
Abstract

Recent years have seen many significant advances in
program comprehension and software maintenance automation
technology. In spite of the enormous potential savings in
software maintenance costs, for the most part adoption of these
ideas in industry remains at the experimental prototype stage.
In this paper I explore some of the practical reasons for
industrial resistance to adoption of software maintenance
automation. Based on the experience of six years of software
maintenance automation services to the financial industry
involving more than 4.5 Gloc of code at Legasys Corporation, I
discuss some of the social, technical and business realities that
lie at the root of this resistance, outline various Legasys
attempts overcome these barriers, and suggest some approaches
to software maintenance automation that may lead to higher
levels of industrial acceptance in the future.

1. Introduction

As evidenced by the prolific proceedings of ICSM, IWPC,
WCRE and other program comprehension and software
maintenance research venues, recent years have seen many
advances in program comprehension and software maintenance
automation technology. New techniques in impact analysis
[1,2,3,4,5,6,7], architecture analysis and repair [8,9,10,11], clone
detection and removal [12,13,14,15,16,17,18], program slicing
and aspect analysis [19,20,21] and software refactoring [22,23]
have the potential to significantly impact industrial software
maintenance practice.

Experiments in the practical application of these techniques
by Holt et al [24,25], Müller et al [26,27,28], Klint et al
[29,30,31], Sneed [32,33] and others have shown that they are
practical and useful in industry. Moreover, the success of
companies such as Legasys Corporation, Formal Systems,
Semantic Designs and others using design recovery and other
formal analysis techniques to attack the Year 2000 (“Y2K”)
problem have demonstrated that large productivity gains and
cost reductions can be obtained when software maintenance is

assisted by program comprehension. The largest client using the
techniques of Legasys Corporation, for example, reported a 40-
fold increase in total productivity (including identification,
conversion and test time) over in-house conversion when using
design recovery and analysis to identify and systematically
reprogram Y2K risks.

Nevertheless, even after this huge example demonstrating
the potential and capability of program comprehension
techniques to increase software maintenance productivity and
decrease costs virtually worldwide, companies have been slow
to realize and adopt them in practice. Almost all of the program
comprehension-based software maintenance automation
companies that were successful in the Y2K problem have been
unable to draw enough ongoing business to continue, and the
handful that are still around are for the most part struggling.

This paper is aimed at analyzing and reminding us of some
of the causes of this lack of adoption, and at identifying some of
the practical barriers that lie in the way. Technical barriers, such
as parsing problems [34] have already been well covered in the
literature. In this paper I will instead concentrate on an analysis
of the social, cultural, economic and technological issues such as
business risk, budgets and management structure.

The analysis is based on six years of service to a particular
industry, the Canadian financial industry, at Legasys
Corporation. The observations I make do not necessarily
translate well to other segments of the software industry, but I
am certain that they apply broadly in the financial and retail
segments. Nevertheless, as they say in the United States, “your
mileage may vary”.

I apologize that this is not by any means a technical paper,
although I will present some technical results from Legasys to
demonstrate how some of the barriers can be addressed. The
observations and opinions expressed here are my own, and even
my former colleagues at Legasys may not agree with my
interpretations and conclusions about our experience. Also, for
reasons of confidentiality, I will not be associating the sources
of our observations with particular clients or companies, and I
will have to avoid concrete examples.

This is also not a formal anthropological, cultural or
technology adoption study, and it shouldn’t be taken as such. I
have simply taken the liberty of using this keynote to pass on
some lessons of personal experience that I speak of often, but
don’t normally have the opportunity to publish. I hope that you
find the observations interesting and useful, and I hope that

Comprehending Reality - Practical Barriers to Industrial Adoption of
Software Maintenance Automation

James R. Cordy

School of Computing, Queen’s University
Kingston, Ontario, Canada K7L 3N6

cordy@cs.queensu.ca

This work is supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).!

awareness of them may help make the results of our research
more readily acceptable to the industrial community.

The rest of this paper is structured into three parts. In the
first part we begin by setting the scene, describing the Legasys
environment and the characteristics of the clients and financial
software systems on which these observations are based. Part 2
then outlines four realities, risk, technical, social and financial,
that influence the adoption of software maintenance automation
in the financial software industry and gives examples of how
each of these realities can affect the adoption of particular
program comprehension technologies. Finally, we summarize
what may be learned and suggest some ways of approaching
program comprehension and software maintenance automation
research that may help increase industrial adoption of our
methods in future.

2. Background

Legasys Corporation was founded in 1995 with the explicit
mission of "practical industrial application of formal methods in
software maintenance automation". While it was not founded
with the intention of attacking the Y2K problem, within a year
of its founding the majority of its effort was directed at Y2K,
and over the six years of its active existence, Legasys was
involved in the analysis and reprogramming of over 3.5 Gloc of
Y2K conversions and another 1.5 Gloc of custom analysis for
other maintenance activities such as platform and language
migrations, software system mergers, code security audits and
other large scale software maintenance tasks.

Legasys’ technology was deeply based in design recovery
and source transformation techniques. The main service
provided by Legasys was an almost entirely automated Y2K
analysis and conversion technology called LS/2000 [35], and a
generalization of it to arbitrary impact analysis and migration
tasks called LS/AMT (Figure 1).

The vast majority of Legasys clients were in the financial
industry, including some of the largest Canadian national banks
and insurance companies. Other clients included large retail
chains, various government departments in Canada and the
United States, airlines, health organizations and others.
Virtually all of the client software systems we processed were
involved in financial data processing in one form or another, and
that is the context of the observations presented in this paper.

3. The Financial Industry

According to the Gartner Group, financial data processing is
by far the largest segment of the software industry. Gartner
estimates that there are over 200 Gloc of COBOL code in 9.5
million applications being actively maintained at present. This
is about 60% of the world’s total code base and represents an
investment of over five trillion U.S. dollars. Moreover, contrary
to the usual intuition, this number is actually growing rather than
shrinking, due to increased economic activity and new banking
initiatives such as debit cards, smart cards and so on. Gartner
says the number of lines of COBOL code is presently growing
by 5 Gloc per year.

