
A Service-Sharing Methodology for Integrating COTS-Based Software Systems

Dean Jin
Department of Computer Science

University of Manitoba
Winnipeg, Manitoba, Canada
djin@cs.umanitoba.ca

James R. Cordy
School of Computing
Queen’s University

Kingston, Ontario, Canada
cordy@cs.queensu.ca

Abstract

This paper outlines a proposal for a novel approach
to integration of COTS-based systems. Our method-
ology focuses on systems that operate in the same or
similar application domains. Each COTS-based sys-
tem is viewed in terms of the services it provides. We
propose the use of a domain ontology and specially
constructed service adapters to facilitate the sharing
of these services with other COTS systems, effectively
facilitating interoperability among them.

1. Introduction

The integration of existing software components
into a consistent and interoperable whole is difficult to
achieve in systems that were not originally designed to
work together. This task can be even more challeng-
ing in systems composed of one or more COTS-based
components. This is because internal system compo-
nent integration adds a level of complexity to the ex-
ternal system integration challenges.

In this paper we outline an approach to systems in-
tegration that has demonstrated success in integrating
tool systems that operate in the reverse engineering do-
main. It is our belief that this approach has promise for
application in other domains, including higher-level
integration as it relates to COTS-based systems. Our
approach to integration relies on a number of fun-
damental assumptions about COTS systems and the
motivation that drives the need for integration among
them. We outline an operational and representational
perspective on systems that leads to the development

of an integration methodology that can be applied in
COTS-based integration efforts.

To achieve effective interoperability, many organi-
zational, technological and engineering issues must be
fully addressed [7]. We restrict our discussion to infor-
mation issues with special emphasis on sharing func-
tionality as opposed to simply sharing data among sys-
tems. Technical issues will be the focus of our imple-
mentation efforts and future publications.

2. Terminology

The terminology used in the software development
industry is notoriously inconsistent [3] and the area of
COTS systems is certainly no exception. In this sec-
tion we outline the terminology we use to characterize
our approach to integration. This is done to ensure we
use a consistent nomenclature, although this may not
correspond to the broad range of terminology used in
practice.

2.1. COTS Application Domains

COTS-based systems have been deployed exten-
sively in business, government and military organiza-
tions. For this reason, COTS systems operate in a very
broad range of application areas. However, integra-
tion efforts are typically driven by the need to combine
functionality among systems that operate in the same
or very similar application areas.

A COTS system typically falls into a set of one or
more very similar application categories. We use the
term application domain to refer to this set. Consider-
ing the application domain for a system makes it eas-
ier to determine the difficulty involved in integrating



two systems. Systems that operate in the same or very
similar application domains typically represent similar
concepts and often operate in a manner that is more
like other systems that share the same application do-
main. Systems that operate in different application do-
mains are typically more incompatible in what they
represent and how they function.

At a conceptual level, there is typically some de-
gree of overlap that exists between the operational and
representational characteristics of COTS systems be-
ing integrated. Without such an overlap, the justifica-
tion for integrating the systems would not exist. For
example, it makes very little sense to integrate an ac-
counting system with a weapons control system. More
likely, these systems would be integrated with other
business management and battlefield management sys-
tems respectively. Business management applications
are typically transaction-based systems that work with
financial or business rule concepts. In contrast, a sys-
tem working in the battlefield management applica-
tion domain might deal with concepts that relate to
geographic position, troop or equipment logistics, and
risk. It is clear that from a conceptual perspective an
accounting system can be more easily integrated with
other systems that operate in the business management
application domain. This does not mean that integra-
tion cannot be accomplished among systems that op-
erate in different application domains. It just means
that the opportunity for equivalence among the con-
cepts represented by each system is higher for those
systems operating in the same application domain than
it is for those operating in different domains.

2.2. Conceptual Equivalence

The notion of conceptual equivalence is important
for our integration methodology. While many COTS
systems function differently, when they operate in the
same or very similar application domains they often
represent the same concepts. Even though the un-
derlying implementation for these representations may
differ, from a conceptual perspective they represent
the same thing. Conceptual equivalence among the
representations of different COTS systems provides a
means for achieving semantic interoperability, an im-
portant prerequisite for integration success.

