
Where’s the Schema?
A Taxonomy of Patterns for Software Exchange

Dean Jin James R. Cordy Thomas R. Dean

Queen’s University, Kingston, Canada
�jin,cordy�@cs.queensu.ca, thomas.dean@ece.queensu.ca

Abstract

Program comprehension tools extract, organize and an-
alyze information about the design and implementation of
software systems. Before tools can exchange information,
they must share, at some level, the organization for the data
exchanged. That is, they must share a schema. In this paper
we examine the various ways in which schemas are repre-
sented and used in tools. Schema use is classified according
to how and where a schema is defined, leading to the identi-
fication of four patterns of exchange. We examine these ex-
change patterns and discuss how each has been used in ex-
isting tool integration technologies. An evaluation of each
exchange pattern against the requirements for a standard
exchange format reveal the pattern of schema use that is
most suitable for integrating tools.

1. Introduction

Program comprehension tools extract, organize and an-
alyze information about the design and implementation of
existing software systems. Efforts towards integrating pro-
gram comprehension tools have been severely hindered by
the lack of a consistent model for the structural makeup of
software representations. The development of a Standard
Exchange Format (SEF) for software is seen as the desired
solution to this problem [31, 24, 12].

Schemas that accommodate the representational needs of
various program comprehension tools are an essential part
of an SEF. In this paper, we examine the various ways in
which schemas are represented and used in tools, and clas-
sify them according to two distinguishing characteristics.
Based on the use of schemas, four different exchange pat-
terns are distinguishable. We examine each of these ex-
change patterns and discuss how each has been used in
existing program comprehension tool integration technolo-
gies. We also examine how each of the exchange patterns
satisfy the SEF requirements suggested by St-Denis et al.
[32]. This leads us to propose which of the exchange pat-

terns is best suited for use in software exchange formats.
As always, any evaluation of the properties of real software
systems is somewhat subjective.

2. Integration Technologies

In this paper we restrict our discussion of integration
technologies to those that have been put to use for repre-
senting software in the context of program comprehension.
In particular we refer to the following:

Ada Semantic Interface Specification (ASIS)[1] An ISO
ratified [17] open source API written in Ada95 for ac-
cessing information from the Ada95 Compilation En-
vironment.

Annotated Terms (ATerms)[36, 35] An exchange format
and an API that represents data produced by parsers,
structural editors, compilers and other components in
software reengineering tools.

InterMediate Language (IML)[7] A portable intermediate
representation developed by Project Bauhaus[2].

Resource Graph (RG)[7] An exchange format for medium
to high abstractions of source code developed by
Project Bauhaus.

Common Object-based Re-engineering Unified Model
(CORUM) [38] An API-based environment for inte-
grating software reengineering tools that work at the
source code level.

CORUM II [19] A proposal for enhancing CORUMto pro-
vide advanced functionality for analysis at the archi-
tectural level of abstraction.

Datrix-TA [21] A format for exchanging Datrix-formatted
abstract semantic graphs (ASGs) [20] among the dif-
ferent tools that make up the Datrix system.

FAMOOS Information Exchange Model (FAMIX)[33, 8]
A portable intermediate representation for object-
oriented source code.

Graph eXchange format (GraX)[9, 10] A format for ex-
changing software representations as TGraphs[11].

Graph Exchange Language (GXL)[15, 16] A flexible for-
mat for exchanging software representations at all lev-
els of abstraction.

PROgramming with Graph Rewriting Systems (PRO-
GRES)[29, 30] The format used in the PROGRESen-
vironment, an integrated set of freeware tools that help
developers create, analyze, compile and debug specifi-
cations for graph rewriting systems.

Rigi Standard Format (RSF)A format for exchanging
high-level representations of software systems used by
the Rigi [26] tool.

Tuple-Attribute (TA)[13] A flexible tuple-based language
for expressing and exchanging software representa-
tions.

TA++ [22] A modified version of TA used for represent-
ing and manipulating software representations among
components that make up the TkSee[34] tool.

These integration technologies can be distinguished using
characteristics such as [18]:

� The data structure used to represent software.

� The level of abstraction supported.

� The encoding method used.

� The mechanism used to transfer representations among
program comprehension tools.

� The ability to change the structure and interpretation
of data represented.

All of these integration technologies share a common
purpose: to enable the portability of structured information
among different systems. Within the program comprehen-
sion domain, representations of software are the structured
information whose exchange is enabled. Almost all repre-
sentations are constructed using some variant of an entity-
relationship (E-R)model [5]. E-R models provide a clean
separation between the information that defines the allow-
able characteristics of a model and the data that is repre-
sented in the model. The former is known as schemaand
the latter as instance.

