presence condition F2 or F3. Configuring the
product line to produce a particular product involves selecting the features that
should be in the product and then using these features with the presence condi-
tions to extract the domain elements that should be in the product. For example,
assume that we want to configure the product that has only feature F2. In this
case, the product will contain the element BodyControl because its presence
condition says that it is present when the product contains feature F2 or if it
contains F3. However, it will not contain element SetABState because its pres-
ence condition is F8 or F3.

3 Migrating GM Models to AUTOSAR

Previously, we reported on an industrial transformation that maps between sub-
sets of a legacy metamodel for General Motors (GM) and the AUTOSAR meta-
model [31]. This GmToAutosar transformation manipulated subsets of the meta-
models that represent the deployment and interaction of software components.
We summarize the source and target metamodels of the GmToAutosar trans-
formation and its implementation in DSLTrans. More details on the source and
target metamodels can be found in [31].
The GM Metamodel. Fig. 2 shows the subset of the GM metamodel ma-
nipulated by our transformation in [31]. A PhysicalNode may contain multiple
Partitions (i.e., processing units). Multiple Modules can be deployed on a sin-
gle Partition. A Module is an atomic, deployable, and reusable software element
and can contain multiple ExecFrames. An ExecFrame, i.e., an execution frame,



Fig. 2. Subset of the source GM metamodel used by our transformation in [31].

Fig. 3. Subset of the target AUTOSAR metamodel used by our transformation
in [31].

is the basic unit for software scheduling. It contains behavior-encapsulating enti-
ties, and is responsible for providing/requiring Services to/from these behavior-
encapsulating entities.
The AUTOSAR Metamodel. In AUTOSAR, an Electronic Control Unit
(ECU) is a physical unit on which software is deployed. Fig. 3 shows the sub-
set of the AUTOSAR metamodel [2] used by our transformation. In AUTOSAR,
the ECU configuration is modeled using a System that aggregates SoftwareCom-
position and SystemMapping. SoftwareComposition points to CompositionType
which eliminates any nested software components in a SoftwareComposition.
SoftwareComposition models the architecture of the software components (i.e.,
ComponentPrototypes) deployed on an ECU and their ports (i.e., PPortProto-
type/ RPortPrototype for providing/ requiring data and services). Each Compo-
nentPrototype has a type that refers to its container CompositionType.

SystemMapping binds software components to ECUs using SwcToEcuMap-
pings. SwcToEcuMappings assign SwcToEcuMapping components to an EcuIn-
stance. SwcToEcuMapping components, in turn, refer to ComponentPrototypes.
The GmToAutosar Transformation. Although originally implemented in
ATL [31], the GmToAutosar transformation was later reimplemented in DSLTrans
for the purpose of a study where several of its properties where automatically
verified [30]. This allowed us to increase our confidence in the correctness of the
transformation. Table 1 summarizes the rules in each transformation layer of
the GmToAutosar transformation after reimplementing it in DSLTrans, and the
input/output types that are mapped/generated by each rule. For example, rule
MapPhysNode2FiveElements in Layer 1 maps a PhysicalNode element in the



Layer Rule Name Input Types Output Types

1

MapPhysNode2FiveElements PhysicalNode,

Partition, Mod-

ule

System, SystemMapping, SoftwareCompo-

sition, CompositionType, EcuInstance

MapPartition PhysicalNode,

Partition, Mod-

ule

SwcToEcuMapping

MapModule PhysicalNode,

Partition, Mod-

ule

SwCompToEcuMapping component,

ComponentPrototype

2

MapConnPhysNode2Partition PhysicalNode,

Partition

SystemMapping, EcuInstance,

SwcToEcuMapping

MapConnPartition2Module PhysicalNode,

Partition, Mod-

ule

CompositionType, ComponentPrototype,

SwcToEcuMapping,

SwCompToEcuMapping component

3

CreatePPortPrototype PhysicalNode,

Partition, Mod-

ule, ExecFrame,

Service

CompositionType, PPortPrototype

CreateRPortPrototype PhysicalNode,

Partition, Mod-

ule, ExecFrame,

Service

CompositionType, RPortPrototype

Table 1. The rules in each layer of the GmToAutosar transformation, and their
input and output types.

input model to five elements in the output model (i.e., System, SystemMapping,
SoftwareComposition, CompositionType, and EcuInstance elements). A detailed
explanation of the mapping rules and the reimplementation of the transforma-
tion in DSLTrans can be found in [31,30]. DSLTrans and the notion of rule layers
is described in Sec. 4.1.