2.3. Representation Knowledge and Invoca-
tion Knowledge

A COTS system can be viewed as a black box that
provides certain functionality on its own or through its
use with other previously deployed systems [1]. From
this perspective, a COTS system can be characterized
in terms of the inputs it requires and the outputs that it
produces. One of the main barriers to COTS integra-
tion is that these systems really are black boxes. COTS
vendors often have a vested interest in keeping the in-
ternal operations of their system proprietary. While
stakeholders may not have access to the internal work-
ings of a COTS system, they typically have knowledge
of the input and output representations supported by
the system. We call this representation knowledge. As
well, stakeholders typically have access to the mech-
anisms that control the execution or invocation of a
COTS system. We call this invocation knowledge.
Representation and invocation knowledge provide a
means for achieving functional interoperability, also
an important prerequisite for integration success.

2.4. Services

The general notion of a service is defined by Love-
lock et al. as:

“an act or performance offered by one party
to another. Although the process may be tied
to a physical product, the performance is es-
sentially intangible and does not normally
result in ownership of any of the factors of
production” [6]

Using this definition, we can view the functionality
provided by a given COTS-based system as a set of
services. A COTS system may provide a single ser-
vice or multiple services depending on how it is con-
structed. When given a valid set of required inputs,
each service generates a corresponding output. In an
integration context, this output is a desirable result that
is relevant to the stakeholder of another system.

3. Abstracting the Functional Characteristics
of a COTS System

If we take an abstract view of a COTS system, it can
be divided into the following three components:



(a) Schema. A definition for the information model
used by the system. Depending on the system,
the information model for input may be different
from the information model for the results pro-
vided by the system. For the purpose of our dis-
cussion, we distinguish the input schema from the
output schema for a given COTS-based system.
The complete schema is based on the union of
both of these information models.

(b) Operations. A set of actions that the system per-
forms based on the service invoked and the in-
puts provided. Different actions may be associ-
ated with different services.

(c) Information. This is data represented in a form
dictated by the schema that is suitable for pro-
cessing by the operations the system performs.

Of these three components, the schema for a COTS
system is the most important. Since operations work
on information input, their structure and form are in-
extricably tied to the representation defined by the
schema. In this way, the schema acts as a regulator for
both the information content and the data operations
that the system performs. The schema also acts as a
definitive reference for the representational and opera-
tional characteristics of a given system. It is therefore
a key resource for integrators, providing representa-
tional and operational details about a COTS system.

The abstract functional characteristics of a COTS
system can be expressed in terms of schemata, oper-
ations, and information as shown in Figure 1. The
grey box is the COTS system itself. Although the in-
ner workings of the system are unknown, we do know
that a set of operations (Q) are built into the system.
When a service is invoked by the user, a subset of
these operations will be carried out on the input infor-
mation (Iin) resulting in the output information (Iout ).
The input schema (Sin) defines the content and struc-
ture of the input information and the operations that are
performed on them. The content and structure of the
results (Iout ) are defined by the output schema (Sout ).
A directed, dashed line reflects the important role the
schema plays in defining the informational and opera-
tional aspects of the system.

4. Integration Architecture

The goal of our integration methodology is to foster
interoperability among COTS systems through sharing
of the services that each system provides. This can be
accomplished when the requirements for semantic and
functional integration have been fulfilled, namely:

• there is conceptual equivalence in the representa-
tion supported by each COTS system to be inte-
grated,

• representation knowledge for each COTS system
exists, and

• stakeholders have invocation knowledge for the
services to be shared by the COTS systems.

Consider n COTS-based systems that fulfill these
requirements. We want these systems to cooperate in
an integration, referring to the set of systems for which
we are facilitating interoperability. A system in the in-
tegration is referred to as a participant. Each partici-
pant offers at least one service to the integration that
can be shared among the other participants.