In order to understand the realities of the financial software
environment, it is necessary to understand some basic facts
about the business of financial systems. Financial software
systems such as those in a large bank are typically huge,
involving hundreds of separate but tightly coupled software
applications, each of which is between 100,000 and 1 million or
more lines of source code. The total lines of code for a large
bank or retail organization may run upwards of 500 Mloc, and
may be maintained by a stable of 500 to 1,000 programmers.

Applications may be run independently in overnight, weekly
or monthly batch runs, or they may be run continuously in
interactive environments such as retail banking or point of sale
systems. Most applications are run on large mainframe

Design
Recovery

Unique
Naming

HSML
Markup

Version
Integration

Normalized
Source

Design
Analysis

Original
Source

Marked-up
Normalized Source

Report
Generation

Marked-up
Original Source

Hot Spot
Reports

Design
Database

Figure 1. LS/AMT Process Architecture.

computers or on mid-sized business computers such as IBM's
AS/400 series. Interactive applications typically interact using
separate front ends that run on PC's, "green screen" text
terminals or web interfaces in a wide-area networked
environment.

The quality requirements for financial software systems are
extremely high. Consequences of a small software error can run
into the many millions of dollars in a single day, and even a
small amount of downtime will cost many millions in missed
transactions, lost customers and wasted employee hours. For
this reason, the vast majority of the software maintenance effort
in the industry is spent in systematic testing and validation, and
banking systems are among the most thoroughly tested systems
in the world.

The financial industry is also extremely competitive. Given
that every bank offers essentially the same set of services, each
is constantly looking for new services and conveniences that can
be offered to customers to distinguish their bank from the others.
The result is a continuous stream of new financial products and
services such as different kinds of cards, travel points and so on.
In order to remain competitive, every bank must react to every
other bank's new services by offering something similar - this
causes a continuous pressure to rapidly change and update the
affected software systems.

Another source of pressure for change is government policy.
All financial software systems are affected by changes in laws
governing various kinds of taxation of investment, employees,
transactions, and so on. But government policy also continually
forces other changes such as changes in exchange and currency
policy and denominations (e.g., the Euro) and most recently,
more detailed recording of transactions and money flow for
security reasons. The result of the combination of these two
forces, competition and government, means that financial
software systems are undergoing rapid, continuous and
significant enhancement in an environment where quality
constraints are very high.

4. Kinds of Reality

In the context of the environment described above, we
identify four separate realities that place barriers in the way of
adoption of program comprehension and software maintenance
automation techniques - the reality of business risk, the reality of
technology, the reality of social environment and the reality of
economics, In the following sections we examine each of these
realities in turn, observe how it can affect the adoption of
software maintenance automation, and give concrete examples
of program comprehension tasks that may be affected by each.

4.1 The Reality of Business Risk

The stringent quality environment and enormous
consequences of software failure mean that the primary
consideration when planning and executing software
maintenance tasks is not cost, but rather risk. The risk factor is
so important that Legasys clients reported that more than 70% of
their total software maintenance effort is spent in extensive
testing, including regression test runs of actual transaction data

often over several days to insure that no existing behavior has
been accidentally changed by a maintenance step.

In general, the cost of a designing and making a software
change itself is small compared to the cost of quality control
(testing), and miniscule compared to the potential cost of error.
In this environment, every software change is considered in the
context of the risk it poses that the software system may be
broken by the change. This leads to a very conservative
maintenance strategy - since the risk of introducing an error is
roughly proportional to the number or extent of the changes
made, systems are changed as little as possible when
maintained.

When viewed in this way, older “legacy” code, which
typically has been running successfully for many years, has been
tuned to be free of error by actual experience, and exhibits an
extremely high observed quality, is considered to be a very
valuable asset. (At Legasys we said that perhaps legacy code
should more properly be referred to as “heritage” code.) It is
therefore not surprising that financial organizations exhibit a
very strong resistance to any large scale software change, no
matter what the potential payoff - it is simply too risky.

The result of this reality can be seen in the way that these
organizations chose to address the Y2K problem. While it was
clear from the beginning that the most desirable thing to do was
to expand two digit year fields to four digits, the risk of doing so
was simply too high. Impact analysis conducted at Legasys, for
example, showed that in a million line mortgage application,
more than 15% of the total source lines would require some kind
of change. The potential risk of changing over 150,000 lines of
code for this change is of course simply too high - the change
was complex and chances it could be done perfectly were simply
not good enough. As a result, virtually all financial institutions,
including all Legasys clients, chose to use a “windowing”
solution instead. While not a perfect or completely permanent
solution, windowing involves changing only those lines that
actually compare or do arithmetic with dates, and not any others.
Impact analysis showed that this change affected fewer than
0.3% of the source lines, or only about 3,000 lines in a million
line system, clearly a much lower risk.

When viewed from a risk perspective, legacy software
improvement or renovation strategies can seem quite naive. For
example, why would an organization take the enormous risk of
attempting to “update” to a new programming language, or to
“improve” the architecture of their software system when it is
being smoothly evolved to adapt to new demands in small,
manageable increments as it is?

A rather surprising side effect of the emphasis on risk
management is the role of clones in the software system. As
part of the design analysis used to tackle the Y2K problem at
Legasys, we routinely ran across clones and near clones of many
kinds, including large COPY books (include files), data records,
program modules and code sections. Indeed, we estimated that
by reducing clones the total code base of some of our clients
could be reduced by a factor of two or more. However, when
viewed from a risk perspective, this would very likely be a bad
idea!