4 Lifting GmToAutosar

4.1 Background: DSLTrans

DSLTrans is an out-place, graph-based and rule-based model transformation en-
gine that has two important properties enforced by construction: all its compu-
tations are both terminating and confluent [6]. Besides their obvious importance
in practice, these two properties were instrumental in the implementation of a
verification technique for pre- / post-condition properties that can be shown to
hold for all executions of a given DSLTrans model transformation, independently
of the provided input model [21,22,30].

Model transformations are expressed in DSLTrans as sets of graph rewriting
rules, having the classical left- and right-hand sides and, optionally, negative ap-
plication conditions. The scheduling of model transformation rules in DSLTrans
is based on the concept of layer. Each layer contains a set of model transformation
rules that execute independently from each other. Layers are organized sequen-
tially and the output model that results from executing a given layer is passed to
the next layer in the sequence. A DSLTrans rule can match over the elements of
the input model of the transformation (that remains unchanged throughout the



Fig. 4. The CreatePPortPrototype rule in the GmToAutosar DSLTrans trans-
formation.

entire execution of the transformation) but also over elements that have been
generated so far in the output model. The independence of the execution of rules
belonging to the same layer is enforced by allowing matching over the output of
rules from previous layer but not over the output of rules of the current layer.
Matching over elements of the output model of a transformation is achieved us-
ing a DSLTrans construct called backward links. Backward links allow matching
over traces between elements in the input the output models of the transforma-
tion. These traces are explicitly built by the DSLTrans transformation engine
during rule execution.

For example, we depict in Fig. 4 the CreatePPortPrototype rule in the Gm-
ToAutosar DSLTrans transformation, previously introduced in Table 1. The rule
is comprised of a match and an apply part, corresponding to the usual left- and
right-hand sides in graph rewriting. When a rule is applied, the graph in the
match part of the rule is looked for in the transformation’s input model, to-
gether with the match classes in the apply part of the rule that are connected
to backward links. An example of a backward link can be observed in Fig. 4,
connecting the CompositionType and the PhysicalNode match classes. During
the rewrite part of rule application, the instances of classes in the apply part
of the rule that are not connected to backward links, together with their adja-
cent relations, are created in the output model. In the example in Fig. 4, the
CreatePPortPrototype rule creates a PPortPrototype object and a port relation
per matching site found. Note that the vertical arrow between the shortName
attribute of PPortPrototype and the name attribute of ExecFrame implies that
the value of attribute name is copied from its matching site to the shortName
attribute of thePPortPrototype instance created by the rule.

In addition to the constructs presented in the example in Fig. 4, DSLTrans
has several others: existential matching which allows selecting only one result
when a match class of a rule matches an input model, indirect links which allow



transitive matching over containment relations in the input model, and nega-
tive application conditions which allow to specify conditions under which a rule
should not match, as usual. The GmToAutosar transformation does not make
use of these constructs, and thus we leave the problem of lifting them for future
work.

4.2 Lifting DSLTrans for GmToAutosar

Lifting of Production Rules. When executing a DSLTrans transformation,
the basic operation (called here a “production”) is the application of a individual
rule at a particular matching site site. The definition and theoretical founda-
tion of lifting for productions are given in [27]. Below, we describe how they
apply in the case of GmToAutosar using the model fragment in Fig. 1 and the
CreatePPortPrototype rule in Fig. 4.

When a DSLTrans ruleR is lifted, we denote it byR

". Intuitively, the meaning
of a R

"-production is that it should result in a product line with the same
products as we would get by applying R to all the products of the original
product line at the same site. Because of this, we do not expect a R

"-production
to a↵ect the set of allowable feature combinations in the product line. Formally:

Definition 2 (Correctness of lifting a production) Let a rule R and a prod-
uct line P , and an application site c be given. R" is a correct lifting of R i↵ (1)

if P
R"|c
=) P

0 then Conf(P 0) = Conf(P ), and (2) for all configurations Conf(P ),

M

R|c
=) M

0, where M can be derived from P and M

0 from P

0 under the same
configuration.

An algorithm for applying lifted rules at a specific site is given in [27], along
with a proof of production correctness that is consistent with the above defini-
tion. In brief, given a matching site and a lifted rule, the algorithm performs the
following steps: (a) use a SAT solver to check whether the rule is applicable to
at least one product at that site, (b) modify the domain model of the product
line, and (c) modify the presence conditions of the changed domain model so the
rule e↵ect only occurs in applicable products.

