
Abstract

Increasingly focus in the software comprehension
community is shifting from representing the results of analysis in
the graph and database domain to reflecting insights directly
into source. The obvious modern representation for this
reflection is XML markup. In the simplest case, XML markup of
the abstract syntax tree itself can be represented in source,
although the result is wordy, overly detailed and cumbersome to
deal with. A more realistic solution is to use island or multi-
weight parsing to mark up the AST in only those sections of
source of interest to the current task.

In this paper we outline a method for extending and
generalizing the partial markup idea to minimize source markup
not only by marking only sections, but by selectively marking up
the source with only a subset of the AST nodes relevant to each
particular task as well. By exploiting agile parsing, this idea is
further extended to allow for task-directed selective markup as a
natural extension of selective syntactic markup.

1. Introduction

Attachment to source is increasingly one of the most
important problems in program comprehension [1,2,3]. If real
programmers are to take action based on the inferences and
insights made possible by design recovery and analysis, the
results of these insights must be presented in a way that attaches
them to the source code itself. Moreover, as program
comprehension technology matures, the possibility of
automating appropriate reprogramming of source becomes a
more and more tantalizing.

Both of these observations imply that representation of
design information, including structure, semantics and business
knowledge, need to be somehow attached directly to source.
XML [4] provides an industry standard source markup
technology that has the potential to provide us with an
appropriate bridge. Using a partial XML markup of the parse
tree in source code, McArthur [3] has demonstrated some of this
potential. In this paper we extend and generalize the partial

markup idea to minimize and focus source markup by
selectively marking up in the source only those AST nodes that
are relevant to each particular task. By exploiting the ideas of
agile parsing, we generalize this idea to contextually and
semantically sensitive selective partial AST markup as well.

2. Agile Parsing

Agile parsing [5,6] refers to the ability to use a customized
version of the input language grammar for each particular
analysis and transformation task. Based on a standard "base
grammar" for the input language, agile parsing provides the
ability to "override" nonterminal definitions on a per-task basis
to modify the parse to yield an AST that makes the source
analysis or transformation more efficient and convenient.

Although in theory different parsers can be generated for
each task using traditional parser generator technology, agile
parsing is most conveniently supported using an interpretive
parser that supports execution time grammar definition and
modification such as that provided by TXL [7,8]. Because
TXL's parser interprets grammars directly at analysis and
transformation execution time, it easily supports agile parsing.

The TXL language provides several features designed to
support agile parsing. Each TXL program begins with a "base
grammar" for the input language, a standard general purpose
grammar typically based on the language’s standard reference
grammar. The basic agile parsing feature is the nonterminal
"override", which allows a given nonterminal of the base
grammar to be replaced with a definition more appropriate to the
task at hand. Overrides are written in TXL using the "redefine"
statement [Figure 1(a)]. The semantics of an override is that the
effective grammar for the tool is the original base grammar with
the definition of the overridden nonterminal replaced by given
redefinition, yielding a different custom AST intended to make
the task easier.

More sophisticated overrides can use extensions of the
existing nonterminal form by referring to it using the the "..."
notation [Figure 1(b)]. In a TXL redefine, "..." refers to the
definition of the overridden nonterminal form before it was
extended by the redefine. The "..." can be used in a post-
extension, in which additional alternatives for the nonterminal
are added after the originals by the redefine, or as a pre-
extension, in which additional grammatical forms come first and
take precedence over the original forms. Extension overrides

Generalized Selective XML Markup of Source Code
Using Agile Parsing

James R. Cordy

School of Computing, Queen’s University
Kingston, Ontario, Canada K7L 3N6

cordy@cs.queensu.ca

This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).!

often exploit TXL's ordered ambiguity resolution. New forms
introduced by the redefine can ambiguously overlap existing
forms, with the semantics that forms are tried in the order
specified in the effective definition, with first forms taking
precedence over later forms, yielding a well-defined
deterministic parse.

Other features of TXL supporting agile parsing include
general nonterminal polymorphism ([any]), nonterminal type
query ([typeof]), programmed syntactic AST extraction ([^])
and transformation-time reparsing of transformed elements (
[reparse]). Grammar reflection (modifying the grammar on-
the-fly as the result of transformation or analysis) is theoretically
possible and supported by the TXL engine but not yet directly
available in TXL.