Why is that? Well, first we must understand the role of
clones in the financial software industry. In a sense, cloning is

the way in which designs are reused in these systems. Data
processing programs and records across an organization often
have very similar purposes; there are only a limited number of
different kinds of financial tasks, and the data structures and
programs to carry out these tasks are therefore very similar. So
a standard practice when authoring a new application or
program module is to clone an existing one - thus reusing its
design, and a copy of its code.

Another source of cloning is the practice of custom views of
a data record. Financial systems are typically based around a
relatively small number of large central record structures. Many
applications and modules will use the central descriptions of
these records as COPY books. However, as with any
application, financial solutions can often be more easily coded
by changing the way in which the data is viewed or structured.
One way to handle this adaptation is to change the central, single
copy of the data description to allow for the new view.
However, if we constrain ourselves to such a single copy, every
time we add a view or make a change for a new program or
maintenance step, we are risking the possibility that the change,
however small, may affect one of the many other programs and
applications that use the record. At the very least we have to test
them all over again just in case - and as we shall see, testing is
our major cost.

So instead, it is common practice in the industry to use
custom clones of the main record data description fore each
application or even module. They all still share the design of the
data structure, but each is free to change its own view in any
way it likes, without fear of affecting any other. But suppose,
you say, that a fix is made to one of them because a bug was
discovered - wouldn't we want the fix to be in all the versions of
the data description? The surprising answer is no - as a matter
of fact, we exactly do NOT want to do that - because the risk
that one of the other, already properly working, modules or
applications may depend on the old description is too high!
Instead, from a risk perspective, it makes sense only to change
the one in the module that failed - and not in any other. If the
analogous problem has not appeared in the other module, then it
most likely doesn't affect it. And if it ever does, then the lowest
risk solution will be to address that problem separately at that
time.

Cloned record descriptions also have the advantage that they
increase the degrees of freedom in implementing and
maintaining each new application or module - each is free to
change or refine its view of the data in any way it sees fit,
including ways to assist in addressing observed problems. This
can help speed maintenance, and without fear of accidentally
affecting other unrelated modules or applications. Similarly,
cloned applications and program modules increase the degrees
of freedom and decrease maintenance risk for program logic.

Because the culture of these software systems is so deeply
based in such cloning, clone detection may not even be a very
interesting service. For the most part, programmers are quite
aware of the clones. Because the systems are based in a small
number of large central records, typically programmers can
easily identify which central structure is associated with each
clone simply by looking at the code. Similar observations can
be made about cloned programs and program sections.

The one time that clone detection does have a central role to
play is on those rare occasions when a fundamental change is
made to the central record itself. In such a situation,
identification of all clones of the record is essential, and
programs comprehension techniques have a very strong role to
play if they can provide the analysis quickly when needed.

4.2. The Technological Reality

In the financial software world, COBOL is king. The
Gartner Group estimates that the total number of lines of
COBOL in the world is over 200 Gloc, and that this number is
presently still growing at about 5 Gloc per year. There are good
reasons for this - the COBOL language was designed for data
processing, and no other language serves the purpose as well.
Conversion to other “modern” languages actually makes little
sense in the data processing environment. Modern languages
such as Java handle text-oriented data processing records very
poorly, because the object-oriented model simply does not
match the nested records and text storage overlays that are the
bread and butter of data processing tasks. Modern languages
also provide no native scaled decimal arithmetic, which is
widely used in data processing both to avoid non-decimal
roundoff and for easy conversion to and from text fields.

Perhaps the most compelling reason to stay in COBOL is
that the risk of language conversion is so enormous that it is
simply not reasonable to try. Conversion cannot be done
instantly for a typical financial organization's code base of over
a hundred million lines of code. It would take a large number of
person-years to do such a conversion, and in the interim the
system would have to be continually updated in response to the
business pressures of competition, government and other
external forces. By the time a conversion was completed, it
would be so far out of date with the current system as to be
unusable. Even if it were usable, the chances that an entire new
system of such a size would perform without error are
essentially zero, even with very extensive testing.

Thus, as many of you already know, any program
comprehension services we provide must be aimed at COBOL,
RPG and the other legacy languages if they are to serve the
majority of the industry. And providing language conversion
services should concentrate on those conversions that make
sense, such as RPG and PL/1 to COBOL (a very popular
business move). One conversion that does however make sense
is the conversion of interactive systems implemented using
CICS and other old interaction techniques to modern interaction
techniques such as Java and Visual Basic. This leads to the need
for aspect identification, something program comprehension
research can help with.

One of the most common phrases we heard in the business
software world is “tools don't help”. The resistance to new
software “tools” to assist in software maintenance is very large,
and based on a long and unhappy experience with many
inadequate and premature CASE tools of the past. It's clear how
this attitude has come about - even our most recent tools present
results in forms that are inaccessible to most COBOL
programmers.

Graphs and UML diagrams may be full of meaning, but

unless their meaning can be presented in source terms, they will
not be understood by the financial programming community.
Slices and flow graphs may be a powerful representation of
potential impact, but they do not reduce the source to be looked
at significantly enough to enhance productivity.

In the world of financial systems, only the source is real.
The reason is clear - pressures require that changes and
enhancements be made very quickly, and to quote a COBOL
programmer, “you can't make a fix in the abstract”. Our
experience is that the programmers in these shops are very
deeply familiar with the source code of their systems. They
understand the source code and its business meaning very
deeply. The algorithms and structures being manipulated are not
complex and have a high level of similarity (and cloning, as we
have noted).

If we are to assist in software maintenance in a way that
makes sense in this technical environment, our inferences and
impact analyses must be presented in terms of source. And if
they are to demonstrate a real advantage over hand analysis by a
programmer with deep knowledge of the source, then they must
present results that are immediate, accurate and tightly focussed
to the parts of source that are relevant to the task at hand.