For example, consider the match c={BodyControl, HumanMachineInterface,
Display, De ActivateACC, TurnABSo↵, BodyControlCT} in the fragment in
Fig. 1. In this match, we assume that an element named BodyControlCT of type
CompositionType and its corresponding backward link have been previously cre-
ated by the rule MapPhysNode2FiveElements (see Table 1) and therefore have
the presence condition F2 _ F3. To apply the rule CreatePPortPrototype" to
c, we first need check whether all of c is fully present in at least one product.
We do so by checking whether the formula �apply = (F2 _ F3) ^ (F8 _ F3)
is satisfiable. �apply is constructed by conjoining the presence conditions of all
the domain elements in the matching site c. According to the general lifting
algorithm in [27], the construction of �apply for arbitrary graph transformation
rules is more complex; however, rules in GmToAutosar do not use Negative



Application Conditions and do not cause the deletion of any domain element.
Therefore, the construction of �apply follows the pattern we described for all
rules in GmToAutosar".

Because �apply is satisfiable, CreatePPortPrototype" is applicable at c. There-
fore, the rule creates a new element called De ActivateACC of type PPortPro-
totype, a link of type port connecting it to BodyControlCT, as well as the ap-
propriate backward links. Finally, all created elements are assigned �apply as
their presence condition. In other words, the added presence conditions ensure
that the new elements will only be part of products for which the rule is ap-
plicable. By construction, this production satisfies the correctness condition in
Def. 2. Thus, according to the proofs in [27], the lifting of productions preserves
confluence and termination.
Lifting the Transformation. We define the notion of global correctness for
GmToAutosar" to mean that, given an input product line of GM models, it
should produce a product line of AUTOSAR models that would be the same as
if we had applied GmToAutosar to each GM model individually:

Definition 3 (Global Correctness of GmToAutosar") The transformation
GmToAutosar" is correct i↵ for any input product line P , it produces a prod-
uct line P

0 such that (a) Conf(P ) = Conf(P 0), and (b) for all configurations
Conf(P ), M 0 = GmToAutosar(M), where M and M

0 can be derived from P

and P

0, respectively, under the same configuration.

In order to lift GmToAutosar, we use the DSLTrans engine to perform the
identification of matching sites and scheduling of individual productions, and use
the lifting algorithm in [27] to lift individual productions, as described above.
Since each production is correct with respect to Def. 2, then, by transitivity,
the lifted version GmToAutosar" is globally correct. Also by transitivity, since
the lifting of individual productions preserves confluence and termination, it is
confluent and terminating, like GmToAutosar. Because of global correctness, and
because it preserves confluence and termination, GmToAutosar" also preserves
the results of the verification of pre- and post-condition properties using the
techniques in [21,22,30]. In other words, GmToAutosar" satisfies the same set of
pre- and post-condition properties as GmToAutosar.
Implementation. Adapting the DSLTrans engine for GmToAutosar" did not
require changing the existing codebase. Instead, we had to write code to extend it
in two ways: (a) Reading and writing presence conditions, expressed as Comma-
Separated Values (CSV) and attached to EMF [16] models. (b) Interfacing with
the API of the Z3 SMT solver [12], used for checking the satisfiability of �apply.
These changes required an addition of less than 300 lines of code to an existing
codebase of 9250 lines.

5 Applying the Lifted Transformation GmToAutosar"

The aim of this case study is to investigate the feasibility of applying industrial-
grade transformations to product lines via lifting [27]. We thus lifted GmToAu-



tosar and applied it to various input product lines with the goal to answer the
following research questions:

RQ1: Does GmToAutosar" scale to industrial-sized SPLs?
RQ2: How sensitive is it to the complexity of the product line?

To answer RQ1, we generated realistic product lines, based on input from
our industrial partners. We then applied GmToAutosar" to them and measured
two variables: (a) total runtime, and (b) complexity of presence conditions of
the output. We used the clause-to-variable ratio as a measure of the complex-
ity of presence conditions because it is a well-known metric for evaluating the
complexity of queries to SAT solvers. To answer RQ2, we varied the size of the
generated product lines in terms of the size of the domain model and the number
of features in the feature model.
Setup. Due to limitations of publication of sensitive industrial data, we opted
to use a realistic rather than real product lines, constructed as follows:
1) Using publicly available examples [1], we created the exemplar product line
described in Sec. 2. As described earlier, its domain model consists of 201 ele-
ments and its feature model has 6 features. 50% of domain model elements in the
model had a single feature presence condition, whereas the presence conditions
of the other 50% consisted of conjunctive clauses of 2-3 features. The overall
product line was validated with input from our industrial partners.
2) We consulted our industrial partners regarding the characteristics of a typical
product line. We were given the following parameters for a typical product line of
DOORS requirements: (a) domain model size is 400 elements, (b) the number of
feature variables is 25, (c) 1/8th of elements are variation points, (d) an average
clause-to-variable ratio of the presence conditions is 2