3. An XML-based TXL

FreeTXL [9] is a new implementation of the TXL language
based on XML from the ground up. Because FreeTXL uses
XML directly to represent parse trees, full XML markup of the
AST in source is a simple flag and need not be programmed.
For example, the result of the –Dparse (“¨Dump parse”) flag in
FreeTXL is a version of the input source fully XML-marked
with the input parse [Figure 2].

Similarly, because the result of every FreeTXL
transformation is a new parse tree internally represented using
XML, the parse tree of the result of a TXL transformation can
also be directly yielded using the –Dfinal (“Dump final parse”)
flag, which yields a version of the transformed output source
that is fully XML-marked with the output parse of the source.

However, while for some purposes it may be useful, a fully

include “Cpp.Grammar”

redefine function_definition
 [function_header]
 [opt exception_specification]
 [function_body]
end redefine

define function_header
 [opt decl_specifiers]
 [function_declarator]
 [opt ctor_initializer]
end define

(a) Replacing a nonterminal in TXL.

The redefine statement gives a new definition for the redefined
nonterminal which replaces the original in the base grammar
to yield a different parse. In this case, the new nonterminal
[function_header] is introduced to capture the entire header
line of C++ functions in one piece.

include “Java.Grammar”

redefine expression
 ...
 | [xmltag] [expression] [xmlendtag]
end redefine

redefine method_call
 [jdbc_call]
 | ...
end redefine

(b) Extending a nonterminal in TXL.

The “...” notation in a redefine statement refers to the
original syntactic forms of the redefined nonterminal in order
to allow extension of the nonterminal to other forms. In cases
of ambiguity, the order of alternatives determines the parse. If
the “...” appears first in an extension, then the old forms are
preferred. If it appears last, then the new forms take
precedence, as with [jdbc_call] above.

Figure 1. Basic TXL Support for Agile Parsing.

TXL 10.2d (18.9.02) (c)1988-2002 Queen's
University at Kingston
Compiling Txl/cpp.Txl ...
Parsing Examples/groff.cpp ...

----- Input Parse Tree -----
<program>
 <declaration_list><repeat_declaration>
 <declaration>
 <preprocessor>
 <literal text="#include"/>
 <literal text="<"/>
 <filename>
 <file_identifier><id text="stdio"/>
 </file_identifier>
 <repeat_dot_slash_identifier>
 <dot_slash_identifier>
 <opt_'.><lit_'.><literal text="."/>
 </lit_'.></opt_'.>
 <opt_'/><empty/></opt_'/>
 <file_identifier><id text="h"/>
 </file_identifier>
 </dot_slash_identifier>
 <repeat_dot_slash_identifier>
 <empty/>
 <empty/>
 </repeat_dot_slash_identifier>
 </repeat_dot_slash_identifier>
 </filename>
 <literal text=">"/>
 </preprocessor>
 </declaration>
 <repeat_declaration>
 <declaration>
 <preprocessor>
 <literal text="#include"/>
 <literal text="<"/>
 <filename>
 <file_identifier><id text="string"/>
 </file_identifier>

Figure 2. Example output of the –Dparse FreeTXL flag for
the first line and a half of a C++ program.

XML-marked source parse is a huge and not very practical
source representation [2]. More interesting is the question of
how to minimize the XML-markup to focus on only those AST
nodes that are relevant to the next task we have in mind [3].
For example, if we are interested in the call structure of the
program, only those nodes representing method declarations and
method calls may be appropriate.

4. Programmed AST Markup

If we are to gain control of AST markup in TXL, we must
first address the issue in the programmed side of the language,
not in the debugging dumps of the FreeTXL processor.
Basically, we need to code a TXL transformation that transforms
an input program to its own XML-marked up source AST. In

order to do this, we can make use of the agile parsing [5,6]
features of the language to define a generic set of XML markup
syntactic forms [Figure 3(a)]. We can then write a simple
polymorphic rule to visit every node in the input AST, query its
node type and then use polymorphic transformation to replace it
by its own XML-marked up form [Figure 3(b)].