This “source imperative” was addressed at Legasys using
two technologies: unique naming and hot spot markup. Unique
naming [35] is a method for attaching design recovered software
graphs and the original source code in a way that allows any
analysis carried out on the one to be immediately reflected in the

other. The idea is to mark up every entity declaration and
reference in the source code with a unique identifier, or "UID",
which can be used universally across an entire system to refer to
the unique entity referred to (Figure 2(a)). This UID is then
used to refer to the entity in the design recovered graph as well
(Figure 2(b)). UID's are then used to serve as a set of “keys”
implicitly linking each entity in the design database to its
declaration and all of its references in the original source files.

This idea has several advantages. First, since it involves
keeping separate source and graph representations that are
implicitly linked by UID's, there is no need for any source
information in the graph. This means smaller, more efficient
software graphs without AST's, syntactic elements or other
clutter. Second, it allows for easily “pushing” results of a graph
analysis back to source - when a graph analysis yields a new
relationship between two entities (UID's), the source involved
can be highlighted simply by marking references in the source
with the same UID's. Similarly, if an inference is made from
source analysis, it can be reflected into the design graph simply
by asserting a new relationship between the UID's of the entity
references involved in the uniquely named source.

At Legasys the idea was formalized in HSML [36], the Hot
Spot Markup Language, a notation designed for expressing the
markup of source based on design graph inferences. HSML
expressions used syntactic categories to express scope
limitations of source markup based on design graph queries.
Unique naming provides the link between the two.

01 DATE.
 05 YY PIC 99.
 05 MM PIC 99.
 05 DD PIC 99.
77 YEAR PIC 99.
 MOVE YY TO YEAR.

 01 [DATE - A `A.CBL` # DATE-REC]. [
 05 [YY DATE - A `A.CBL` # YY] PIC 99.
 05 [MM DATE - A `A.CBL` # MM] PIC 99.
 05 [DD DATE - A `A.CBL` # DD] PIC 99.]

 77 [YEAR - A `A.CBL` # YEAR] PIC 99.
 MOVE [YY DATE - A `A.CBL` # YY] TO
 [YEAR - A `A.CBL` # YEAR].

(a) Unique naming in source.

In this simple example, the identifiers DATE-REC, YY, MM,
DD and YEAR in the original code (above) are almost
certainly not unique over the entire application. Unique
renaming (below) labels each declared identifier with a unique
name (UID) encoding the entire context, program name and
source file of the declared entity, for example YY DATE – A
`A.CBL` for YY. Each resolved reference to the same entity is
labelled with the same UID, so that the declaration and every
reference to an identifier is labelled with its unique name.

Field (YY DATE - A `A.CBL`, DATE - A `A.CBL`)
Field (MM DATE - A `A.CBL`, DATE - A `A.CBL`)
Field (DD DATE - A `A.CBL`, DATE - A `A.CBL`)
Move (YY DATE - A `A.CBL`, YEAR - A `A.CBL`)

(b) Unique naming in the design graph.

Design recovery analyzes the uniquely renamed source to yield
the design graph for the system. The edgelist of the design
graph uses the unique names (UID’s) of the related entities to
refer to them. Because all references to an entity in both the
design graph and the source use the same unique name, any
inferences about the entity in the graph may be easily attached
to source references, and any new analysis about the entity in
the source may be easily added as a new edge in the graph.

Figure 2. Unique Naming as a Bridge Between Source and Graph.

Another technical reality is the prevalence of custom local
dialects, features, preprocessors and coding tools in the business
programming world. This presents a serious barrier to
acceptance of our techniques that has already been the subject of
a number of papers [34,37,38]. An analysis technique that fails
every time it hits a new or different syntax or language variant is
doomed to oblivion in these environments.

At Legasys we began addressing this problem using robust
parsing techniques somewhat related to Moonen’s island parsing
[37]. Robust parsing yields some parse for every input, no
matter how malformed, by allowing for uninterpreted sections
where a parse could not be found. Such techniques are an
absolute necessity if program comprehension is to make inroads
in the financial community. In most analyses, partial answers
are acceptable - any help with a complex impact analysis is
useful. But having no answer is completely unacceptable, and
programmers will rapidly drop any analyzer that fails to yield
answers due to parse errors.

4.3. The Social Reality

The management structure and consequent social
environment of software maintenance groups in the financial
industry can have an enormous influence on the adoption of
program comprehension technology. A large financial
institution typically will have some hundreds of millions of lines
of source code maintained by some hundreds of programmers.
The source code is organized into some hundreds of
applications, each on the order of a few hundred thousand to a
million lines of code. Not surprisingly, the maintainers are
organized into teams that reflect the application structure of the
software systems. Each team manages one or more closely
related applications under the direction of a technical manager.

In general, each technical manager has the majority
responsibility for decisions concerning the applications
maintained by his or her team. Group managers or technical
executives are responsible for a set of teams, and general
managers or vice presidents are responsible for sets of group
managers. The important point here is how decisions are made
concerning new technology adoption.

Let us propose to the company that they adopt our program
comprehension technology. Usually we begin by demonstrating
our capabilities to the general managers or vice presidents. We
show how our inferences can reduce maintenance tasks,
automate maintenance steps, and so on. If we've done our
homework, we show our results as source, so that they know
that what we have is real (recall that only source is real).

What happens when we leave the meeting? Well, the vice
presidents ask the group managers about our stuff, the group
managers ask their technical managers, and the technical
managers consult with their programmers. The latter two are
puzzled: first, they know they are doing a great job, and they are
wondering why the boss is interested in this idea. They try out
our technique. From their point of view it is magic - in goes the
old code, out comes the new code, or the UML, or whatever.
They are dubious because they don't understand the automatic
process, and at the same time they feel threatened - if it works,
the company may not need all of them any more!

The result is that the technical managers report to their group
managers that it can't help, or that they can already do this by
hand, or some other negative response. The group manager
reports to the vice president that the technical staff don't see any
role for the technology, and whoosh! - we're out the door.

