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Abstract—The poor locality of operation descriptions expressed
in the Web Service Description Language (WSDL) makes them
difficult to analyze and compare in web service discovery tasks.
This problem has led us to develop a new method for ser-
vice operation comparison involving contextualizing operation
descriptions by inlining related type information from other
sections of the service description. In this paper, we show that
this contextualization of web service descriptions can enable
topic models (statistical techniques for identifying relationships)
to produce semantically meaningful results that can be used to
reverse engineer service-oriented web systems and automatically
identify related web service operations. Specifically, we model
contextualized WSDL service operations using Latent Dirichlet
Allocation, and show how this approach can be used to more
accurately find similar web service operations.
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I. INTRODUCTION

Web services are software components used to communicate
over a network. These web services are often described using
domain-specific languages, outlining the operations that are
available, the type of messages that can be sent, and other
information about the provider.

The structure of service descriptions written in the Web Ser-
vice Description Language (WSDL), one such domain-specific
language, makes reading and understanding them a difficult
task. This problem makes it even more difficult to discover
relationships between service operations when considering a
large repository of web services. Latent topic models can be
used to find these relationships, but without adaptation to the
specifics of WSDL, they can produce irrelevant noise. Due to
the sparsity of local syntax in WSDL operation descriptions,
there are not enough tokens in them to support any meaningful
semantic conclusions.

In this paper, we use a strategy for restructuring WSDL
documents into a set of contextualized operations in an em-
pirical analysis of a repository of web services showing that,
by using these contextualized operations, we can find more
meaningful relationships when performing Latent Dirichlet
Allocation. We use a similarity metric to identify related web
service operations based on the derived model, and show
by example how significant improvements are made through
contextualizing.

The main contributions of this paper are:
• A description of contextualized web service operations,

and why they enable topic models to perform meaningful

automated web service discovery. Although <operation>
elements in WSDL are not natively good input source
for these techniques due to the small number of tokens
they contain, contextualizing them by inserting the other
elements they reference can give a topic model an appro-
priate amount of information to derive these conceptual
relationships.

• An examination of both the global and local improve-
ments that are made after contextualization. We use a
visualization to directly observe the global structure ob-
tained after the operations are contextualized. We identify
the main relationships directly from the visualization. We
also view the most similar web services before and after
contextualization, and show the improvements we are
able to make.

II. MOTIVATION

In our previous work on web service analysis with WSDL
[13], we attempted to discover similar web service operations
using clone detection. We discovered that the organization
of these descriptions makes it impossible to identify mean-
ingful operation descriptions to compare. In general, analysis
techniques assume that related aspects are grouped together;
however, this is not the case with WSDL. Using whole WSDL
descriptions is a viable option, but does not yield the desired
granularity. We may be able to tell which services are related,
but how they are related may remain unclear. To compare
operations, we could extract the <operation> elements, but
these contain very little information other than the operation
name and ignore other valuable information including type
definitions. This led us to develop a method to gather the
relevant pieces of the operation and consolidate them into self-
contained operation descriptions we call WSCells (pronounced
“wizzles”). Our previous work demonstrated that WSCells
yield much more meaningful results for clone detection. In
this paper we experiment with whether they yield a similar
improvement for semantic analysis of web services using
LDA.

Topic models and other information retrieval techniques like
Latent Semantic Indexing [5] have been used to automatically
infer semantic relationships based on syntactic information.
They are built on the idea that the tokens used in a data set
contain enough information to extract semantic relationships.
In order to analyze web service descriptions, we would like



to discover these relationships in WSDL operations. However,
due to the sparsity of local syntax in WSDL operation de-
scriptions, there are not enough tokens in them to support
any meaningful semantic conclusions. For these reasons, we
believe that utilizing concept location techniques as a way
to identify the relationships between individual web services
is an ideal way to demonstrate that WSCells add important
semantic structure.

III. BACKGROUND

A. Web Service Description Language (WSDL)

A WSDL description of a web service contains an interface
definition of one or more operations provided by that service.
However, each definition is broken up into pieces depending
on what aspect they define and linked together in a chain. The
pieces are organized into 5 main sections:

1) Types: The types section contains type definitions for
exchanging data between a client and a service using the
XML Schema Language (XSL). The schema may define
complexTypes, which are essentially objects that contain other
elements, or simpleTypes, which may be restrictions of primi-
tive types, enumerated types, or patterns (among others). Other
elements may be declared as these types, thereby inheriting the
elements contained within.