In terms of integration, this schema-instance severance
provides a significant advantage. Negotiation of exchange
among tools requires communal knowledge of the structure

of information to be passed. For a given software model,
this information is readily available in the schema. So the
schema plays a pivotal role in the exchange process.

3. Schema Classification

Ultimately, the way a schema is used dictates how a tool
will negotiate exchange with other tools. We classify the
use of schemas in two dimensions: schema definitionand
schema locality.

3.1. Schema Definition

Schema definition characterizes how the schema is de-
fined. Within this dimension two classes of schema defini-
tion are identified:

Implicit. The structure of the representation is not explic-
itly documented, but rather is implied by the data itself
or its use.

Explicit. The structure of the representation is explicitly
documented, either through a specification or some
other means.

3.2. Schema Locality

Schema locality distinguishes wherethe schema is de-
fined. Within this dimension two classes of schema locality
are identified:

Internal. The schema is an integral part of the tool. As a
consequence, the schema is not required to participcate
in the exchange.

External. The schema definition is external to the tool. Be-
cause of this detachment, the schema is a participant in
the exchange that occurs between tools.

The distinction between internal and external schema lo-
cality is particularly important because external schemas
represent a contract between tools independent of their own
use. External schemas also provide the opportunity for tools
to automatically adapt to a given schema.

4. Exchange Patterns

According to the schema classifications outlined above,
four different types of exchange can be negotiated among
program comprehension tools. We refer to these types of
exchange as exchange patterns. We will now character-
ize the exchange patterns and provide examples for each.
Figures 1 to 4 show the relationship between the tool, the
schema and the representation of the software. Each figure
consists of the following components:

� A tool T.

� A schema S.

� I and I� respectively representing the state of a soft-
ware representation instance before and after it is pro-
cessed by tool T.

In Figure 1 an exchange that uses an implicit-internal
schema is shown. The schema is embedded in the code, so
it is found in many locations within the tool. Tools that are
built to make use of an API to exchange software represen-
tations fall into this category. APIs essentially have a fixed
schema, so the tools that use them are constructed accord-
ing to an implicit yet predetermined concept of the software
representation being exchanged.

Exchange that uses an explicit-internalschema is shown
in Figure 2. Although the schema remains an integral part
of the tool, it is provided as a specification so the schema
is shown in a single location. Tools constructed within
the PROGRESenvironment make use of schemas in this
fashion. The tool developer first provides a schema in the
form of a specification that outlines the graph-based struc-
ture of data to be represented and the operations that can
be performed on them. Transactions that work with graph
instances provide the functionality for the tool being con-
structed.

In Figures 3 (a) and (b) we see two exchange patterns
that use an explicit-externalschema. The tool shown in Fig-
ure 3 (a) receives the schema first followed by the instance
data. The integration technologies GraX and GXL work
in this fashion. Schema and instance data are stored sep-
arately and all data instances provide a link to the file where
the schema is stored. In Figure 3 (b) the schema and the
instance data are received simultaneously. The integration
technology TA works this way. The schema information
stored in the scheme tuple and scheme attribute
sections are exchanged along with instance data stored in
the fact tuple and fact attribute sections of the
same file.

Exchange that uses an implicit-externalschema is shown
in Figure 4. In this case, the schema does not exist (so it is
shown in a box with a dashed border) yet it does dictate
the structural semantics of the information exchanged. The
integration technology RSFis an example of an exchange
format that works this way. The use of a tuple notation is a
syntactic requirement. The implicit schema for the informa-
tion exchanged is an unconstrained E-R model. Tools such
as Rigi [26] and Holt’s Grok [14] accept E-R models in RSF.
These tools have been pre-configured to handle constraint-
free E-R instance data, so there is no need for a schema. In
essence, they discover the schema from the instance data.

The exchange patterns used for each of the program
comprehension tool integration technologies are shown in
Table 1.

Figure 1. Exchange Using An Implicit-Internal
Schema

Figure 2. Exchange Using An Explicit-Internal
Schema

Figure 3. (a) Exchange Using An Explicit-
External Schema with Consecutive Receipt of
Schema and Instance

Figure 3. (b) Exchange Using An Explicit-
External Schema with Simultaneous Receipt
of Schema and Instance

Figure 4. Exchange Using An Implicit-
External Schema

Schema Definition
Implicit Explicit

ASIS, CORUM, ATerms,
Schema

Internal
CORUM II, IML PROGRES

Locality Datrix-TA1, FAMIX2, GraX2
External RSF

GXL2, RG1, TA1, TA++1

Table 1. Exchange Pattern Used By Various Program Comprehension Tool Integration Technologies

5. Advantages and Disadvantages

As we mentioned, schema definition is a characterization
of how the schema is defined, while schema locality relates
to where the schema definition takes place. We now con-
sider the advantages and disadvantages of each of schema
classification in relation to its use in exchange.