/

25

= 0.08, i.e. an average
presence condition consists of 2 clauses containing any of the 25 feature variables.
3) We used the exemplar model built in step 1 as a seed to create product lines
of varying sizes for the model and the set of features, i.e., varying parameters (a)
and (b) from step 2 while keeping parameters (c) and (d) constant. Therefore,
models of increasing sizes were obtained by cloning the exemplar domain model
to create models of 200, 400, 800, 1600 and 3200 elements. To obtain product
lines with di↵erent numbers of feature variables, we cloned the feature model of
the exemplar, creating feature models with 6, 12, 24, 48, and 96 features. The
product line with 400 elements and 24 features corresponds to the parameters
reported by our industrial partners in the previous step. Each variation point
was assigned a randomly generated presence condition based on the presence
conditions of the exemplar.

We executed the experiments on a computer with Intel Core i7-2600 3.40GHz
⇥4 cores (8 logical) and 8GB RAM, running Ubuntu-64.
Results. Fig. 5(a) shows the observed runtimes of applying GmToAutosar" to
product lines with domain models of increasing size. One line is plotted for
each feature set size. For comparison, we also include the runtime of applying
GmToAutosar to models (not product lines) of di↵erent sizes. Fig. 5(b) shows
the clause-to-variable ratio of output product lines for inputs of varying size of



(a) (b)

Fig. 5. (a) Observed increase in running time. (b) Observed increase in the size
of presence conditions.

domain model. One line is plotted for each feature set size. For comparison, we
also include the clause-to-variable ratio of the input product line.

With respect to RQ2, we note that runtime grows exponentially with the size
of the domain model, while product lines with larger feature sets take longer to
transform. The size of presence conditions also grows exponentially with increas-
ing domain model sizes, and is two to three orders of magnitude larger than the
input. Applying GmToAutosar" to product lines with smaller size of the fea-
ture set results in a larger increase to the clause-to-variable ratio. With regard
to the sensitivity of GmToAutosar" to size of the domain model, we observe
that runtime follows the expected pattern of exponential increase. Since the
non-lifted version also grows exponentially, we conclude that this exponential
increase is not solely due to the use of a SAT solver but also due to the inherent
complexity of graph-rewriting-based model transformations. With regard to the
sensitivity of GmToAutosar" to the size of presence conditions, we again observe
an expected pattern of exponential increase. However, the increase is orders of
magnitude large which is explained by the fact that our current implementation
of GmToAutosar" does not perform any propositional simplification.

With respect to RQ1, we observe that for sizes of domain model and feature
set that correspond to the description of real GM product lines, the observed
runtime of GmToAutosar" is 3.59 seconds, compared to 3.25 for GmToAutosar.
These di↵erences in runtime indicate that GmToAutosar" scales well in terms of
runtime. On the other hand we observe that the clause-to-variable ratio increased
from 0.08 to 293.53, meaning that the output presence conditions contained a
very large number of clauses. This points to the need to further optimize the
DSLTrans engine, taking care to strike a balance between runtime and proposi-
tional simplification. Additionally, we note that the observed clause-to-variable



ratio is not close to 4.26, which is considered to be the hardest for automated
SAT solving [24].
Threats to Validity. There are two main threats to validity: First, the seed
model was constructed using non-GM data, but rather publicly available auto-
motive examples. Second, product lines of di↵erent sizes of domain model and
feature set were artificially constructed by cloning the seed model. Both these
issues stem from the fact that we could not access to real product lines due to
limitations to publication of sensitive industrial data. To mitigate the first con-
cern, we asked industrial partners to validate that our exemplar is realistic in
terms of structure and size. To mitigate the second concern, we ensured that our
cloning process resulted in product lines that had characteristics that were con-
sistent with the parameters given by our industrial partners (number of variation
points, average clause-to-variable ratio, shape of the presence conditions).

6 Lessons Learned and Discussion

The goal of this case study was to study the tractability of transformation lifting
for industrial-grade transformations. In this section, we reflect on the experience
of lifting GmToAutosar and describe the lessons learned from it.