Figure 2 provides an architectural view of our pro-
posed integration environment. The makeup of each
system (shown as System 1, System 2, ... System n)
participating in the integration reflects our view of the
abstract functional characteristics of COTS systems
we outlined in Figure 1. Each system has its own input
and output schema (Sin and Sout ) that defines the con-
tent and structure of the input and output information
(Iin and Iout ).

Our integration methodology involves the creation
of two types of components:

1. Domain Ontology. This component stores all the
knowledge required to support service-sharing
among each of the systems participating in the
integration. The knowledge is stored as a tab-
ularized, cross-referenced compilation of repre-
sentational concepts and services offered by each
integration participant.

Taken together, the representational concepts
stored in the domain ontology define a conceptual
space, consisting of conceptual slots that data fit
into. A data item fits into a slot only when the



inI

inS

outI

outS

Q

Sin = Input schema
Sout = Output schema
Q = A set of operations the COTS system implements
Iin = Information input into the COTS system
Iout = Resulting information output from the COTS system

Figure 1. Abstract Functional Characteristics of a COTS System

Each COTS system can be viewed as a black box. Although the implementation details of the system are hidden,
some knowledge (either specific or intuitive in nature) of the set of operations (Q) that the system carries out
is available. The structure and format of the input information (Iin) and the resulting output (Iout ) are defined
respectively by schemas Sin and Sout . The operations that the system performs on the input information depends
on the characteristics of the information model defined by the input schema.

concept it represents matches a concept in the do-
main ontology. We say that a system has concept
support when this occurs. We describe concept
support (in the context of reverse engineering tool
integration) in more detail in an earlier paper [5].
Shared services only operate on data items that fit
into these conceptual slots.

A service offered by a system participating in the
integration can be shared only when the concepts
required by the service intersect with the concepts
supported by another participant. Only one do-
main ontology is required for each integration im-
plementation.

2. Conceptual Service Adapters (CSAn). These
components function as integration facilitators
for systems participating in the integration. Each
COTS system is affiliated with a single concep-

tual service adapter. Each makes use of the do-
main ontology to get the information it needs to
regulate the integration process. Conceptual ser-
vice adapters perform the following three main
functions:

(a) Shared Service and Concept Support Iden-
tification. Making use of the knowledge
stored in the domain ontology, each concep-
tual service adapter identifies requests for
shared services and determines the concepts
each service requires.

(b) Data Filtering. Depending on the mode of
operation invoked, each conceptual service
adapter will map all data items into and out
of the conceptual space defined by the do-
main ontology. We call this process filter-
ing. Mapping data into the conceptual space



�
Domain 

Ontology

System
1

CSA1

System
2

CSA2

System
n

CSAn

…

…To
CSAn

To
CSA1

Figure 2. Our COTS System Integration Architecture

Each system participating in the integration supports the representation of concepts that relate to the application
domain they operate in. The Domain Ontology stores knowledge about the concepts each system supports, the
shared services each system offers to the integration, and the concept support that each service requires. On
request, a Conceptual Service Adapter (CSA) uses the knowledge stored in the Domain Ontology to identify a
service that can be shared. Each CSA looks after the data filtering required for a given system and communicates
with the CSA for the other system to request execution of the shared service.

is performed by an inFilter. Mapping from
the conceptual space is performed by an
outFilter. Both of these filters are specially
tailored to work with the representation sup-
ported by the information model for the sys-
tem that the conceptual service adapter is
associated with. A more detailed discus-
sion of the filtering process (in the context
of reverse engineering tool integration) can
be found in our earlier paper [4].

(c) Shared Service Execution. Each concep-
tual service adapter manages requests from
other conceptual service adapters for the ex-
ecution of shared services on the system
they are associated with.

Although all the conceptual service adapters have
the same basic architecture and operating charac-
teristics, each is specially constructed to handle
the functional and information filtering aspects of
its corresponding system that are required to fa-
cilitate interoperability.

The access and communication links between the
domain ontology, the conceptual service adapters, and
systems they are associated with are shown as undi-
rected, solid black lines in Figure 2.