If we are to be successful in having our technologies adopted
in these environments, we are going to have to deal with this
social reality. At Legasys, our approach to this was to present
all our results as advice, leaving all programming decisions in
the hands of the maintainer. The idea was for our techniques to
assist the programmer, not replace him or her. So even where
our technology was doing an automated reprogramming, we did
not present the result as a finished program. Rather, we
presented a concise report consisting of the set of suggested
changes to the source code (remember it must be in terms of
source code!) for the programmer to examine and choose to use
or not. In order to make the decisions efficient, the report
provided enough context around the suggested changes to allow
the programmer to make decisions without referring to the entire
source in most cases, and a web interface assisted in hand
changes where warranted.

The important point here is that while the technology is
doing the same thing, all control is left in the hands of the
programmer. There is no threat because from the programmer's
view he or she is still doing all the maintenance on the source, it
is just that a very insightful assistant is helping by doing some of
the leg work for them. They understand what is going on
because they can see what is suggested to be done, check it out
for themselves, and reject things they don't trust. This
philosophy of assist, don't replace, is the only one that can
succeed in the social and management environment of these
organizations.

This way of doing things also has another advantage. Even
if our reprogramming technology isn't able to completely
automate, it can still be useful - if there are things our system
does not know how to resolve, it can present the unchanged code
sections to the human programmer with the suggestion that
something needs to be done, but the technique can't automate it
for him or her. This not only reinforces the sense of control and
feeling of value for the programmer, but it makes a symbiosis
more powerful than either the technique alone or the
programmer alone. The program comprehension and
automation does what it does best - deep and complex semantic
searching and automated reprogramming for common cases
using templates. The human does what he or she does best -
apply business and system knowledge to check the automation,
and resolve any cases that the automation can't handle.

At Legasys we exploited this model in addressing the Y2K
problem. Our LS/2000 system would exploit human interaction
in two stages. Following unique naming and design recovery,
LS/2000 used an exhaustive trace of reference chains in the
design graph to identify and classify into the 45 or so different
date formats each data field representing a date in an
application. In the process, some fields whose date status or
format was ambiguous or beyond the analysis capabilities of the
system were usually identified. In this first interaction stage, the
programmer was presented with a source-linked web interface in
which the system asked for advice to resolve each of these

ambiguities. Alternative interpretations were presented, along
with links to the source code contexts (using UID's) and related
items. Given the programmer's business and application
knowledge, these ambiguities were typically easy to resolve and
a half-million line application could usually be resolved in about
an hour.

Following date resolution, the LS/2000 system completed
the process using patterns to identify and reprogram Y2K
sensitive uses of the identified date fields in comparisons,
arithmetic, and so on. Once the process was completed, the
results were again presented to the programmer, this time as a
hot spot report showing the original and reprogrammed source
code for each change (Figure 3). Acceptance or rejection of each
change was again left to the programmer, and those very few
sections requiring change that the system could not
automatically reprogram could be handled by hand.

Another social barrier to automation is the question of
source ownership. As we have already noted, programmers in
financial software environments are intimately familiar with the
source code of their systems. Their ability to continue to
understand it is rooted deeply in its recognizability - it has a
familiar look and feel. People recognize familiar code sections
in much the same way that they recognize faces, using
synesthetic memory. Teams become attached to their
application and its source code as a familiar old friend.

Recognizability of the source therefore becomes an
important issue. Even if our automated maintenance systems do
a wonderful job of renovating or updating an application, if the
source code comes back reformatted, even just by changing the
indentation or comment placement, the recognizability and
hence the deep understanding is disturbed. It just doesn't look
like their old friend any more, and they want their old code back.

The importance of this issue to acceptance of automation is
far greater than one might think. At Legasys we found it to be a
significant barrier to acceptance of our work. In the end we
dealt with this problem using a source code factoring technology
[39], in which details of source code format were factored out

early in the analysis, and then restored after reprogramming,
making the text-wise most minimal change to the original source
code. In this way, the source code retains its old familiar face,
with maybe a couple of warts removed.

Perhaps the most obvious of the social barriers, but also the
easiest to overlook, is the issue of simplicity. A programmer
cannot accept a solution or a technology if they can't understand
it. This implies that whatever solutions are offered by our
techniques, they must be straightforward enough to be
understood by the programmers who will use them. We've
already pointed out that source code is the only real medium of
understanding for programmers of the financial world (and thus
graphs may not be a good choice for presenting analysis results
to this community). But additionally, any source code
introduced must be simple enough to be widely understood, and
must fit into the standard practice and style of the community.

It's easy to make the mistake of insulting a programming
staff by shooting “over their heads”. An example of this can be
drawn from the Y2K experience. Once it had been decided, for
risk reasons, that a “windowing” solution to the Y2K problem
was to be adopted in the reprogramming, at Legasys we
proposed a one-line solution involving a mathematically perfect
reprogramming using modular arithmetic and COBOL built-in
functions to make a permanent and (mathematically) beautiful
solution. The Legasys staff were very proud of this solution.

The only problem was that the solution was completely
opaque to anyone who was not intimately familiar with the
brand-new built-in function capabilities of COBOL (which are
in general unknown in the financial community), and who did
not hold a degree in algebra. Of course, when this solution was
presented with great enthusiasm to our Y2K clients in the
banking community we were met with a blank stare. Once they
understood what we were trying to program, they simply said,
“oh, you mean this” - and showed us a simpler, easier solution
that they had been using as a quick hack for some time. While
not completely permanent, their simple solution would work for
the next seventy years, and was easily adapted after that.