We note that applying GmToAutosar to product lines fulfils a real indus-
trial need to migrate legacy product lines to a new format. This validates the
basic premise of our theory that lifting transformations for product lines is an
industrially relevant endeavour. The observed results in Sec. 5 indicate that us-
ing GmToAutosar" is tractable for industrial-sized product lines, even if some
additional optimization is required. It thus adds more evidence to the evalua-
tion results obtained using experimentation with random inputs in [27]. This
strengthens the claim that transformation lifting scales to real-world models.

A claimed benefit of transformation lifting is that transformations do not
need to be rewritten specifically for product lines. Instead, what is required is
the lifting of the transformation engine. This case study did not contradict this
claim: we were able to migrate legacy GM product lines to AUTOSAR without
having to rewrite the GmToAutosar transformation for product lines. Instead,
we lifted the DSLTrans engine.

In [27], lifting was implemented using the Henshin graph transformation en-
gine [5]. Specifically, we implemented lifting for graph transformations while us-
ing some capabilities of Henshin (e.g., matching) as a black box. However, lifting
GmToAutosar required adapting part of the underlying transformation engine
(DSLTrans) itself. The reason why this was possible was because the DSLTrans
language is (a) based on graph-rewriting and (b) uses graph rewriting produc-
tions as atomic operations. It is thus possible to lift the entire engine by lifting
just these atomic operations while leaving the rest of the matching and schedul-
ing untouched. On the other hand, since GmToAutosar does not make use of
certain more advanced language constructs in DSLTrans (e.g., indirect links),
we were only required to make very targeted interventions to the DSLTrans en-
gine. Lifting DSLTrans for arbitrary transformations will require more extensive



changes. For some language features, most notably, existential matching, this
also requires rethinking parts of the lifting algorithm from [27].

7 Related Work

There is extensive work on adapting software engineering techniques to product
lines in order to avoid having to explicitly manipulate individual products [32].
Lifting has been applied to model checking [8], type checking [19], testing [20],
etc. Our work fits in this category, focusing on lifting transformations.

The combination of product lines and model transformations has been ex-
tensively studied from the perspective of using transformations for configuring
and refining product lines [10,15,17,11], and merging products and feature mod-
els [3,9,26], A theory of product line refinement along with a classification of
commonly used refinement approaches is presented in [7]. Transformation lift-
ing di↵ers from these works because it is about adapting existing product-level
transformations to the level of entire product lines, as opposed to creating trans-
formations specifically for product lines.

Variant-preserving refactoring, aimed to improve the structure of source code,
is presented in [28], for feature-oriented product lines [4]. This is accomplished
by extending conventional refactoring with feature-oriented programming. Our
lifting approach focuses on annotative, model-based product lines instead, and is
not limited to structural improvement.

Approaches to product line evolution [23,29] focus on scenarios such as merg-
ing and splitting product lines, and changing the feature set or the domain model.
The aim is usually to create templates for manually evolving the product line
in a safe way. Our approach is to automatically evolve product lines by lifting
product-level translation transformations, such as GmToAutosar. Safety is thus
ensured by reasoning about the properties of the transformation at the product
level [21,22,30].

8 Conclusion and Future Work

In this paper, we presented an empirical case study where we lifted GmToAu-
tosar, a transformation that migrates GM legacy models to AUTOSAR, so that
it can be used to transform product lines as opposed to individual products.
Lifting required us to adapt the execution engine of DSLTrans, the model trans-
formation language in which GmToAutosar is written. We experimented with
the lifted transformation GmToAutosar", using realistic product lines of vari-
ous sizes to study the e↵ect of lifting to the execution time and the complexity
of the resulting product line. The observations confirm our theory that lifted
model transformations can be applied to industrial-grade product lines. How-
ever, more optimization is required in order to strike a balance between keeping
the runtime low and avoiding the growth of the size of presence conditions. Our
experience with lifting GmToAutosar indicates that lifting is feasible for trans-
formation languages like DSLTrans, where individual productions can be lifted



while reusing the engine for matching and scheduling. However, lifting the full
range of language features (not used in GmToAutosar) requires rethinking our
lifting method. In the future, we intend to lift the entire DSLTrans engine, to
take into account its full range of advanced language features such as existential
matching and transitive link matching. We also intend to leverage the experi-
ence of lifting an entire model transformation language to apply our approach
to more complex and powerful transformation languages.
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