5. An Integration Example

To better understand how our approach to COTS
system integration works, we provide an example that



applies our methodology to a COTS system integration
problem.

Consider a (hypothetical) organization that provides
relief supplies to remote areas of a war-torn coun-
try. The organization has a number of trucks for
transporting equipment and supplies to areas where
they are needed. Each truck driver takes a predefined
route from the supplies depot to the destination. A
COTS-based Relief Logistics System supports distri-
bution and route planning activities, keeping track of
the trucks, their drivers, the supplies they carry and the
routes they take.

Although the inner workings of the Relief Logistics
System are hidden, the relief organization does have
access to the file where all the information maintained
by the system is stored. An analysis of this file yields
the schema shown in Figure 3(a). The representation
is expressed as an Entity-Relationship (E-R) [2] model
showing the type of entities and relationships that exist
among the information supported by the system. The
Relief Logistics System is executed from a command
shell by calling a system function and supplying a set
of appropriate parameters. These commands, essen-
tially the services offered by the Relief Logistics Sys-
tem, are shown in Figure 3(b).

Transporting relief supplies can be dangerous, es-
pecially in a war-zone where the position of conflict
areas changes by the minute. Although the Relief Lo-
gistics System is effective for planning the route for a
supply truck, it does not work in real-time. At the start
of each day the system assigns a driver and supplies to
a truck. After the truck is loaded, the system prints the
directions for the driver based on the route calculated
and the delivery commences. During the day, changes
in the conflict situation often result in deliveries enter-
ing danger zones. To prevent these situations, the relief
organization has been searching for a system that will
allow them to detect dangerous routes before a deliv-
ery commences and respond to immediate threats as
they come about during the day.

Another (hypothetical) relief organization working
in the region has a COTS-based Threat Management
System that they use to assist in their operations. This
real-time system is constantly updated based on re-
ports from field observations. They are willing to
allow the Relief Logistics System to work with the
Threat Management System. Both organizations pos-

sess the hardware infrastructure to support communi-
cation between each of the systems. The only barrier
to the arrangement is the software interoperability as-
pect of the integration.

Unlike the Relief Logistics System, the Threat
Management System has two modes of operation. An
operator console runs all the time, providing the user
with an interactive environment where a database of
threat positions are recorded and updated. The system
also has an on-demand database interrogation opera-
tion that accepts a stream of position coordinates and
produces a report based on any threat identified. It also
returns a stream of 2-tuples representing threatened
positions and an indicator of the type of threat that ex-
ists at that position. Externally, the COTS-based sys-
tem only has a representation for positions and threat
status indicators. The schema for the Threat Manage-
ment System is shown in Figure 4(a). While the in-
ternal operations of the threat management console are
inaccessible, access is provided to the checkThreat
service, whose calling parameter is shown in Fig-
ure 4(b) as a stream (indicated by a *) of position
values.

5.1. Consideration of Requirements

Our integration methodology can be used to facili-
tate interoperability between the Relief Logistics Sys-
tem and the Threat Management System. In particu-
lar, we want to share the checkThreat service of-
fered by the Threat Management System by applying
it to information that comes from the Relief Logis-
tics System. We see from the problem statement that
the requirements for semantic and functional integra-
tion for both systems have been met. While each sys-
tem might represent positions differently (for exam-
ple, one might use a degree decimal format while the
other uses a Universal Transverse Mercator format),
they both represent the position concept in a seman-
tically equivalent manner. Schemas for both systems
provide the representation knowledge required. Both
organizations have invocation knowledge for the ser-
vice to be shared by the systems.