Program: XYEGPROG
Line Program Source Line HS Src File
---- ------------------- -- --------
26 002600 16 FISCAL-DATE-JULIAN PIC S9(5) COMP-3. <- XXCOPYDJ

52 005300 24 WS-FISCAL-DATE-JULIAN PIC S9(5) COMP-3. <- XYEGPROG

63 COPY LS2KROLL. <= XYEGPROG
64 77 Y2K-FISCAL-DATE-JULIAN PIC 9(5). <= XYEGPROG
65 77 Y2K-WS-FISCAL-DATE-JULIAN PIC 9(5). <= XYEGPROG

232 ADD ROLLDIFF-1-YYNNN FISCAL-DATE-JULIAN GIVING <= XYEGPROG
233 Y2K-FISCAL-DATE-JULIAN <= XYEGPROG
234 ADD ROLLDIFF-1-YYNNN WS-FISCAL-DATE-JULIAN GIVING <= XYEGPROG
235 Y2K-WS-FISCAL-DATE-JULIAN <= XYEGPROG
236 *******IF FISCAL-DATE-JULIAN IS NOT GREATER THAN <= XYEGPROG
237 ****************WS-FISCAL-DATE-JULIAN <= XYEGPROG
238 IF Y2K-FISCAL-DATE-JULIAN IS NOT GREATER THAN <= XYEGPROG
239 Y2K-WS-FISCAL-DATE-JULIAN <= XYEGPROG
240 PERFORM FISCAL-DATE-LESS. XYEGPROG

Figure 3. Example LS/2000 Hot Spot Report.

Of course, upon reflection, the simpler solution is a better
one for many reasons. Because it is easily understood by every
COBOL programmer, it reduces cognitive overhead and
enhances recognizability (it has a nice “face”). Because it is
consistent with a solution already in use, it is familiar. And
because it is simpler, it reduces risk and enhances long term
maintainability.

The mistake of assuming that an academic solution is
superior or more desirable is an easy one to make, but it is one
we should avoid if we want to make serious contributions to
industrial practice.

4.4. The Economic Reality

In the process of analysis of financial systems at Legasys it
was frequently the case that we discovered significant
opportunities for improvement of the systems. For example, we
have already observed that by removing clones we could
frequently reduce the code base by a factor of two or more.
Whenever we suggested to a client that it would make sense to
take action on such opportunities, the most common answer
was: “good idea, but there's no budget for it”. This meant that it
could not be done, because it was impossible to assign any staff
to doing it.

In order to understand this barrier, it is necessary to
understand a little about the planning environment of the
software divisions of these organizations. As in many
organizations, budgets are allocated on an annual basis. Each
budget item is considered on the basis of how it will contribute
to the bottom line (profit) of the company in the most cost-
effective way. While it is well understood how enhancement,
correction and testing helps to serve customers, assist marketing
and reduce risk, the argument for the economic benefits of
preventive maintenance is much more difficult to make.

For example, while re-architecting a system may potentially
yield long term benefits, the system is already known to be
working well and to be maintainable - because it is already
being maintained and exhibiting high quality. Why would we
allocate the large budget and divert the person power it would
take to undertake a re-architecting of the software? The cost
will be high, with no effect on the bottom line for the year, and
the project will divert staff from enhancements and fixes that do
affect the bottom line. The upshot of this reasoning is that in
these environments, there will never be a budget for it.

A possible strategy to overcome this problem was planned at
Legasys but never implemented. The idea was to present re-
architecting steps in such a way that they can be carried out in
an incremental fashion as part of ongoing maintenance. As
regular corrective maintenance and enhancement is going on,
program comprehension would provide an awareness of the
desired improved architecture, in the form of reports or lists of
desirable source changes that can be referred to while
maintaining. Each time a maintenance step is undertaken, small
architectural improvements suggested by the reports are made as
a side effect of the work being done, with the hope that the
system would gradually evolve towards a better overall
architecture.

The challenge is to provide program comprehension insights
and architecture improvement suggestions in a way that is
accessible, incremental and expressed in source terms. A tall
order indeed!

Another economic barrier to adoption is due to a simple fact
- in the high quality environment of financial systems we have
spoken of, the dominant cost of software maintenance is the cost
of testing. According to Legasys’ largest clients, testing
accounts for over 70% of the total cost and time spent in
software maintenance. The result of this is that if you hope to
affect the cost of maintenance, you must assist in some way with
testing.

At Legasys we used our notion of hot spot reports to provide
some such assistance with the testing of Y2K changes. Each hot
spot report showed the changes that had been suggested or made
for each potential Y2K risk in a concise report for each source
module. The hot spots were then used as a testing checklist, and
Y2K testing was guided by a strategy of “covering” the hot
spots in testing each module. The result was that we were able
to very significantly reduce the cost of the Y2K change by
reducing the dominant testing costs as well as analysis and
reprogramming costs.

5. Conclusions and Suggestions for the Future
In this paper we have explored, in one of the largest software

communities, a few of the industry realities that place practical
barriers in the way of the adoption of program comprehension
and software maintenance automation technology. Based on
experience with over 4.5 Gloc of financial code processed at
Legasys for the Y2K and other maintenance problems, we
observed that by adapting to these realities we can help to
improve the chances of adoption of our technologies and
increase levels of acceptance.

The observations of this paper indicate several concrete
steps that we can take as a community to help speed the
industrial adoption of program comprehension techniques:

• We can concentrate on services rather than tools

• We can think in terms of assistants rather than robots

• We can couch the results of our analyses and suggestions
in the familiar terms of concrete source code

• We can emphasize agile, lightweight, hands-off techniques
that provide timely answers as needed

• We can design to keep control of the analysis
and maintenance in the hands of the programmers

• We can adapt to take advantage of the programmers'
own knowledge and understanding to help our
techniques do better

• We can spend more effort in understanding and
adapting to the context of our potential users

The key point I hope you will take away from this paper is
the importance of spending time understanding the target

community. By studying the maintenance culture of each
industrial community, by treating their way of doing things with
respect, and by working to understand how our techniques can
best be fit into their existing working environment, we can both
increase chances of adoption and enhance our own success.