5.1. Implicit Schema Definitions

The main advantage of an implicit schema definition is
that it provides good performance. There is no need to carry
out any additional processing or manage specifications for
the representation being used. When the implicit definition
is located internally, the representation is close at hand, be-
ing built into the code for the tool. Even when the implicit
definition is external, the tool knows the structure of the
information being exchanged so the opportunity to handle
it appropriately is provided. This typically translates into
the ability to processes large quantities of information in a
fast and efficient manner. This is especially beneficial for
program comprehension tools that work with source whose
magnitude is measured in millions of lines of code.

A number of disadvantages offset the performance ad-
vantages of an implicit schema definition. Because the def-
inition is static by nature, the representation is not extensi-
ble. This is a major problem for tools that are built around
a particular information model. In such a situation, mak-
ing changes to the representation involves a wholesale re-
vision of code. Documentation is also a problem when the
schema definition is implicit. A separate document outlin-
ing the structure and semantics of the representation is a ne-
cessity. Maintaining this documentation is time consuming
and keeping it in sync with tool or exchange format changes
is especially challenging.

A third problem with implicit schema definitions relates
to the manner in which tools typically accept input. It is
often useful to verify the integrity of information being ex-
changed. This usually involves a check to ensure that the
input is well-formed. When the schema definition is im-
plicit, such a test is difficult to implement and maintain. The

1Employs simultaneous receipt of schema and instance
2Employs consecutive receipt of schema and instance(s)

tool functions that handle software representations are of-
ten deeply embedded and widely distributed throughout the
code for the tool. A test that effectively checks incoming
information must be based on all uses of the representation
by the tool. In addition, the check must stay in sync with
any modifications that are made over time to the exchange
format or the internal representation within the tool. The ef-
fort involved in creating such a check in essence duplicates
the efforts originally involved in handling the representation
within the tool in the first place. As a consequence, it is un-
likely that a tool that negotiates exchange using an implicit
schema definition will include a check for well-formed in-
put.

5.2. Explicit Schema Definitions

Exchange involving an explicit schema definition offers
many benefits. The tool makes use of a specification or
some other explicit means that identifies the structure and
semantics of the information input. A clear separation exists
between schema and instance data, no matter if the schema
definition is internal or external. Because the definition is
dynamic by nature, the representation is highly extensible.
Modification of the representation is easily accomplished
through changes made to the schema specification. All the
information relating to the representation is located in a sin-
gle location. This makes it easier for humans to get an
overall understanding of the structure and semantics sup-
ported. The representation is always well documented and
up to date. The explicit definition for the schema is itself
the documentation.

Checking for well formed input is a straightforward pro-
cess when the schema definition is explicit. The schema
specification holds all the requirements that must be satis-
fied for the information to pass the checker. Implementing
the checker is simple because the schema specification is
complete and close at hand. The checker does not need
to be maintained because the schema specification always
outlines the current representation in use. For these rea-
sons, it is likely that a tool that negotiates exchange using
an explicit schema definition will include a check for well-
formed input.

The main drawback of an explicit schema definition is

Advantages Disadvantages
� Not extensible

� High performance no matter � Hard to documentImplicit
how large the input � Difficult to implement check

for well formed inputSchema
� Highly ExtensibleDefinition
� Easily Understood

Explicit � Well documented
� Low Performance

� Check for well formed input
� Tool code is more complicated

is easier to implement
� Difficulties managing changes

Schema
Internal � High performance

among two or more tools
Locality � Easier to manage changes � Keeping the code consistentExternal

among two or more tools with the schema is difficult

Table 2. Advantages and Disadvantages of Schema Definition and Locality on Exchange

that it requires interpretation. The schema must be pro-
cessed before the tool can accept instance data. This inter-
mediate step ultimately affects the performance of the tool.
More importantly, there is a requirement for the tool to ori-
ent itself towards the representation provided in the schema.
The tool must be flexible to accommodate this kind of func-
tionality. In a best-case scenario, the tool would be able to
accommodate any representation. In reality, it is likely that
the representational capabilities of many tools will be lim-
ited. Building flexibility into a tool may also add significant
complexity to the development effort.

5.3. Internal Schemas

The main advantage of an internal schema is accessibil-
ity. The tool does not need to venture out to an external
source to determine the structure and semantics of the in-
formation model. This is an obvious advantage in terms of
performance.