2) Messages: Messages define the data elements corre-
sponding to the input, output and faults of each operation.
They contain one or more parts, which may refer to elements
defined in the types section. These parts can represent parame-
ters of the operation, but often they simply refer to an element
in the types section that contains the parameters.

3) Port Types: The port types section contains one or
more operations that make up the web service. Each of these
operations may contain an <input> or <output> element
depending on what kind of communication takes place (e.g.
request-response, notification, etc.). It may also contain any
number of faults. These inputs, outputs and faults refer to
messages defined elsewhere in the file.

4) Bindings: Bindings define a message format and proto-
col for a port type. Often this protocol is Simple Object Access
Protocol (SOAP).

5) Services: The services section defines a group of ports,
which define an endpoint and specify an address for a binding.

For the purposes of similarity analysis, we ignore the Bind-
ings and Services sections because they contain information
specific to the service and are not likely to contain anything
useful for identifying relationships.

The description of an operation begins in the <portTypes>
element where operations are listed in their own <operation>
element. Each of these elements contain a number of
<input>, <output> or <fault> elements that correspond
to a <message> element defined somewhere else in the
description. These contain <part> elements that may refer to
other remote elements in the <types> element. The elements
in the <types> element can also contain elements that have
other types associated with them, which can contain more
elements, and so on. The result is that operation descriptions

Fig. 1. An example WSCell for a “ReserveRoom” operation of a simple hotel
reservation service, which takes a “Payment” element and a “Room” element
as input and sends an acknowledgment back to the client. Simple <input>,
<output> and <fault> elements are expanded to include the <message>
elements to which they refer. Then, each <part> element of each message is
expanded with the corresponding element in the types section. Finally, each
element with a complexType is expanded to include its type definition. This
continues recursively until only primitive types remain.

are split into remote pieces and intermingled in the same
description. This poses a problem for analysis techniques, such
as LDA, because operations can not be easily separated into
units.

B. Latent Dirichlet Allocation (LDA)

A topic model is a statistical model used to identify a set
of unobservable latent topics in a data set. The fundamental
premise behind a topic model is that there is some correlation
observed among the tokens in the data set that can be explained
by a mathematical relationship between them, and that these
relationships can be extracted as topics. One example of a topic
model is Latent Dirichlet Allocation (LDA) [3], a generative
model that assumes the data set was derived from a prior topic
distribution over the data. In general terms, LDA assumes the
existence of a number of topics that can be used to relate
elements of the data set to one another. If two pieces of data are
strongly related to the same topic (or a similar set of topics),
they are likely to be very similar to one another.



stockquote (41)
<wsdl:operation name="GetQuote" >

<wsdl:input message="tns:GetQuoteSoapIn"/>
<wsdl:output message="tns:GetQuoteSoapOut"/>

</wsdl:operation>

WSAmazonBox (764)
<wsdl:operation name="AuthorBox" >

<wsdl:input message="tns:AuthorBoxSoapIn"/>
<wsdl:output message="tns:AuthorBoxSoapOut"/>

</wsdl:operation>

Fig. 2. Two unrelated web services that are incorrectly found to be similar
when analysed without contextualization, along with the web service provider
and line number where the operation was found. The stock quote operation
and author operation share a SOAP interface, but are otherwise in completely
different domains. The SOAP keyword is identified by the topic model with no
contextualization, and treated as important enough to link these two operation
together. With contextualization, this problem is alleviated.

In LDA, a common distance metric involves taking the
Hellinger distance between the probability distributions for
each pair of documents [2]. The Hellinger distance is a
similarity metric that, in this context, helps to find pieces of
data that have similar topic relationships. For example, in a
simple latent topic model with two topics, each document itself
is represented as a distribution over them, or essentially as a
pair of probabilities. If two pieces of data have very similar
probabilities of being related to the topics, those pieces of data
would have a very low Hellinger distance, and therefore a very
high likelihood of being similar. When the overall Hellinger
distance data is normalized to a value in the range 0 < x <
1, and then subtracted from 1 (we want low distance scores to
correspond to high probability of relationship, so distance 0
should be similarity 1), each individual distance score provides
the means to estimate the probability that two documents are
conceptually related to one another.