Related Work.
Many people have studied adoption and the industrial

environment more thoroughly and formally than I have in this
rambling collection of experiences. Harry Sneed has for years
reported on industrial realities and their implications, including
risks [32]. Paul Klint, Mark van den Brand, Leon Moonen and
their colleagues at CWI have published experience with
industrial COBOL systems similar to those I have reported here
[29]. Implications of social and technical culture on software
maintenance have been studied by Janice Singer [40] and
Timothy Lethbridge [41]. Ric Holt, Hausi Müller, John
Mylopoulos and Kostas Kontogiannis have reported experience
with many realities of the industrial software development
environment at IBM [25], and recently Müller’s group has
focussed on adoption as a primary goal [42]. My apologies to
the many others studying technology adoption and other topics
who in my ignorance I have forgotten or may not be aware of.

Acknowledgments.
I wish to thank my colleagues at Legasys, some of whom are

the real source of some of the insights shared here. I particularly
note Kevin Schneider, Tom Dean, Andrew Malton and Donald
Jardine. The understanding of the financial systems
environment I share here comes from many hours spent with
programmers, technical managers, group leaders and vice
presidents in our client organizations. Of particular note is the
Bank of Nova Scotia, who took a chance on Legasys in the early
days and taught us most of what I have reported here, and IBM
Global Services, whose deep knowledge of the data processing
industry helped us understand how to make our solutions more
accessible to the business software community.

References.
[1] K.B. Gallagher and J.R. Lyle, “Using Program Slicing in
Software Maintenance”, IEEE Transactions on Software
Engineering 17,8 (August 1991), pp. 751-761.

[2] J. Han, “Supporting Impact Analysis and Change
Propagation in Software Engineering Environments”, Proc.
STEP’97 - 8th International Workshop on Software Technology
and Engineering Practice, London (July 1997), pp. 172-182.

[3] M.A. Chaumun, H. Kabaili, R.K. Keller and F. Lustman, “A
Change Impact Model for Changeability Assessment in Object-
Oriented Software Systems”, Proc. CSMR’99 - 3rd Euromicro
Working Conference on Software Maintenance and
Reengineering, Amsterdam (March 1999), pp. 130-138.

[4] L. Moonen, “Lightweight Impact Analysis using Island
Grammars”, Proc. IWPC 2002 - 10th International Workshop on
Program Comprehension, Paris (June 2002), pp. 219-228.

[5] J. Zhao, “"Change Impact Analysis for Aspect-Oriented
Software Evolution”, Proc. 5th Int. Workshop on Principles of
Software Evolution, Orlando, Florida (May 2002), pp. 108-112.

[6] A. Cimitile, A.R. Fasolino , G. Visaggio, “A Software Model
for Impact Analysis: A Validation Experiment”, Proc. WCRE 99
- 5th International Conference on Reverse Engineering, Atlanta,
Georgia (October 1999), pp. 212-223.

[7] S. Zhou, H. Zedan and A. Cau, “A Framework For
Analyzing The Effect of 'Change' In Legacy Code”, Proc.
ICSM’99 - International Conference on Software Maintenance,
Oxford, England (August 1999), pp. 23-32.

[8] V. Tzerpos and R.C. Holt, “The Orphan Adoption Problem
in Architecture Maintenance”, WCRE '97 - 4th Working Conf.
on Reverse Engineering, Amsterdam (October 1997), pp. 76-83.

[9] R.C. Holt, “Structural manipulations of software architecture
using Tarski relational algebra”, WCRE’98 - 5th Working Conf.
on Reverse Engineering, Honolulu (October 1998), pp. 210-219.

[10] J.B. Tran, M.W. Godfrey, E.H.S. Lee, and R.C. Holt,
“Architecture Analysis and Repair of Open Source Software”,
Proc. IWPC’00 - 8th International Workshop on Program
Comprehension, Limerick, Ireland (June 2000), pp. 48-59.

[11] H. Fahmy and R.C. Holt. “Software Architecture
Transformations”, Proc. ICSM’00 - International Conference
on Software Maintenance, San Jose (October 2000), pp. 88-96.

[12] H.J. Johnson, “Substring Matching for Clone Detection and
Change Tracking”, Proc. ICSM’94 -Int. Conference on Software
Maintenance, Victoria, Canada (September 1994), pp. 120-126.

[13] B. S. Baker, “On Finding Duplication and Near-duplication
in Large Software Systems”, WCRE’95 - 2nd Working Conf. on
Reverse Engineering, Toronto (July 1995), pp. 86-95.

[14] E.L. Burd and M. Munro, “Investigating the Maintenance
Implications of the Replication of Code”, Proc. ICSM’97 - Int.
Conference on Software Maintenance, Bari, Italy (October
1997), pp. 322-331.

[15] I.D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, and L.
Bier, “Clone Detection using Abstract Syntax Trees”, Proc.
ICSM’98 - International Conference on Software Maintenance,
Bethesda, Maryland (November 1998), pp. 368-377.

[16] S. Ducasse, M. Rieger, and S. Demeyer, “A Language
Independent Approach for Detecting Duplicated Code”, Proc.
ICSM’99 - International Conference on Software Maintenance,
Oxford, England (August 1999), pp. 109-119.

[17] Y. Ueda, T. Kamiya, S. Kusumoto and K. InDue, “Gemini:
Maintenance Support Environment Based on Code Clone
Analysis”, Proc. METRICS 2002 - 8th International Symposium
on Software Metrics, Ottawa, Canada (June 2002), pp. 67-76.

[18] T. Kamiya ,S. Kusumoto , K. Inoue, “CCFinder: A
Multilinguistic Token-Based Code Clone Detection System for
Large Scale Source Code”, IEEE Transactions on Software
Engineering 28,7 (July 2002), pp. 654-670.

[19] A. De Lucia, “Program slicing: Methods and Applications”,
Proc. SCAM’01 - Int. Workshop on Source Code Analysis and
Manipulation, Florence, Italy (November 2001), pp. 142-149.