The difficulty with an internal schema definition be-
comes apparent when there is a need to change the infor-
mation model. Maintaining conformity among two or more
tools is difficult to achieve. This is especially challenging
when the schema definition is implicit in all the affected
tools. Changes must be implemented exhaustively through-
out the code for each of the tools affected. Clearly an in-
ternal schema tends to make all tools participating in the
exchange conform to a rigid representational structure and
semantics.

5.4. External Schemas

With an external schema definition, managing confor-
mity among two or more tools participating in the exchange
is easily accomplished. A single schema definition is all

that is necessary to ensure that each tool is using the cor-
rect structure and semantics for the representation being
exchanged. Complete representational conformity among
each tool participating in the exchange is assured as long as
each tool makes use of the same schema definition. An ex-
ternal schema definition eliminates the need for a complete
overhaul of the code for each tool when a change is made to
the representation.

Nevertheless, the rules that each tool uses to process
and analyze exchanged information can come out of sync
with the schema because its definition is separated from the
tool. Maintaining consistency between the code for a tool
and the schema is challenging. The problem is exacerbated
by the fact that external schemas are easily changed. The
more often a schema is changed, the more likely that
a loss of consistency will occur. The code in essence
defines what the tool does with the information once it is
successfully exchanged. But how this is accomplished is
completely dependent on the structure and semantics of the
representation defined externally by the schema.

Table 2 summarizes the relative advantages and disad-
vantages of each of the schema classifications.

6. Exchange Pattern Satisfaction of SEF Re-
quirements

The requirements for a Standard Exchange Format (SEF)
have been widely considered (for example, see [33, 36, 22,
27]). St-Denis et al. [32] list 13 requirements for an ex-
change format based on their past experiences and various
requirements outlined in [3, 4, 6, 13, 23, 25, 28, 37].

In the following paragraphs we undertake an evaluation
of exchange pattern alternatives with respect to the require-
ments of St-Denis et al. Visual indicators (defined in Ta-

✘ The exchange pattern does not satisfy the require-
ment.

✔ The exchange pattern satisfies the requirement.

✔✔ The exchange pattern satisfies the requirement in a
way that is particularly beneficial.

� The exchange pattern neither satisfies nor does not
satisfy the requirement because it does not relate to
the requirement.

Table 3. Visual Indicators for SEF Require-
ment Satisfaction

ble 3) are used to provide an overall indication of how well
the exchange pattern satisfies the requirement.

6.1. Transparency

Transparencyof an exchange format is achieved when
the use of encoders and decoders does not cause a loss, al-
teration or gain in the information being transferred. [32]

All Exchange Patterns (�) This requirement specifically
deals with information handling procedures at both
ends of the exchange process. None of the exchange
patterns involve the use of encoders or decoders so
transparency is not a related requirement.

6.2. Scalability

An exchange format is scalablewhen it is usable for ex-
changing information of all sizes, including representations
of very large software applications. [32]

Implicit-Internal (✘) Although an implicit schema defi-
nition provides high performance, the fact that the
schema definition is embedded in the code means that
the capacity of the tool is fixed. Making variations to
the code to accommodate different magnitudes of in-
formation is difficult.

Explicit-Internal (✔) Although the explicit schema def-
inition reduces the performance of the tool, it pro-
vides flexibility that makes it easier to adjust the rep-
resentation to address scalability issues. For instance,
one strategy for managing large bodies of information
is to exchange only specific pieces of it rather than
the whole thing. When the schema definition is ex-
plicit, adjusting the amount of information exchanged
is much easier than when the definition is implicit.

Implicit-External (✘) The implicit schema definition pro-
vides high performance but once again the tool is tai-
lored to handle information in a particular way only.
Although the schema might be easy to change be-
cause it is external, the tool may not be able to handle
large volumes of information without significant code
changes.

Explicit-External (✔) The advantages of this exchange
pattern are identical to those for the explicit-internal
exchange pattern, although the performance degrada-
tion may be more significant because the locality of
the schema is external.

6.3. Simplicity

Simplicity is achieved when an exchange format is not
complex or intricate. This makes it efficient, easier to de-
scribe, comprehend, apply and maintain while statistically
reducing the prospects for errors and making it easier to pro-
cess in an automated fashion. [32]

Implicit-Internal (✘) The schema is indeed complex and
intricate, being disseminated throughout the code for
the tool. It is difficult to understand and maintain mak-
ing it prone to erroneous modification.

Explicit-Internal (✔) The non-embedded nature of the
schema specification simplifies the exchange and
makes it much easier to understand and maintain. The
close proximity of the schema to the tool code provides
greater efficiency over the explicit-external exchange
pattern.

Implicit-External (✔✔) The schema does not exist which
simplifies the exchange process and provides an envi-
ronment where the throughput of information can be
maximized.