The following table gives the probability distribution for
each of the documents for two sample topics t1 and t2, and the
Hellinger distance from each other document (larger numbers
indicate less similarity).

t1 t2 h(d1) h(d2) h(d3)
d1 0.33 0.67 - 0.003 0.258
d2 0.40 0.60 0.003 - 0.210
d3 0.95 0.05 0.258 0.210 -

By using LDA as a model and calculating the Hellinger
distance between the topic distributions, it can be seen that d1
and d2 are the most similar documents. After normalizing the
data, smaller distances like the one between d1 and d2 will be
very close to 1, and larger distances like the one between d1
and d3 will end up near 0.

IV. METHOD

A. Approach

In our previous work, we looked for a way to leverage
existing code clone detection tools to find similarities in a web

Before contextualization:
<wsdl:operation name="GetBRAZIBOR" >
<wsdl:input message="tns:GetBRAZIBORSoapIn"/>
<wsdl:output message="tns:GetBRAZIBORSoapOut"/>

</wsdl:operation>

After contextualization:
<operation name="GetBRAZIBOR" >
<input message="tns:GetBRAZIBORSoapIn">

...
<element name="BRAZIBORTypes">
<s:restriction base="s:string">

<s:enumeration value="Overnight"/>
<s:enumeration value="OneYear"/>

...
<output message="tns:GetBRAZIBORSoapOut">

...
<element name="Currency" type="tns:Currencies">
<element name="Currencies">

<s:restriction base="s:string">
<s:enumeration value="USD"/>
<s:enumeration value="AED"/>
<s:enumeration value="AFA"/>

...
<element name="Date" type="s:string"/>
<element name="Value" type="s:double"/>
<element name="Text" type="s:string"/>
<element name="Source" type="s:string"/>
<element name="Description"

type="tns:RateDescription">
<element name="Type" type="tns:RateTypes">

<element name="RateTypes">
<s:restriction base="s:string">
<s:enumeration value="FederalFunds"/>
<s:enumeration

value="FederalFundsTargetRate"/>
<s:enumeration value="Libor1Month"/>
<s:enumeration value="Libor2Month"/>

...
<element name="Description" type="s:string"/>
<element name="Name" type="s:string"/>
<element name="Maturity" type="s:string"/>
<element name="MaturityUnit"

type="tns:MaturityUnitTypes">
<element name="MaturityUnitTypes">

<s:restriction base="s:string">
<s:enumeration value="Week"/>
<s:enumeration value="Month"/>
<s:enumeration value="Year"/>
<s:enumeration value="Day"/>

...
<element name="MaturityCount" type="s:int"/>
<element name="SeasonallyAdjusted"

type="s:boolean"/>
<element name="Availability" type="s:string"/>
<element name="Source" type="s:string"/>
<element name="Discontinued" type="s:boolean"/>
<element name="Service" type="s:string"/>
<element name="Suffix" type="s:string"/>
<element name="Factor" type="s:int"/>
<element name="Precision" type="s:int"/>

...

Fig. 3. An example of a web service that is particularly well suited to
contextualization. The basic operation holds almost no information about the
type of data it is designed to handle. After contextualizing it, the operation
contains a full set of currency data, similar rate types, and other information
about how it can be configured.



service repository. We found that the poor locality of WSDL
operation descriptions made it difficult to extract a set of
potential clones for comparison. Clone detectors assume that
related blocks of code are grouped together in a continuous
sequence of lines; however, this is not true for WSDL where
<operation> elements will contain references to elements in
other parts of the description.

To solve this problem, we developed a method to give
context to these bare operations by injecting the referenced
elements into the operation itself. We call these contextualized
operations Web Service Cells, or WSCells, because they are
like the cells that make up a web service. To do this, we used
a source transformation language called TXL [4]. The TXL
program takes a single WSDL document, extracts the base op-
eration (the <operation> element), and inserts the referenced
elements into the element that references it. So for an <input>
inside the operation, the corresponding <message> is found
and inserted into it; for each <part> inside the <message>,
the corresponding <element> is found and inserted; and
so on, until there are no more elements left. For example,
consider the WSCell, shown in Figure 1, for a “ReserveRoom”
operation of a simple hotel reservation service. This operation
takes a “Payment” object and a “Room” object as input and
sends an acknowledgement or a fault in return. The WSCell
includes all referenced elements from each section of the
WSDL description inserted into the elements that reference
them.