[20] M. Harman, L. Hu, R.M. Hierons, C. Fox, S. Danicic, J.
Wegener, H. Sthamer and André Baresel, “Evolutionary Testing
Supported by Slicing and Transformation”, Proc. ICSM 2002 -
International Conference on Software Maintenance, Montréal,
Canada (October 2002), pp. 285-294.

[21] J. Zhao, “Slicing Aspect-Oriented Software”, Proc.
IWPC’02 - 10th IEEE International Workshop on Programming
Comprehension, Paris (June 2002), pp. 251-260.

[22] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code, Addison
Wesley 1999.

[23] Y. Kataoka, M.D. Ernst, W.G. Griswold, and D. Notkin,
“Automated support for program refactoring using invariants”,
Proc. ICSM 2002 - International Conference on Software
Maintenance, Montréal, Canada (October 2002), pp. 736-743.

[24] S. Mancoridis and R.C. Holt, “Recovering the Structure of
Software Systems Using Tube Graph Interconnection
Clustering”, Proc. ICSM 1996 - Int. Conference on Software
Maintenance, Monterey, California (Nov. 1996), pp. 23-32.

[25] P. Finnigan, R.C. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. Müller, J. Mylopoulos, S. Perelgut, M. Stanley, and K.
Wong, “The Software Bookshelf”, IBM Systems Journal 36,4
(November 1997), pp. 564-593.

[26] S.R. Tilley, H.A. Müller , M.J. Whitney, and K. Wong,
“Domain--retargetable Reverse Engineering”, Proc. ICSM 1993
- International Conference on Software Maintenance, Montréal,
Canada (September 1993), pp. 130-139.

[27] M.-A.Storey, K. Wong and H.A. Müller, “Rigi - A
Visualization Environment for Reverse Engineering”, Proc.
ICSE’97 - IEEE 19th International Conference on Software
Engineering, Boston, Massachusetts (May 1997), pp. 606-607.

[28] M.-A.Storey, K. Wong, D. Hooper, K. Hopkins, and H.A.
Müller, “On Designing an Experiment to Evaluate a Reverse
Engineering Tool”, WCRE’96 - 3rd Working Conf. on Reverse
Engineering, Monterey, California (Nov. 1996), pp. 31-41.

[29] M.G.J. van den Brand, M.P.A. Sellink, and C. Verhoef,
“Control Flow Normalization for COBOL/CICS Legacy
Systems”, Proc. CSMR’98 - 2nd Euromicro Conference on
Software Maintenance and Reengineering, Palazzo degli Affari,
Italy (March 1998), pp. 11-19.

[30] A. van Deursen, P. Klint and C. Verhoef, “Research Issues
in Software Renovation”, FASE’99 - Fundamental Approaches
to Software Engineering, Amsterdam (March 1999), pp. 1-21.

[31] P. Klint and C. Verhoef, “Enabling the Creation of
Knowledge about Software Assets”, Data and Knowledge
Engineering 41,2-3 (June 2002), pp. 141-158.

[32] H.M. Sneed, “Risks Involved in Reengineering Projects”,
Proc. WCRE’99 - 6th Working Conference on Reverse
Engineering, Atlanta, Georgia (October 1999), pp. 204-211.

[33] H.M. Sneed, “Wrapping Legacy COBOL Programs behind
an XML-Interface”, WCRE’01 - 8th Working Conf. on Reverse
Engineering, Stuttgart, Germany (Oct. 2001), pp. 189-197.

[34] M.G.J. van den Brand , M.P.A. Sellink, and C. Verhoef,
“Current Parsing Techniques in Software Renovation
Considered Harmful”, Proc. IWPC’98 - 6th Int. Workshop on
Program Comprehension, Ischia, Italy (June 1998), pp. 108-117.

[35] T.R. Dean, J.R. Cordy, K.A. Schneider and A.J. Malton ,
"Using Design Recovery Techniques to Transform Legacy
Systems", Proc. ICSM 2001 - Int. Conference on Software
Maintenance, Florence, Italy (November 2001), pp. 622-631.

[36] J.R. Cordy, K.A. Schneider, T.R. Dean and A.J. Malton,
"HSML: Design Directed Source Code Hot Spots", Proc. IWPC
2001 - 9th International Workshop on Program Comprehension,
Toronto, Canada (May 2001), pp. 145-154.

[37] Leon Moonen, “Generating Robust Parsers Using Island
Grammars”, Proc. 8th Working Conference on Reverse
Engineering, Stuttgart (October 2001), pp. 13–22.

[38] A. Cox and C. Clarke, “A Comparative Evaluation of
Techniques for Syntactic Level Source Code Analysis”, Proc.
APSEC’00 - IEEE 7th Asia-Pacific Software Engineering
Conference, Singapore (December 2000), pp. 282-291.

[39] A.J. Malton, K.A. Schneider, J.R. Cordy, T.R. Dean, D.
Cousineau and J. Reynolds, “Processing Software Source Text
in Automated Design Recovery and Transformation”, Proc.
IWPC 2001 - 9th International Workshop on Program
Comprehension, Toronto (May 2001), pp. 127-134.

[40] J. Singer, “Practices of Software Maintenance”, Proc.
ICSM’98 - International Conference on Software Maintenance,
Bethesda, Maryland (November 1998), pp. 139-145.

[41] J. Singer, T. Lethbridge , N. Vinson, and N. Anquetil, “An
Examination of Software Engineering Work Practices”, Proc.
CASCON '97 IBM Centre for Advanced Studies Conference,
Toronto (October 1997), pp. 209-223.

[42] H. Müller, “Leveraging Cognitive Support and Modern
Platforms for Adoption-Centric Reverse Engineering (ACRE)”,
http://www.acse.cs.uvic.ca/pages/acse_v1_0/acre.html (2002).