5.2. Creating the Domain Ontology

The first step in implementing the integration in-
volves the creation of the domain ontology. This in-



Entities
driver
truck
supply
route
position

Relations
isDriving(driver,truck)
isCarrying(truck,supply)
routeAssigned(truck,route)
hasPosition(truck,position)
hasPosition(route,position)

(a) Relief Logistics System Schema

calcRoute(truck,position,position)
createShipment(truck)
modifyShipment(truck)
reportShipment(truck)
reportShipment()

(b) Relief Logistics System Services

Figure 3. Representational and Service Characteristics of the Relief Logistics System

position
threatStatus

(a) Entities Represented

checkThreat(position*)

(b) Service Offered

Figure 4. Representational and Service Characteristics of the Threat Management System

volves identifying and organizing all the representa-
tional and service related concepts supported by each
of the systems participating in the integration. In our
experience integrating reverse engineering tools, the
creation of the domain ontology is the most difficult
and time consuming step in the integration process.
Size and representational diversity in the schemas
make this a difficult task. A simple domain ontol-
ogy for our integration example is shown in Figure 5.
Figure 5(a) informally defines all the representational
concepts supported by all participants in the integra-
tion. For simplicity, we represent these concepts as
an E-R model representing conceptual entities and re-
lationships. The Services Dictionary shown in Fig-
ure 5(b) outlines the relationship between each service,

the system that offers it and the concepts it requires.
The Systems Dictionary shown in Figure 5(c) indicates
the relationship between each system and the concepts
it supports. After the domain ontology is created on
paper it is codified and stored in a machine readable
form.

5.3. CSA Construction

The next step involves the construction of a con-
ceptual service adapter for each system participating
in the integration. Each adapter manages all aspects of
the integration as it relates to the system it corresponds
to. The construction of inFilter and outFilter compo-
nents is an important part of this process. The inFilters



Entity Concepts

person
A uniquely identifiable human individual

position
The coordinates of a fixed point.

status
An indicator for a condition that exists.

supply
Material goods that provide relief to needy recipients.

vehicle
A uniquely identifiable transportation machine.

Relational Concepts

Assignment
An entity is entrusted to look after another
entity.

Containment
An entity holds another entity within it.

Haul/Carry
An entity loads and transports some other en-
tity.

Use
An entity utilizes or occupies another entity.

(a) Representational Concepts

RequiresService Offered By
Concept

Relief
CalculateRoute Logistics

position (x2)

System
vehicle

Threat
checkThreat Management position

System

(b) Services Dictionary

COTS Supports
System Concept

person
position

Relief supply
Logistics vehicle
System Assignment

Haul/Carry
Use

Threat position
Management status

System Containment

(c) Systems Dictionary

Figure 5. Domain Ontology



Relief Logistics Domain
System Ontology

Representation Concepts
driver person
truck outFilter vehicle

supply supply
position position

isDriving Assignment
isCarrying inFilter Haul/Carry

routeAssigned Assignment
hasPosition Use

Figure 6. Relief Logistics System - Conceptual Service Adapter Filter Mappings

Threat Management Domain
System outFilter Ontology

Representation Concepts
position inFilter position

threatStatus status
(position,threatStatus)* Containment

Figure 7. Threat Management System - Conceptual Service Adapter Filter Mappings

manage the mapping of information from each sys-
tem to concept slots in the conceptual space defined
by the domain ontology. The outFilters do the same
mapping in the opposite direction. The inFilter and
outFilter mappings performed by the conceptual ser-
vice adapters for the Relief Logistics System and the
Threat Management System are shown in Figures 6
and 7 respectively.

5.4. How the Integration Works

Once constructed, the domain ontology and concep-
tual service adapters for each system handle all the
functionality required to facilitate interoperability be-
tween each system. The following scenario outlines
how this is achieved:

• The Relief Logistics System is used to assign
a driver and supplies to a truck. A route for
the shipment is determined using the calcRoute
function native to the system. The next step
involves determining if the route is safe. The
user requests the checkThreat service from

the conceptual service adapter (CSA) for the Re-
lief Logistics System. The CSA looks up the
checkThreat service in the domain ontology
and identifies the Threat Management System as
the service provider. It also determines that the
checkThreat service requires support the po-
sition concept. The CSA then verifies that the Re-
lief Logistics System supports the position con-
cept.