Our research demonstrated that WSCells showed a clear
improvement in the identification of similar operations when
using clone detection. It convinced us that the contextualiza-
tion of WSDL operation descriptions can make it easier to find
related operations using existing tools. With that in mind, we
take a similar approach and apply it to topic models to show
that conceptual relationships can be identified in a similar way.

B. Goals

We performed a comparison of the bare <operation> el-
ements and the contextualized operations (WSCells) to see
how well LDA was able to model meaningful relationships
between them. In each case, we generated a model of the data,
and for each WSDL operation, used the Hellinger similarity
metric described in Section III-B to identify the other most
similar operations. We then examined the list of the most
similar operations for each individual web service to see if
contextualizing provided a better set of related web services.
We evaluated several topic counts empirically to determine an
appropriate value. For this data set, we used a hard value of
100 topics.

Our experimental data is a set of WSDL service description
files with over 500 service descriptions containing over 7,500
operations from a wide variety of domains, obtained through
a web services search engine by Seekda [1]. Our goal is to
show that contextualizing web service operations provides a
clear improvement in the ability of a topic model to identify
related web services. We will use a global analysis to visualize
overall structural improvements and large-scale sets of related

Fig. 4. A visual representation of how Bluevis maps functions to positions
on either side of the screen. Strong conceptual relationships are marked by
a strong line. For comparison, Figure 5 shows two examples of the Bluevis
display with real web service operations. It is also important to note that any
self-references are removed, so the display is not dominated by horizontal
lines.

features, and a local analysis to directly observe how actual
recommendations can be improved for individual web service
operations.

V. ANALYSIS

A. Global Structure

The global view is based on a visualization tool we have
developed called Bluevis. Bluevis explores how the overall file
structure of the system relates to its conceptual distribution.
Figure 4 provides a simple abstraction of the visualization to
show how related web services are linked together. If a line
extends from one side of the window to the other, it represents
a conceptual relationship (above a certain threshold) between
those two web services. Larger blocks of related web services
form brighter lines, and random pairings appear as dark and
almost invisible. In this way, the global conceptual structure
of the system can be seen. The list has operations from the
same service in a similar area, but is otherwise unordered.

We will use Figure 5 to demonstrate the visualization. Each
image represents a single model generated from the web
service data. On the left, the WSDL operations are used as
input to the model. The only preprocessing step that we took in
this example was to split apart the camel-case and underscore-
separated compound tokens. Without this step, there would be
almost no meaningful shared tokens between operations. On
the right, the WSCells are used as input to the model, and any
compound tokens are also split apart in the same way.

At first glance, the raw WSDL operations on the left provide
a much more visually chaotic semantic structure than the
WSCells on the right. On closer inspection, this is indeed true.
Many of the similar operations identified by using the simple
WSDL operations as input are meaningless, and show up due
to shared tokens like get or SOAP. It appears that some clear
structure is discovered by the model in both cases. Horizontal
lines indicate operations that are likely from the same service
or service provider, and diagonal lines indicate potentially
similar operations from other sources. It is important to note
that the visualization is mirrored horizontally, and any diagonal



WSDL Operations WSCells (contextualized WSDL operations)

Fig. 5. Two screenshots of Bluevis’s interface. The left and right sides of each screenshot correspond to an identically ordered list of the web service operations,
and a connection made between the sides represents a conceptual similarity between two different operations above a certain user-defined threshold. In this
example, we show the top 25,000 pairs as determined by the similarity metric described in Section III-B. On the left, the basic WSDL operations have been
used to generate a model. On the right, WSCells are used. The bare operations on the left show some simple structure, but otherwise show very sparse
relationships between relatively unrelated data. The WSCells on the right are able to demonstrably capture larger groups of related web services.

line will show up as an X in the image (any connection
between a and b will also result in a connection from b to a).
Bright white lines appear where large collections of related
web services overlap, which can indicate either strong local
relationships in a single provider, or a strong indication that a
set of web services are cloned by another provider.

The images on their own are not enough to suggest that the
appearance of structure is a definitive proof that using con-
textualized operations allows topic models to identify related
web services. To really understand what type of information is
being identified, we performed an analysis of the large global
features uncovered by this visualization.