This is actually trickier than it sounds, which is why the rule
set in Figure 3 is not quite as simple as one might expect.
Because TXL rules continue transforming to a fixed point, it is
necessary to limit the scope of the visit rule to avoid looking
inside already marked-up nodes (“skipping [xml_node]”),
otherwise the transformation would never halt. However, by
skipping marked-up nodes, the rule never visits any internal
nodes. This is corrected using a recursive rule invocation in the
XML markup function itself (“[toXml Node]”) to explicitly

% Visit each node in the parse of the input
rule toXml SameNode [any]
 % Do not mark up already marked up nodes!
 skipping [xmlnode]
 % Otherwise visit every parse tree node
 replace $ [any]
 Node [any]
 % Don't recursively re-visit a node
 deconstruct not Node
 SameNode
 by
 Node [tagWithType]
end rule

% Mark a parse tree node with its type in XML
function tagWithType
 replace [any]
 Node [any]
 % Get the type of the node
 construct Type [id]
 _ [typeof Node]
 % Construct an XML markup of it, and
 % recursively visit its children
 construct Xml [xmlnode]

<Type> Node [toXml Node] </Type>
 % Make it generic so we can replace it
 deconstruct * [any] Xml
 XmlNode [any]
 by
 XmlNode
end function

(b) Transformation rules of the parse tree markup program

The [toXml] rule visits every parse tree node, skipping those we
have already marked. The [tagWithType] function constructs
the XML markup of the node with its type name, and recursively
invokes [toXml] to tag inner nodes.

% TXL generic transform of input program
% into XML parse tree

% This line is the ONLY language dependency
% in this program!
include "Cpp.Grm"

% Polymorphic XML markup grammar
define xmlnode
 [xmltag] [any] [endxmltag]
end define

define xmltag
 < [id] >
end define

define endxmltag
 </ [id] >
end define

% Main rule to get us started
function main
 % Need a generic null node to seed markup
 construct Null [id] _

 deconstruct * [any] Null
 NullNode [any]

 % XML markup the whole program
 replace [program]
 P [program]
 by
 P [toXml NullNode]
end function

(a) Grammatical forms and main function of the generic XML
parse tree markup program

The base grammar is that of the input language, in this case
C++. The [xmlnode] definition is the root of a separate
polymorphic grammar that allows markup of any nonterminal.

Figure 3. Generic TXL program to mark up input source with its own AST as XML tags.

visit the subnodes of each node we mark up. The result is a
simple, language-independent generic XML AST markup
program that yields XML output isomorphic to FreeTXL’s
parse tree dump (although not as pretty). The difference is that
now that we have control of the markup program, we can use it
as a basis for exploring refinements of AST source markup.

5. Island Parsing

One approach to focussing AST markup can be at least
partly addressed using Moonen’s "island parsing" technique [10]
to mark up with XML only those "islands" in the source that are
relevant to the task at hand. This technique vastly reduces the

size of the marked up source by avoiding markup of most of it.
Using agile parsing, island parsing can be coded directly in TXL
[Figure 4]. The main nonterminal of the base grammar (
[program]) is overridden using a redefine to say that the input
consists of the "islands", nonterminals of interest selected from
the nonterminal set of the base grammar, and the "water",
uninterpreted sequences of input text that lie between. TXL
transformation and analysis rules can then be applied to only the
islands, with the water being skipped.

In particular, if the desired output is simply XML-marked up
islands with no markup elsewhere, we can simply add the island
grammar overrides to our AST markup program, and then
change the main rule to invoke [toXml] on islands only [Figure
4]. The result is output that is fully marked up in the islands but
unmarked elsewhere.

Agile parsing allows each tool to use its own definition of a
different island grammar appropriate to its task, all based on the
same base grammar. Because the base grammar itself is never
changed, no grammar maintenance problems are introduced by
these variants, and there is no need to maintain a set of
alternative but similar grammars.

Complex multi-level island and lake structures can easily be
encoded by introducing other nonterminals from the base
grammar as first alternatives for uninterpreted elements in the
definitions for "water". Because first forms take precedence in
the parse, these embedded islands will always be recognized by
the parser rather than being discarded as "water".