Explicit-External (✔) The schema specification simplifies
the exchange process, but its separation from the tool
makes it less efficient than the explicit-internal ex-
change pattern.

6.4. Neutrality

Neutrality refers to an exchange format representation
that is independent of any particular tool, so that as many
tools as possible can integrate with it. [32]

Implicit-Internal (✘) There is no neutrality of the repre-
sentation as it is embedded into the code for the tool.

Explicit-Internal (✘) The explicit nature of the schema
definition provides a degree of neutrality. Neverthe-
less, the schema locality is internal to the tool, which

impedes the integration of other tools to a standard rep-
resentation.

Implicit-External (✘) The schema is independent from
the tool, which provides it with some degree of neu-
trality. Nevertheless, the schema is non-existent, so it
is difficult to define a standard for other tools to inte-
grate with it.

Explicit-External (✔✔) Neutrality is maximized. The
schema definition is completely separate from all tools
and is explicitly defined. This makes it easier to inte-
grate other tools to a standard representation.

6.5. Formality

Formal definitionof an exchange format reduces the
chances for misinterpretation and ensures that it is well un-
derstood by all parties. [32]

Implicit-Internal (✘) There is no formal definition of the
representation so it is very difficult to transfer knowl-
edge of it to others. This is especially problematic be-
cause of the embedded nature of the representation.

Explicit-Internal (✔) By default, the explicit schema def-
inition is formal. Because it is internal to the tool,
all concerns relating to the tool implementation are to-
gether in the same place.

Implicit-External (✘) The implicit nature of the represen-
tation means there is no formal definition. Because the
schema locality is external, documentation must be re-
lied upon for information on the representation.

Explicit-External (✔✔) The explicit schema definition is
itself a formal means for expressing the structure of the
data instances. The external schema locality makes it
easier for all tool integrators to understand the repre-
sentation.

6.6. Flexibility

Flexibility is achieved when an exchange format accom-
modates different tools, languages and syntax for data and
schemas. It also accommodates the exchange of incomplete
information. [32]

Implicit-Internal (✘) The exchange pattern offers no flex-
ibility at all. The tool itself must handle any accom-
modation for different tools, languages or data/schema
syntax.

Explicit-Internal (✔) The explicit schema provides flexi-
bility for changing the representation. This is partially
negated by the fact that the schema is defined inter-
nally, which ties it very closely to the tool it is con-
tained in.

Implicit-External (✘) A certain degree of flexibility is of-
fered by the implicit schema definition because it is
external from all tools that participate in the exchange.
Nevertheless, because the schema definition is im-
plicit, it is difficult to offer representational flexibil-
ity. Each tool must conform to the same non-existent
schema definition. This tends to force developers to
keep to a rigid representational standard.

Explicit-External (✔✔) Flexibility is maximized. First
the schema definition is external, so it is not tied to
any one tool. Second, the schema is explicitly defined
so the representation is clear and easily modified.

6.7. Evolvability

An exchange format is evolvablewhen it can be changed
easily to accommodate future needs. [32]

Implicit-Internal (✘) Change is difficult to manage be-
cause the representation is embedded in the code for
each tool.

Explicit-Internal (✘) Although the explicit schema defini-
tion supports evolutionary changes, the internal local-
ity of the schema ties the representation too closely
with the tool. Changes to the representation must be
implemented on a tool-by-tool basis.

Implicit-External (✘) Although the schema definition is
located externally, change is difficult to accommodate
because the schema definition is implicit. Evolution-
ary changes are difficult to implement when all parties
involved must approve it.

Explicit-External (✔✔) Evolvability is maximized. The
external schema definition does not tie the representa-
tion to any one tool. The explicit definition encourages
evolutionary change in a collaborative manner.

6.8. Popularity

Popularityis achieved when the adoption of an exchange
format is widespread so that as many tools as possible can
take advantage of it. [32]

All Exchange Patterns (�) Exchange patterns that have
external schemas may become more popular because
they facilitate the use of well-accepted document ex-
change methods such as XML. Nevertheless, the suc-
cess of a particular integration technology ultimately
rests with those who use it within the program com-
prehension community.

6.9. Completeness

Completenessrelates to the concept that everything
needed to exchange information successfully is included.
The user does not have to look after details relating to the
exchange. [32]

All Exchange Patterns (�) We have differentiated be-
tween schema and instance data in the exchange pro-
cess. Although these two components are required to
carry out exchange (and in this way they typify how the
exchange is managed), they do not represent a com-
plete exchange format.