We will first examine the operations diagram on the left
in detail. Most of the structure is formed by small blue
lines that connect across web systems. Due to the splitting
of compound tokens, general terms (this may include terms
like load, application, order, and log) are indications for

LDA to treat those operations as related. The majority of
these solitary connections are between unrelated operations
that happen to share a few tokens in either their name or
in the input or output messages. An example can be seen in
Figure 2. The two operations in question deal with completely
different domains, and are only related due to the shared
use of the SOAP interface. Many of the other tokens are
common to all operations (wsdl, operation, message, and do
not provide any value for the model. This motivates our use
of contextualization; with additional context in the form of
tokens, a topic model is able to identify more meaningful
relationships.

In the center of the left visualization (Figure 5) is a large
X that shows a large block of related operations found in
two separate sections of the list. Although these are not strict
clones of each other, they are related by subject area, they are
offered by the same web service (although through a separate



interface), and that they all include the “parameterOrder”
element to provide additional context. The parameter list has
a greater influence on the results of the model due to the
introduction of many new tokens. Many elements of a WSDL
operation are optional, and without contextualization, these
rare instances stand out greatly amidst other bare operations.

At least two more groups of related web services are
found below the large X previously discussed, and the one
immediately below stands out as being particularly important
in the model. The smaller but brighter X immediately below
is a collection of web services from the same provider; the
upper block is entirely related to orders, and the bottom block
is entirely related to users. The crossover between the blocks is
due to the inclusion of fault tags in the operations. Relatively
few of the operations include this information, so like the
parameter list in the previous example, these tokens are a
strong indication of similarity.

While it is true that the inclusion of parameter lists and
fault tags can be an indication of similarity, these data are
optional, and not commonly used in the real examples we
examined. The naive approach of using basic operations with
topic models gives some context about the web services, but
in general, the results are either trivial duplication of common
tokens, or web services that are found through the same
provider. However, the goal of web service discovery across
systems using topic models is made more achievable through
contextualization.

The visualization on the right side of the figure, using
contextualized operations as input to LDA, shows a significant
reduction in the number of sparse random connections. When
we investigate these closer, it appears that the majority of
the information shown by the visualization contains a rele-
vant semantic structure. Several large fan-out points appear,
indicating web services that have similar operations offered
by other providers. Large horizontal blocks indicate clusters
of related operations from the same web service. To better
understand what the hot points in the visualization actually
indicate, we take a closer look.

One large set of related operations connected by diagonal
lines can be seen starting near the top, running down to
the bottom, and finally joining just above the center point
of the image. These services were detected by the previous
model, and a close examination of the left image will show
some faint lines running between those areas. However, they
do not stand out amidst the other functions that appear to
be related, and may be easily missed. When we examined
these, it turned out that they were three related collections
of operations to retrieve holiday dates. Each collection was
for a different geographical region, and included operations
like GetHalloween, GetBoxingDay, and GetGuyFawkesNight.
Even with these terms being duplicated across the three
collections, the naive approach to using raw WSDL operations
did not uncover this association.

Another large section of related operations can be seen
in the large X in the bottom half of the visualization. The
majority of these are found in a cluster of operations that

Fig. 6. We used a visualization tool designed to show how topic models
actually relate individual web services by conceptual similarity. The upper-
most part of the display gives information about the currently selected web
service, including the WSDL file where it is found. Immediately below that
is a heatmap corresponding to the list of web services found vertically along
each side of Bluevis, with blue blocks indicating the presence of related web
services. Next is an optional description of the code fragment that the mouse
is hovering over in the heatmap, if desired, to examine related blocks that
emerge in the heatmap. Below that is a list of the top related web services.

provide bank reference rates for lending. They have names
like GetEURIBOR, GetBRAZIBOR, and GetMOSIBID, and
intuitively share similarities. However, the operations are very
terse, and the input and output messages simply append
SoapIn and SoapOut, as in the earlier examples from Figure
2. After contextualization, a portion of the new WSCell can
be seen in Figure 3. A great deal of additional information
about the applicable currencies, related rate types, and other
financial information is explicitly added to the description.
These keywords are likely to be shared with other financial
web services, and a topic model like LDA will be able to use
these tokens to detect similarities between them.