It should be pointed out that in TXL there is no need to use
island parsing to mark up islands. The same effect can be
achieved using no grammar overrides at all simply by removing
the island overrides and targeting the main rule shown in Figure
4 to [expression] rather than [island]. This technique has the
added benefit that only contextually valid [expression]s will be
marked up, rather than simply any sequence of input items that
happens to look like one. Moreover, because TXL can parse
valid input just as fast as it can slough lexemes, there is no
efficiency penalty to doing things this way. However, this
method ignores the robust parsing benefits of island parsing and
thus may not be suitable in all cases.

6. Selective AST Markup

Given the heavyweight XML representation of full AST's,
even island markup of AST’s only reduces the problem, it does
not solve it. McArthur [3] has suggested that this can be
addressed using partial AST markup. By gaining control over
marked up sections using the “unparsed” notion, McArthur’s
method yields XML markup that is significantly more focussed
and lightweight. Ideally, we should have a partial markup that
has only those AST nonterminals of interest to each particular
task marked up with XML, for example simply [expression] but
not [factor], [term], [primary], [reference], and so on that it
derives, and not [statement, [method], [class] and so on that
derive it. In this way our output can be minimally marked up to
exactly suit the task at hand.

Selective markup of syntactic forms using agile parsing in
TXL uses a technique similar to the island markup technique
described in the previous section. Beginning with our original

% This line is the ONLY language dependency
% in this program!
include "Cpp.Grm"

% Island grammar for C++ expressions only
redefine program
 [repeat island_or_water]
end redefine

define island_or_water
 [island] | [water]
end define

define island
 [expression]
end define

define water
 [token] | [key]
end define

% Main rule to get us started
rule main
 % Need a generic null node to seed markup
 construct Null [id] _

 deconstruct * [any] Null
 NullNode [any]

 % XML markup all islands only
 skipping [xmlnode]
 replace $ [island]
 I [island]
 by
 I [toXml NullNode]
end rule

Figure 4. Modifications to the generic XML parse tree markup
program to island parse expressions only.

The base grammar is still C++, but an agile parsing override
changes the main nonterminal [program] to parse [expression]
islands only, sloughing off everything else as raw lexemes. The
main rule is then modified to target islands rather than the
whole input. The rest of the TXL program remains unchanged.

generic markup program of Figure 3, first a set of nonterminal
names to be marked is specified as a sequence of identifiers
[Figure 5]. The XML markup rule [toXML] is then modified to
look specifically for nodes whose type name matches one of
these interesting nonterminal names. As each is found, it is
marked with XML. The result is a version of the input with only
those nonterminal nodes marked with XML tags [Figure 6].

This selective markup technique marks precisely those parts
of the source we are interested in while completely avoiding the
overhead of full XML markup. The result is a lightweight,
efficient marked-up source highlighting only those AST nodes
we are really interested in.

7. Refining Markup to Task Using Agile Parsing

However, using agile parsing we can do even better. Using
grammar overrides, we can actually modify the grammar to use
a different parse more convenient for our task. By exploiting
TXL's ordered ambiguity resolution, we are free to add grammar

overrides that specify very precisely the exact form of the items
we are interested in for a particular task. For example, if we are
interested only in method calls to the Java JDBC library, why
mark up all method calls?

Figure 7 shows a version of the selective markup program in
which the Java language base grammar has been modified to
parse JDBC method calls in preference to general method calls.
Because the overriding redefine gives the JDBC forms as the
first alternative, the parser will always find these first and parse
each particular method call as general method call only if it
cannot be parsed as a JDBC call.

This is a very simplified demonstration of a much more
powerful technique. By exploiting the ordered ambiguity of
TXL's agile parser, we can focus the selective markup very
precisely in this way. Any structure whose characteristics can
be described using context free form can be selectively marked
with XML using this method, without any modification to the
language base grammar or the parser.

8. Semantically Refining Markup Using
 Transformation Rules

Of course, XML markup need not be the first or only thing
that a TXL program does. By exploiting ambiguity in the
grammar, we can also focus the markup by writing analysis
rules that change the nonterminal type of a subtree based on its
contextual or semantic properties. For example, if we want to
identify only those JDBC calls that are embedded in a particular
class or that reference a particular host variable, we can write a
TXL rule to find such instances and change their nonterminal
type, and then focus the XML selective markup rules to mark up
exactly those instances based on the changed nonterminal type.