6.10. Metamodel Identity

This requirement refers to support for the transforma-
tion of instance data while preserving its identity. An inte-
gration technology preserves metamodel identitywhen it is
capable of converting instance data from one schema into
instance data of another. The instance data should remain
the same; it is just represented differently from one schema
to the next. [32]

Implicit-Internal (✘) The implicit nature of the schema
definition makes it very difficult to support transfor-
mation of instance data. The use of the representation
is embedded into the code for the tool. Identifying in-
stance data and transforming it into an equivalent al-
ternate representation is challenging.

Explicit-Internal (✔✔) The schema definition is explicit
which greatly assists in identifying the structure and
semantics of instance data. At the same time, the
schema is internal so it reflects the tool’s view of in-
stance data. Transformation of this schema to an ex-
ternal schema for exchange is all that is necessary.

Implicit-External (✘) Once again, the implicit nature of
the schema definition makes it very difficult to support
transformation of instance data. The external schema
definition is non-existent, which makes it difficult to
identify a transformation to another schema that will
preserve the identity of the instance data.

Explicit-External (✔✔) The explicit schema definition
lays out the representation in a single location exter-
nal to the tool. Schema transformation can be carried
out away from each of the tools participating in the ex-
change.

6.11. Solution Reuse

Solution reuserelates to the use of existing techniques
and methods with the goal of reducing the amount of time
and effort spent in testing and deploying an exchange for-
mat. [32]

Implicit-Internal (✘) The representation is embedded into
the tool code, which makes it very difficult to reuse.

Explicit-Internal (✘) Although explicitly defined, the rep-
resentation remains closely tied to the tool. This tool
centricity makes it difficult to reuse the representation
outside the tool environment.

Implicit-External (✘) The non-existent schema definition
is not easily described which makes it difficult to reuse.

Explicit-External (✔) The representation is defined ex-
plicitly and is not tied to any one tool. This tends to
make it easier to reuse and makes it easier to imple-
ment and test.

6.12. Legibility

The legibility requirement relates to how easily a human
reader can read and understand the format. [32]

Implicit-Internal (✘) The embedded nature of the repre-
sentation makes it difficult to understand, especially
for non-programmers. Well-documented code may
partially offset this problem.

Explicit-Internal (✔) Understanding of the representation
is much easier when it is explicitly specified in a single
location within the tool.

Implicit-External (✘) The non-existent nature of the
schema definition impedes understanding of the repre-
sentation. This combined with the fact that the schema
locality is external means that independent documen-
tation must be relied upon to get information about the
representation.

Explicit-External (✔) An explicit schema definition eases
the legibility of the representation. The external local-
ity of the schema ensures that the representation is tool
independent.

6.13. Integrity

Integrity refers to the use of special mechanisms to en-
sure that information is exchanged without errors. [32]

All Exchange Patterns (�) The integrity of the exchange
ultimately rests on the underlying technology used to
communicate information.

6.14. Comparative Summary

Table 4 summarizes our evaluation of how each ex-
change pattern satisfies each SEF requirement. It is clear
that the use of an explicit schema definition with external

Exchange Pattern
Requirements Implicit- Explicit- Implicit- Explicit

Internal Internal External External
Transparency � � � �

Scalability ✘ ✔ ✘ ✔

Simplicity ✘ ✔ ✔✔ ✔

Neutrality ✘ ✘ ✘ ✔✔
Formality ✘ ✔ ✘ ✔✔

Flexibility ✘ ✔ ✘ ✔✔

Evolvability ✘ ✘ ✘ ✔✔
Popularity � � � �

Completeness � � � �

Metamodel Identity ✘ ✔✔ ✘ ✔✔

Solution Reuse ✘ ✘ ✘ ✔

Legibility ✘ ✔ ✘ ✔
Integrity � � � �

Table 4. Exchange Pattern Satisfaction of SEF Requirements

schema locality satisfies all the requirements that relate to
exchange. In fact, five of the nine exchange-related re-
quirements are strongly satisfied by the explicit-external ex-
change pattern. Following a distant second is the explicit-
internal exchange pattern. Both of the exchange patterns
with an implicit schema definition are the least satisfactory.
Between these two, the implicit-external pattern is strongly
beneficial solely because of its simplicity.

To summarize our evaluation, the use of schemas with
an explicit definition and external locality are the preferred
choice for an SEF. Explicit schema definition appears to be
the most important factor in the evaluation.

7. Conclusion

Before tools can exchange information, they must share,
at some level, the organization for the data exchanged. That
is, they must share a schema. In this paper we examined the
various ways in which schemas are represented and used
in tools. Schema use was classified according to how and
where a schema is defined, leading us to identify four pat-
terns of exchange. We examined these exchange patterns
and how each has been used in existing program compre-
hension systems. An evaluation of each exchange pattern
against the requirements for a standard exchange format re-
vealed that explicit-external schemas may be most suitable
for integrating program comprehension tools.