Although the majority of related operations in this block
are calls to get specific related rates (GetSIBOR, GetLIBOR,
and so on), there are additional relationships detected from
other areas of the collection. This indicates that LDA is
able to identify web services from other providers when the
topic model is able to draw on the explicit data added by
contextualization; LDA is not able to make these connections
with the raw WSDL operations.

B. Local Similarity

To really demonstrate the value of contextualization for
use with topic models, we examine the similarity between
individual operations using the similarity metric discussed in
Section III-B. By using the Hellinger similarity as defined, the



entire set of operations can be ranked and ordered from most
relevant to least relevant. This allows us to compare both the
standard WSDL operations and the WSCells to evaluate which
approach garners more meaningful results.

In Figure 6, a screenshot of our visualization tool POCO
(Pairwise Observation of Concepts) is shown. It uses a topic
model to identify the pairwise relationships between individual
operations, and provides a heatmap overview along with a list
of the other most similar operations. In this study, we focused
on the list of the top related operations, with the assumption
that a user who was interested in identifying related operations
would want to see this data.

If we look even more closely at Figure 6, the top results for
a single operation (GetFathersDay, from the USHolidayDates
service) can be directly observed. This particular method
is clustered in among the holiday web services previously
discussed in Section V-A. Even the clusters along the sides at
the endpoints of the X can be seen in this view, where several
dense areas of related operations that deal with holidays in
different services are identified by the model. These operations
all share a related naming convention, which would intuitively
lead to the assumption that the bare WSDL operations would
also be able to identify these related methods. In fact, when
examining the top results for the same operation without
contextualization, the list includes GetLogo and GetEURI-
BOR, two web services with no meaningful relationship to
GetFathersDay. With a small number of meaningful tokens, the
non-contextualized results simply do not have enough context
to allow LDA to form meaningful conceptual structure, and
the results can not be used for web service discovery in the
way that WSCells can.

Figure 7 provides a side-by-side examination of the results
of contextualization for a single operation. In this example,
the GetCEO operation from the xinsider service was used.
The data on the left are the most related operations for non-
contextualized WSDL operations, and the data on the right are
the most related operations for contextualized WSCells.

To show that this type of improvement is common, we
expand our view to look at the most similar operation for other
examples. In Figure 7, we show how the set of most similar
operations is also greatly improved. This is an expansion of
the kind of data we see from Figure 8. In some cases, such as
the GetReservations operation, the improvement is clear. With
non-contextualized operations, LDA suggests that the most
similar operation is GetSOFIBOR. With WSCells, LDA in-
stead suggests GetRoomAvailabilityForDay. Some other cases
are not as clear, as with the GetIssueData operation. The non-
contextualized suggestion is word cloud, and the WSCells
suggestion is GetFlightData. In the majority of cases, when
compared side-by-side like this, the contextualized operations
tend to be more useful in a human-oriented context.

The data from Figure 7 helps to demonstrate that this ap-
proach can be used for identifying specific semantically related
operations. We address a concern with similar operations being
found in the same service in the contextualized example as a
threat to validity, and note that filtering out operations from

(a) Similar WSDL Operations
Operation Name Service Name
getDVDShops seawiseservice (1340)

Book K4TAirSell (240)
GetWebsites KYWOrgData (584)

GetWeatherReport usweather (55)
GetCEO xinsider (1603)
GetEaster USHolidayDates (934)
GetSports livescoresservice (7293)

GetTURKIBOR xinterbanks (5993)
GetBookTitles BibleWebService (192)

GetData DataParam (296)

(b) Similar WSCells
Operation Name Service Name

GetIssuerOwnerships xinsider (1700)
GetDirectors xinsider (1593)
GetDirectors xinsider (1685)

GetInsiderTransactions xtibco (2474)
GetInsiders xtibco (2387)

GetOfficerCompensations xcompensation (509)
GetIssuerTransactions xinsider (1643)
GetIssuerOwnerships xinsider (1608)
GetIssuerOwnerships xinsider (1710)

GetRoster xinsider (1680)

Fig. 7. An examination of the results of contextualization for a single opera-
tion. In this example, the GetCEO operation from the xinsider web service was
used. The upper table (a) shows the most related operations as discovered by
the topic model with no contextualization. Only one of the operations seems
plausible at first glance (the alternate GetCEO operation in xinsider, starting at
line 1603). The lower table (b) shows the most related operations for GetCEO
as discovered by the topic model with contextualization. These results seem
much more useful, and still manage to span several related web services.

the same service still results in markedly better results than
bare WSDL operations alone.