Figure 8 shows an example of this technique. In this case
we are interested only in those JDBC calls that are conditional -
that is, those that are guarded by an if or while statement. The
grammar overrides in this case allow two separate and
ambiguously identical alternatives for JDBC calls - [jdbc_call]
and [guarded_jdbc_call]. Because [jdbc_call] is given as the
first alternative, the parser will always parse any JDBC calls in
the input source as [jdbc_call], and never as
[guarded_jdbc_call]. However, because both alternatives are
allowed, TXL will consider parse trees using either to be well-
formed, allowing transformation rules to introduce
[guarded_jdbc_call]s in place of [jdbc_call]s in the parse.

The rule [identifyGuardedJdbcCalls] does exactly that.
Taking advantage of agile parsing to identify
[guarded_statement]s, the rule changes the type of any
[jdbc_call]s embedded in them to [guarded_jdbc_call]. Once
this is done, the selective AST markup can be targeted to
[guarded_jdbc_call] to introduce the XML markup of every
guarded call to JDBC in the source output.

While this example is a simple and contrived contextual
analysis, it does serve to demonstrate the general technique. The
result of any source analysis that can be coded in TXL, no
matter how complex, can be reflected into output source as a
selective AST markup using this paradigm.

% The interesting nonterminals for the task -
% this line goes at the beginning of the main
% rule to make it easy to change
export InterestingTypes [repeat id]
 ‘expression ‘function_declarator

% Mark a parse tree node with its type in XML
% - but only if it’s an interesting node
function tagWithType
 replace [any]
 Node [any]
 % Get the type of the node
 construct Type [id]
 _ [typeof Node]
 % Check it’s one of our interesting ones
 import InterestingTypes
 deconstruct * [id] InterestingTypes
 Type
 % Construct an XML markup of it, and
 % recursively visit its children
 construct Xml [xmlnode]

<Type> Node [toXml Node] </Type>
 % Make it generic so we can replace it
 deconstruct * [any] Xml
 XmlNode [any]
 by
 XmlNode
end function

Figure 5. Modifications to the generic XML parse tree markup
program to selectively mark up [expression] and
[function_declarator] only.

The list of interesting nonterminals for the task is given by the
global InterestingTypes list. The [toXml] markup function then
simply checks that each node is in the interesting set before
marking it up with XML.

9. Practicality, Performance and Scalability

Three questions of practicality arise concerning the
techniques outlined in this paper. The first is the question of
applicability to other languages. Although we have only used
C++ and Java in the examples in this paper, the only dependence
on source language is the base grammar and our use of it in
analysis rules. The technique itself is language independent, and
the TXL program of Figure 3 will work exactly as is for any
other language simply by replacing the include statement for the
base grammar with an include for the base grammar of any other
language.

The second issue is the question of output size. If selective
markup is to be a practical technique, the resulting marked up
XML documents must be minimally larger than the original
source. This measure is certainly met by the selective AST
markup technique. The fully XML marked up AST of the 800
line standard open source groff.cpp program is 1.07 Mb, or 55
times larger than the original 19 kb source code. By island
marking the AST’s of only the expressions in the program as
shown in Figure 4 we still get 307 kb or 15 times the original.
However, by selectively marking up only the [expression] and
[function_declarator] nonterminals as shown in Figure 5, the
result is only 30.4 kb or 1.57 times the original source size.