• The CSA for the Relief Logistics System uses
its inFilter to map the information stored in the
system to the conceptual space. For example,
all driver entities are mapped to the person con-
cept, all positions entities are mapped to the posi-
tion concept, and all hasPosition relationships are
mapped to the Use concept. After the mapping
is complete, the Relief Logistics System CSA
sends a message to the Threat Management Sys-
tem CSA requesting the checkThreat service.

• The Threat Management System CSA receives
the request and uses its outFilter to map the
information from the conceptual space that the



checkThreat system requires. In this simple
integration example, only the position concepts
are relevant. After the mapping is complete, the
CSA organizes the position information into a
stream and supplies it to the checkThreat op-
eration.

• The checkThreatoperation generates two sets
of results. The first is a report that indicates all
the positions on the route where is a threat is
present. This is the result the Relief Logistics
System user is looking for. The second result is
a stream of 2-tuples representing threatened posi-
tions and an indicator of the type of threat that
exists at the position. This information is col-
lected by the Threat Management System CSA,
which uses its inFilter to map the data to the con-
ceptual space. Each postion-threatStatus pair is
mapped to the Containment relationship concept
in the conceptual space. The CSA then sends a
message to the Relief Logistics System CSA that
the checkThreat service has completed and
the integration ends.

It is notable that no native representation for the re-
sults returned by the checkThreat service is sup-
ported in the Relief Logistics System. Although con-
ceptual equivalence exists between both systems in re-
lation to the position concept, this only permits in-
teroperation in one direction. Fully bi-directional in-
teroperability would require a modification to the Re-
lief Logistics System to support a representation for
the threat information provided by the Threat Manage-
ment System.

We also note that semantic equivalence is a difficult
problem in system integration. Our example demon-
strates service-sharing based on a very simple concept
(position). In practice [4] we have found that very sub-
tle differences in the way services are implemented can
yield counter intuitive results, even when dealing with
concepts that are semantically equivalent. In future
work we will be exploring the deeper role of seman-
tics in the context of our approach to integration.

6. Conclusion

In this paper we have outlined a proposal for a
service-sharing approach to integration for COTS soft-

ware systems. In practice, we have used these methods
to successfully integrate reverse engineering tool sys-
tems. The limited example shown demonstrates that
our approach holds promise in more general integra-
tion contexts as well. We look forward to applying our
methodology to real-world COTS system integration
problems to further explore the advantages and limita-
tions of our integration methodology.

References

[1] B. Boehm and C. Abts. “COTS Integration: Plug
and Pray?”. IEEE Computer, 32(1):135–138, January
1999.

[2] P. P.-S. Chen. “The Entity Relationship Model To-
ward a Unified View of Data”. ACM Transactions on
Database Systems, 1(1):9–36, March 1976.

[3] A. M. Davis. Software Requirements: Objects, Func-
tions and States. Prentice-Hall, Englewood Cliffs, NJ,
1993.

[4] D. Jin and J. R. Cordy. “Factbase Filtering Issues in
an Ontology-Based Reverse Engineering Tool Integra-
tion System”. In Proceedings of the 2nd International
Workshop on Metamodels, Schemas and Grammars for
Reverse Engineering, volume 137 of Electronic Notes
in Theoretical Computer Science, pages 65–75, Delft,
Netherlands, October 2004.

[5] D. Jin, J. R. Cordy, and T. R. Dean. “Transparent Re-
verse Engineering Tool Integration Using a Concep-
tual Transaction Adapter”. In Proceedings of the 7th
European Conference on Software Maintenance and
Reengineering (CSMR 2003), pages 399–408, Ben-
evento, Italy, March 2003.

[6] C. Lovelock, B. Lewis, and S. Vandermerwe. Services
Marketing: A European Perspective. Prentice-Hall,
London, 1996.

[7] D. Smith. Guide to Interoperability. Integration of Soft-
ware Intensive Systems (ISIS) Initiative, Software En-
gineering Institute, 2005. URL: http://www.sei.
cmu.edu/isis/guide/isis-guide.htm.