VI. SUMMARY AND FUTURE WORK

By contextualizing WSDL operations and generating a set
of WSCells to use as input for an LDA model, we have
demonstrated that the results after contextualizing provide a
significant improvement in web service discovery using topic
models. The sparsity of tokens in high-level languages such
as WSDL do not provide enough context for a topic model to
make meaningful conclusions.

With a global view of the web services, we were able
to examine large-scale structure identified by LDA for both
models. In the case of the bare WSDL operations, we were
able to see a great deal of random scattering with little value,
and a large block of related web services of questionable
value. With WSCells, we see a greater amount of cross-
system relationships, and far less random connections between
uninteresting operations. These results can be observed glob-
ally using visualizations, and examined in detail by using a
pairwise similarity metric.



Operation Most Similar WSCell Most Similar WSDL Operation
ListFinancials GetFinancialServicesItemList LanguagesList

xfinancials (2508) xfinancials (2548) Articles (432)
ExportShipsAndCategories ExportItineraryAndSteps Search

Export (319) Export (324) xscreener (1055)
GetIssueData GetFlightData word cloud

xemerging (718) FastTrack (438) taporwareServices (434)
GetWeatherReport GetWeather GetIndices

usweather (41) globalweather (76) xquotes (1813)
GetAIDIBOR GetTRLIBOR GetCarriers

xinterbanks (5455) xinterbanks (5425) blackbox (9303)
searchByIdentifier searchByNameAndAddress GetLastSecurityHeadlines

icontest (1240) icontest (1225) xreleases (594)
ToolsAndHardwareBox KitchenAndHousewareBox ListRenditions

WSAmazonBox (734) WSAmazonBox (699) DocMan (1350)
GetReservations GetRoomAvailabilityForDay GetSOFIBOR

holidayguide (467) holidayguide (455) xinterbanks (5597)
GetOtherProductInfo NextOtherProductPortion GetParkingInfo

blackbox (9207) blackbox(9203) blackbox (9251)
GetAllSplitsByExchange GetAllCashDividendsByExchange GetTeamLoyalties2
xglobalhistorical (1836) xglobalhistorial (1851) livescoresservice (6749)

Fig. 8. A side-by-side comparison of the most relevant operation as determined by LDA for the bare WSDL operations and the contextualized operations.
The left column gives the operation, the service (WSDL file), and the starting line number, given to remove ambiguity if two web services share the same
name. In each of these examples, we believe WSCells are able to provide results that are more useful. These ten examples are typical of the majority of
operations affected by contextualizing. For an example of the improvement for a single operation, see Figure 7.

A local view of the improvements helps to explicitly demon-
strate how individual operations can be related to one another,
and specifically how the relationships become more useful
after contextualization. With the added information about the
services, a topic model like LDA is able to use the new tokens
to derive meaningful correlations between operations.

In future work, we would like to examine how well the
results generated from topic models actually correspond to
human-oriented opinion. For example, we would like to see if
the best results for a given operation, such as the GetCEO
method used in Figure 7, are actually similar to the best
matches that a human would hope to find. Our previous
experience with software clones and topic models has given
us some experience in evaluating the performance of these
techniques [6]. With an evaluation from users on the quality
of the results, we would be able to quantify the improvement
over models generated from bare WSDL operations. We would
also like to use this approach with other XML-based modelling
languages to see if the same benefits can be obtained.

VII. THREATS TO VALIDITY

One significant concern with the Bluevis visualization is the
fact that the web services are not ordered in any significantly
meaningful way. In our data set, operations offered by the same
service are grouped together locally. This often leads to visual
structure in the diagram due to the strong relationship between
all of the operations within the same service due to shared
data types. The X shape seen by clusters of related operations
in different areas of the list does not immediately indicate

why the group on the top or the group on the bottom are in
that specific location. Rather than focus on the order of the
documents, we have attempted to look at two specific features
brought out in this view. First, the reduction in “noise” across
the entire set of relationships when using a contextualized
data set appears to show fewer meaningless relationships, such
as two operations that both get something using SOAP, as
seen in Figure 2. Second, the large blocks of structure can
be examined in-place in the visualization. This allows us to
actually identify the most significant features discovered by
LDA, and to directly evaluate how accurate the relationships
are from a human-oriented standpoint.