The third and possibly most important issue is the question
of efficiency and scalability. One of the reasons for the TXL
maxim “let the parser do the work” is the speed of the TXL
parser. On an 800 MHz PowerPC, the FreeTXL parser takes
0.16 seconds of CPU time to parse and pretty print the 800 line
standard open source groff.cpp program, and 0.97 seconds to
dump its 2.5 Mb XML parse tree. The programmed generic
XML source-to-parse tree transform of Figure 3 takes 2.44
seconds to do the same thing using source transformation rules.

void <function_declarator>possible_command::build_argv()</function_declarator>
{
 int len=args.length();
 int argc=1;
 char*p=0;
 if(<expression>len>0</expression>){
 <expression>p=&args[<expression>0</expression>]</expression>;
 for(int i=0;<expression>i<len</expression>;<expression>i++</expression>)
 if(<expression>p[<expression>i</expression>]=='\0'</expression>)
 <expression>argc++</expression>;
 }
 <expression>argv=new char*[<expression>argc+1</expression>]</expression>;
 <expression>argv[<expression>0</expression>]=name</expression>;
 for(int i=1;<expression>i<argc</expression>;<expression>i++</expression>){
 <expression>argv[<expression>i</expression>]=p</expression>;
 <expression>p=strchr(p,'\0')+1</expression>;
 }
 <expression>argv[<expression>argc</expression>]=0</expression>;
}

Figure 6. Extract from example output of the selective AST markup program of Figure 5.

% Use the same markup program with Java
include "Java.Grm"

% Use parser to identify JDBC calls
% (simplified for demonstration purposes)
redefine method_call
 [jdbc_call]
 | ...
end redefine

define jdbc_call
 [jdbc_name] [arguments]
end define

define jdbc_name
 ‘createStatement | ‘prepareStatement
 | ‘executeUpdate | ‘executeQuery | ‘getRow
end define

% This time the only interesting things are
% JDBC calls - this line goes in the main rule
export InterestingTypes [repeat id]
 ‘jdbc_call

Figure 7. Modifications to the selective generic XML parse
tree markup program using agile parsing to identify and
selectively mark up [jdbc_call] only.

The base grammar in this case is Java. The Java base
grammar has been overridden to prefer parsing method calls
as [jdbc_call] when the name of the called method is one of the
standard JDBC operations. The selective [tagWithType] rule
remains as in Figure 5 and the rest of the TXL program is
unchanged.

The island parsing version of Figure 4 takes 0.94 seconds to
mark up expression islands only, or 1.27 seconds if expression
islands are marked using the standard full parse instead. The
generic selective markup program of Figure 5 takes 0.52
seconds to selectively mark up expressions and function
declarators as shown in Figure 6.

Experiments show that performance of all of these programs
is linear in the length of the input source. For example, the
selective markup that took 0.52 seconds to process the 800 lines
of groff.cpp takes 5.39 seconds to mark up a similar 8,000 line
C++ program that is 10 times larger, and 55.09 seconds to
process an 80,000 line C++ program that is 100 times larger.

10. Conclusion

Structural markup of source code using XML is a powerful
and permanent representation with a wide range of uses in
software analysis systems. While full markup of AST nodes in
source is useful, it is too large and cumbersome to be practical
and efficient for large scale tasks. McArthur [3] has
demonstrated that partial markup may be the solution to these
limitations.

In this paper we have shown how we can generalize and
focus the idea of partial markup using agile parsing. By making
possible selective markup of only the nonterminals of interest,

% Use the same markup program with Java
include "Java.Grm"

% Use parser to identify JDBC calls
% (simplified for demonstration purposes)
redefine method_call
 [jdbc_call]
 | [guarded_jdbc_call]
 | ...
end redefine

define jdbc_call
 [jdbc_name] [arguments]
end define

define guarded_jdbc_call
 [jdbc_name] [arguments]
end define

define jdbc_name
 ‘createStatement | ‘prepareStatement
 | ‘executeUpdate | ‘executeQuery | ‘getRow
end define

% Use parser to identify guarded statements
redefine if_statement
 'if '([expression] ')
 [guarded_statement]
 [opt else_clause]
end redefine

redefine else_clause
 'else
 [guarded_statement]
end redefine

redefine while_statement
 'while '([expression] ')
 [guarded_statement]
end redefine

define guarded_statement
 [statement]
end define

% This time interesting things are guarded
% JDBC calls - this line goes in the main rule
export InterestingTypes [repeat id]
 ‘jdbc_call

% Visit each guarded statement
rule identifyGuardedJdbcCalls
 replace $ [guarded_statement]

GS [guarded_statement]
 by
 GS [retypeJdbcCalls]
end rule

% Retype all embedded [jdbc_call] nodes
% to [guarded_jdbc_call]
rule retypeJdbcCalls
 replace [method_call]
 JDBC [jdbc_call]
 deconstruct JDBC
 Name [jdbc_name] Args [arguments]
 construct GJDBC [guarded_jdbc_call]
 Name Args
 by
 GJDBC
end rule

Figure 8. Modifications to the selective generic XML parse tree markup program using agile parsing to semantically
selectively mark up [guarded_jdbc_call]s only.

