
Identifying Clones
By using ICA to map our source matrix into a
reduced vector space, with axes that correspond to
some mathematically derived and independent
feature of the data, we can then use the results to
see how close each method is to each other one.
LSI itself uses SVD to transform the original
document-term matrix into a decomposition of
matrices used to identify relationships between the
source data. We can use the earlier definition of
ICA as x = As to do something similar. If the rows
and columns of x are documents and tokens, and
the rows and columns of s are signals and tokens,
we can generate a new document value matrix DV
using the following equation:

DV = xsT

The logic for this comes from the fact that ICA has
done the work of figuring out which terms are
semantically close. By taking the product of our
source matrix with raw token availability and our
derived signal-token matrix, the relationship
between methods becomes apparent.

Ordering Code Blocks by Similarity
The meaning of these results is as follows. By
applying ICA to the original method-token matrix
generated from our input source code, we can
derive a matrix DV that represents the strength of
each document in a new vector space. The rows of
DV can be plotted as points in this vector space,
and the Euclidean distance between any two points
can be interpreted as a measure of their similarity,
since each axis in this new space corresponds to
the strength of some statistically independent
concept. In this way we get an ordered list of
related documents spanning the entire range of the
document set.

Each score is the Euclidean distance between the
points in three-dimensional space. By plotting in
three dimensions, we get an immediate sense of
the placement of the points relative to each other.
As ICA enforces a strong statistical bound on the
axes, we expect to see points that are quite distinct
from one another, and demonstrated by the
significantly different vector orientations.

Scott Grant, James Cordy
School of Computing, Queen’s University

Kingston, Canada

Software Clones
Reuse of software code fragments by copy/
paste/edit is a common software development
practice that leads to a large number of similar
code segments, or code clones, in software
systems. Code clones can cause problems for
software maintenance and evolution, making
them a popular topic in software
comprehension.

Our approach
We introduce a technique for applying
Independent Component Analysis to vector
space representations of software code
fragments such as methods or blocks. The
distance between these points can be
determined, and used as a measure of the
similarity between the original source code
fragments they represent. It can be reasoned
that if the initial matrix representation contains
enough information about the syntactic structure
of the source code, the vector space
representation will be sufficient to predict the
similarity of fragments to one another, and can
provide the likelihood that the code is a clone.

Using a technique like ICA appears to work well
at identifying similar methods in source code,
without any required built-in knowledge about
program language or syntax. By mapping the
methods to vectors using a method-token matrix
and applying ICA to extract the statistically
independent components that correspond to the
original dataset, we can use a distance metric to
determine how similar the original methods are
to each other. Further, this gives us a way to
estimate the possibility that these methods
might be clones of one another.

Conclusion

Introduction

Method Summary
Step 1
Construct a method-token matrix using the non-
unique tokens found in our source code.

Step 2
Reduce the matrix dimensionality using SVD.

Step 3
Apply ICA to our reduced matrix, save the results.

Step 4
Generate a new matrix based on ICA’s valuation of
the token relevance in order to identify the points in
the new vector space that correspond to our input.

Step 5
Calculate the nearest neighbour scores of each
method using the previous matrix.

s1 = My dog has fleas.
s2 = That dog has fleas.
s3 = My ukelele has fleas.
s4 = My team won the football game.
s5 = That dog ate all the turkey.

non-unique = {dog, fleas, has, my, that, the}

Our input matrix will necessarily be a 5x6
matrix, with the five rows representing the input
documents s1 through s5, and the six columns
representing the non-unique tokens.

After the matrix has been processed using ICA,
we generate the document value matrix using
DV = xsT. The figure below shows how the
points map when plotted as vectors.

An Ordered List of Similar Methods
This technique can provide an estimate on the
likelihood that code blocks are clones, relative
to the rest of the source, with great certainty.

Example

Vector Space Analysis of Software Clones

Explanation of Method

Background
Vector space
An n-dimensional space in which
representations of the code blocks we analyse
are stored. We start with a matrix generated
from the input source code, where each row
corresponds to a single code block, and each
column corresponds to the presence of a token
in that code. For example, we expect to see a 1
at position Mij if method i in our source contains
token j in an ordered list of tokens that span the
corpus.

Independent Component Analysis
ICA is a blind signal separation technique that
separates a set of input signals into statistically
independent components. The primary
difference between ICA and Latent Semantic
Indexing (LSI) is that instead of focusing on
signals that are simply decorrelated, ICA
extracts signals that are mutually independent
of one another. This is a stronger bound, and
when used in a domain like program
comprehension, can ensure a stronger
difference between the extracted signals, and a
correspondingly stronger similarity between
fragments with similar signal profiles.

ICA is described by the equation x = As, and
factors an original data matrix x into a
transformation, or mixing matrix, referred to as
A, and a source signal matrix s, where the
extracted independent signals are stored.

static unsigned long source_load (int cpu, int type) {
 struct rq *rq = cpu_rq (cpu);
 unsigned long total = weighted_cpuload (cpu);
 if (type == 0) return total;
 return min (rq->cpu_load[type - 1], total);
}
static unsigned long target_load (int cpu, int type) {
 struct rq *rq = cpu_rq (cpu);
 unsigned long total = weighted_cpuload (cpu);
 if (type == 0) return total;
 return max (rq->cpu_load[type - 1], total);
}

static int __init kallsyms_init (void) {
 struct proc_dir_entry *entry;
 entry = create_proc_entry ("kallsyms", 0444, NULL);
 if (entry) entry->proc_fops = &kallsyms_operations;
 return 0;
}
static int __init ioresources_init (void) {
 struct proc_dir_entry *entry;
 entry = create_proc_entry ("ioports", 0, NULL);
 if (entry) entry->proc_fops = &proc_ioports_operations;
 entry = create_proc_entry ("iomem", 0, NULL);
 if (entry) entry->proc_fops = &proc_iomem_operations;
 return 0;
}

First Percentile Nearest Neighbour

Tenth Percentile Nearest Neighbour