In many cases, contextualizing WSDL operations has re-
sulted in similarity lists that are localized to the same web
service. For example, in Figure 7, it can be argued that the
results are not useful because the majority of operations come
from the same xinsider service. We can mitigate this issue
by noting that these data can easily be filtered out, and that
the remaining results across other web services are still very
relevant. From our observations, web service providers are
likely to use common terms across their own web services.
The important descriptive terms that allow a topic model to
identify context are still shared across providers.

WSDL is only one example of a language for describing
web services, and it may be argued that this technique will not
apply to a general case. A strong benefit of this approach is that
it applies very well to XML-based modelling languages, where
the attributes tend to be scattered over the entire description
instead of localized to the web service operations. We believe



that contextualizing web service descriptions will allow topic
models to identify context in a wide range of modelling
languages, and see no indication that this approach is restricted
to WSDL.

VIII. RELATED WORK

With the growth of the web, along with the corresponding
growth of web services, a concerted effort has been made to
provide automated web service discovery available. Paolucci
et al. [15] discussed the claim that a semantic representation of
web services would enable matching for related web service
capabilities. In particular, they identified WSDL’s lack of
semantic information for this specific problem, and proposed
DAML-S, a language for service description based on the
DARPA Agent Markup Language (DAML). The authors sug-
gested that an XML-based standard for web service description
lacked sufficient semantic information, and that “two identical
XML descriptions may mean very different things depending
on the context of their use.” This observation remains true
today, and was a motivating factor in our decision to use
contextualization. The goals of the semantic web continued to
evolve towards rich semantic specifications for web services
and operations [9], [12].

The first approach to using information retrieval techniques
for web service discovery was in 2005, when Platzer and
Dustdar used WSDL files in conjunction with the vector space
model [16]. The authors used the vector space model to
tokenize each web service description and to compare them
against each other using the cosine similarity, a common
similarity metric. Although WSDL files can be sparse, they
discovered that a even a basic analysis of the keywords found
in WSDL sources can be enough to build a usable search
engine for web service discovery based on their approach.
Paliwal et al. [14] extended this idea with a novel approach to
web service discovery by applying Latent Semantic Indexing
(LSI) to information derived from WSDL service descriptions.
In their work, they also faced the issue of limited information
in the service descriptions, and addressed the problem by
linking results with a domain ontology. Our shared solution
goal was the addition of implicit semantic information, and
through the use of an ontology, the implicit data becomes
explicit, allowing models like LSI and LDA to find good
relationships.

Ma et al. [11] also developed an approach for web services
discovery and an initial divide and conquer strategy followed
by a singular value decomposition. To address the ever-present
issue of a lack of context in web service description files,
the authors clustered sets of operations together to discover a
relevant group of services. Once they found a clustered group
that was most similar to their desired query, they then applied
a matrix decomposition that is also used with LSI to identify
the most similar web service. With their approach, the authors
aim to eliminate as much of the irrelevant services from the
problem set to give their algorithm a better chance of finding
an appropriate solution. The authors also experimented with
Probabilistic Latent Semantic Indexing [10], a technique that

LDA is based on, but they do not provide a great deal of data
to evaluate.

In a recent survey of survey discovery approaches, Rambold
et al. performed a comparison of 42 different approaches. Of
the techniques evaluated, only a handful dealt with related
approaches like the vector space model or LSI. In Kokash et
al. [7], a combination of lexical and structural matching tech-
niques are used to evaluate the similarity between concepts.
Lee et al. [8] also build a vector space model representation
of the web services using a clever system for encoding service
information into elements of an ordered tree, and execute
similarity requests through SQL queries to a standard database.

IX. CONCLUSIONS

Topic models are an automated way for effectively iden-
tifying conceptually related pieces of data. Although web
service languages are not natively good input sources for these
techniques due to their sparse descriptions, contextualizing
the operations can give a topic model an ideal amount of
information to derive these conceptual relationships.

Contextualizing has already proven to be useful with clones,
and we have demonstrated how it can be used to effectively
analyse a set of web systems and to discover related web
services.
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