Space limitations prevent us from detailing exactly how
each of the requirements from St-Denis et al. [32] evaluated
against each of the program comprehension tool integration
technologies listed in Table 1. We hope to detail these in
a future paper. Nevertheless, the observations in this paper
strengthen the case for GXL [15, 16] as a standard exchange

format. GXL’s use of explicit-external schemas in combina-
tion with a metaschema for E-R graphs provides a common
base from which anyschema for representing software can
be derived.

In this paper we have dealt with exchange issues at a rel-
atively superficial level. In order to fully characterize the in-
formation exchange between tools, the issue of the schemas
themselves must be addressed, but that is a topic for future
work.

References

[1] ASIS Working Group. Ada Semantic Interface Specifi-
cation. URL: http://www.acm.org/sigada/wg/
asiswg/.

[2] Project Bauhaus. URL: http://www.informatik.
uni-stuttgart.de/ifi/ps/bauhaus/.

[3] I. T. Bowman, M. W. Godfrey, and R. C. Holt. “Connecting
Architecture Reconstruction Frameworks”. In Proceedings
of the 1st International Symposium on Constructing Soft-
ware Engineering Tools (CoSET’99), pages 43–54, Los An-
geles, CA, May 1999.

[4] T. Bray. RDF and Metadata, June 1998. URL: http://
www.xml.com/pub/a/98/06/rdf.html.

[5] P. Chen. “The Entity Relationship Model – Toward a Unified
View of Data”. ACM Transactions on Database Systems,
1(1):9–36, 1976.

[6] R. Cover. The XML Cover Pages: XML and Se-
mantic Transparency. Organization for the Advancement
of Structured Information Standards (OASIS), Novem-
ber 1998. URL: http://www.oasis-open.org/
cover/xmlAndSemantics.html.

[7] J. Czeranski, T. Eisenbarth, H. M. Kienle, R. Koschke,
E. Plödereder, D. Simon, Y. Zhang, J.-F. Girard, and

M. Würthner. “Data Exchange in Bauhaus”. In Proceed-
ings of the Working Conference on Reverse Engineering
(WCRE’00), Brisbane, Australia, November 2000.

[8] S. Demeyer, S. Ducasse, and S. Tichelaar. “Why FAMIX
and not UML”. In Proceedings of UML’99, volume 1723 of
Lecture Notes in Computer Science. Springer-Verlag, 1999.

[9] J. Ebert, B. Kullbach, and A. Winter. “GraX – An In-
terchange Format for Reengineering Tools”. In Proceed-
ings of the 6th Working Conference on Reverse Engineering
(WCRE’99), pages 89–98, 1999.

[10] J. Ebert, B. Kullbach, and A. Winter. “GraX: Graph Ex-
change Format”. In Workshop on Standard Exchange For-
mats (WoSEF) at (ICSE’00), Limerick, Ireland, 2000.

[11] J. Ebert, A. Winter, P. Dahm, A. Franzke, and
R. Süttenbach. “Graph Based Modeling and Implementation
with EER/GRAL”. In B. Thalheim, editor, Conceptual Mod-
elling - ER’96, volume 1157 of Lecture Notes on Computer
Science, pages 163–178, Berlin, 1996. Springer-Verlag.

[12] R. Ferenc, T. Gyimóthy, S. E. Sim, R. C. Holt, and
R. Koschke. “Towards a Standard Schema for C/C++”. In
Proceedings of the 8th Working Conference on Reverse En-
gineering (WCRE’01), Stuttgart, Germany, October 2001.

[13] R. Holt. An Introduction to TA: The Tuple Attribute Lan-
guage. Department of Computer Science, University of Wa-
terloo and University of Toronto, November 1998.

[14] R. C. Holt. “Structural Manipulations of Software Ar-
chitecture Using Tarski Relational Algebra”. In Proceed-
ings of the 5th Working Conference on Reverse Engineering
(WCRE’98), Honolulu, Hawaii, October 1998.

[15] R. C. Holt and A. Winter. “A Short Introduction to the
GXL Exchange Format”. In Proceedings of the 7th Work-
ing Conference on Reverse Engineering (WCRE’00), Panel
on Reengineering Exchange Formats, 2000.

[16] R. C. Holt and A. Winter. GXL: Representing Graph
Schemas. Presented at the 7th Working Conference on Re-
verse Engineering (WCRE’00), 2000.

[17] International Organization for Standardization. Ada Seman-
tic Interface Specification (ASIS), Edition 1. 283 pages,
Stage Date: April 29, 1999.