The Java base grammar has been overridden to prefer parsing method calls as [jdbc_call] when the name of the called method is one
of the standard JDBC operations. The ambiguously identical [guarded_jdbc_call] type is used as an indicator for the result of the
analysis done by the [identifyGuardedJdbcCalls] rule. Identification of guarded contexts is done using agile parsing to override the
definitions of [if_statement], [else_clause] and [while_statement] to use [guarded_statement] in place of [statement]. To complete
the program, the selective [tagWithType] rule remains as in Figure 5, the main rule is modified to invoke [identifyGuardedJdbcCalls]
before [toXml], and the rest of the TXL program is unchanged.

agile parsing allows for precise refinement of XML markup to
the task, without the need for any redundant tags. By exploiting
ambiguity, we can use transformation rules to introduce
semantics into the markup, allowing for a lightweight but
effective XML source representation of the results of complex
and interesting software analyses. Measurements show that the
technique is efficient, practical and scalable to industrially-sized
source programs.

In this paper we have intentionally elided a number of minor
technical details in order to keep examples small and maintain
focus. For example, the output markup shown in Figure 6 is
technically invalid XML because we have not shown the rules to
perform the lexical translation of < and > to < and >
which must be a part of any real XML markup transformation.
We have also not shown the necessary formatting cues for pretty
printing of the XML output. These details do not affect the
applicability or performance of the techniques described.

References.

[1] J.R. Cordy, K.A. Schneider, T.R. Dean and A.J. Malton,
"HSML: Design Directed Source Code Hot Spots", Proc. IWPC
2001 - 9th Int. Workshop on Program Comprehension, Toronto,
Canada (May 2001), pp. 145-154.

[2] J.F. Power and B.A. Malloy, “Program Annotation in XML:
a Parse-tree Based Approach”, Proc. WCRE 2002 - 9th Working
Conference on Reverse Engineering, Richmond, Virginia
(October 2002), pp. 190-198.

[3] G. McArthur, J. Mylopoulos and S.K.K. Ng, “An Extensible
Tool for Source Code Representation Using XML”, Proc.
WCRE 2002 - 9th Working Conference on Reverse Engineering,
Richmond, Virginia (October 2002), pp. 199-208..

[4] World Wide Web Consortium, “Extensible Markup
Language (XML) 1.0”, http://www.w3.org/TR/1998/REC-xml-
19980210.pdf (February 1998).

[5] T.R. Dean, J.R. Cordy, A.J. Malton and K.A. Schneider,
"Grammar Programming in TXL", Proc. SCAM'02 - IEEE 2nd
International Workshop on Source Code Analysis and
Manipulation, Montréal (October 2002), pp. 93-102.

[6] T.R. Dean, J.R. Cordy, A.J. Malton and K.A. Schneider,
"Agile Parsing in TXL", submitted to J. Automated Software
Engineering Special Issue on Source Code Analysis and
Manipulation, expected 2003.

[7] J.R. Cordy, C.D. Halpern and E. Promislow, "TXL: A Rapid
Prototyping System for Programming Language Dialects",
Computer Languages 16,1 (January 1991), pp. 97-107.

[8] J.R. Cordy, T.R. Dean, A.J. Malton and K.A. Schneider,
"Software Engineering by Source Transformation - Experience
with TXL", Proc. SCAM'01 - IEEE 1st International Workshop
on Source Code Analysis and Manipulation, Florence
(November 2001), pp. 168-178.

[9] TXL Project, “The TXL Programming Language, Version
10.2”, http://www.txl.ca/docs/TXL102LangRef.pdf (April 2002).

[10] Leon Moonen, “Generating Robust Parsers Using Island
Grammars”, Proc. 8th Working Conference on Reverse
Engineering, Stuttgart (October 2001), pp. 13–22.