[18] D. Jin. “Exchange Of Software Representations Among Re-
verse Engineering Tools”. Technical Report 2001-454, De-
partment of Computing and Information Science, Queen’s
University, Kingston, Canada, December 2001.

[19] R. Kazman, S. G. Woods, and S. J. Carrière. “Require-
ments for Integrating Software Architecture and Reengi-
neering Models: CORUM II”. In Proceedings of the Work-
ing Conference on Reverse Engineering (WCRE’98), Octo-
ber 1998.

[20] S. Lapierre. Software Analysis APIs. Presented at the ICSE
2000 Workshop on Standard Exchange Formats (WoSEF),
June 6, 2000.

[21] S. Lapierre, B. Laguë, and C. Leduc. “Datrix Source Code
Model and its Interchange Format: Lessons Learned and
Considerations for Future Work”. Software Engineering
Notes, 26(1):53–56, January 2001.

[22] T. C. Lethbridge. Requirements and Pro-
posal for a Software Information Exchange For-
mat (SIEF) Standard, November 1998. URL:
http://www.site.uottawa.ca/˜tcl/papers/
sief/standardProposalv1.html.

[23] T. C. Lethbridge and N. Anquetil. “Architecture of a
Source Code Exploration Tool: A Software Engineering
Case Study”. Technical Report TR-97-07, School of Infor-
mation Technology and Engineering (SITE), University of
Ottawa, November 1997.

[24] T. C. Lethbridge, E. Plödereder, S. Tichelaar, C. Riva, and
P. Linos. The Dagstuhl Middle Model (DMM). Version
0.003, June 6, 2001.

[25] H. A. Müller. Criteria for Success of an Exchange Format.
Workshop meeting minutes, CASCON’98, Nov. 30, 1998.

[26] H. A. Müller and K. Klashinsky. “Rigi – A system for
Programming-in-the-Large”. In Proceedings of the Inter-
national Conference on Software Engineering (ICSE’88),
pages 80–86, 1988.

[27] H. A. Müller, K. Wong, and S. R. Tilley. “Understanding
Software Systems Using Reverse Engineering Technology”.
In Proceedings of the 62nd Congress of L’Association Cana-
dienne Francaise pour l’Avancement des Sciences (ACFAS),
1994.

[28] Object Management Group. XML Metadata Interchange
(XMI), Proposal to the OMG OA&DTF RFP 3: Stream-
based Model Interchange Format (SMIF). OMG Document
ad/98-10-05, October 20, 1998.

[29] A. Schürr. “Developing Graphical (Software Engineering)
Tools with PROGRES”. In Proceedings of the 19th Inter-
national Conference on Software Engineering (ICSE’97),
pages 618–619, Boston, Massachusetts, May 1997.

[30] A. Schürr. PROGRES for Beginners. Department of Com-
puter Science, Aachen University of Technology, 1997.

[31] S. E. Sim, R. C. Holt, and R. Koschke. WoSEF – Work-
group on Standard Exchange Format, Progress Towards
a Format. URL: http://www.cs.toronto.edu/
˜simsuz/wosef/.

[32] G. St-Denis, R. Schauer, and R. K. Keller. “Selecting a
Model Interchange Format: The SPOOL Case Study”. In
Proceedings of the 33rd Annual Hawaii International Con-
ference on System Sciences, Maui, Hawaii, January 2000.

[33] S. Tichelaar, S. Ducasse, and S. Demeyer. “FAMIX: Ex-
change Experiences with CDIF and XMI”. In Workshop on
Standard Exchange Formats (WoSEF) at (ICSE’00), Limer-
ick, Ireland, 2000.

[34] Introduction to TkSee 2.0. URL: http://www.site.
uottawa.ca/˜tcl/kbre/options/intro.html.

[35] M. van den Brand, H. de Jong, P. Klint, and P. Olivier. “Ef-
ficient Annotated Terms”. Software, Practice & Experience,
30:259–291, 2000.

[36] M. van den Brand, H. de Jong, and P. Olivier. “A Com-
mon Exchange Format for Reeingineering Tools Based on
ATerms”. In Workshop on Standard Exchange Formats
(WoSEF) at (ICSE’00), Limerick, Ireland, 2000.

[37] S. Woods, S. J. Carrière, and R. Kazman. “A Semantic Foun-
dation for Architectural Reengineering and Interchange”. In
Proceeding of the 1999 International Conference on Soft-
ware Maintenance (ICSM’99), pages 391–398, Oxford, UK,
August 1999.

[38] S. Woods, L. O’Brien, T. Lin, K. Gallagher, and A. Quilici.
“An Architecture For Interoperable Program Understanding
Tools”. In Proceeding of the 6th International Workshop on
Program Comprehension (IWPC’98), pages 54–63, 1998.

