
Excerpts from the TXL Cookbook

James R. Cordy

School of Computing, Queen’s University
Kingston ON, K7L 3N6, Canada

cordy@cs.queensu.ca

http://www.cs.queensu.ca/~cordy

Abstract. While source transformation systems and languages like
DMS, Stratego, ASF + SDF, Rascal and TXL provide a general, pow-
erful base from which to attack a wide range of analysis, transformation
and migration problems in the hands of an expert, new users often find
it difficult to see how these tools can be applied to their particular kind
of problem. The difficulty is not that these very general systems are
ill-suited to the solution of the problems, it is that the paradigms for
solving them using combinations of the system’s language features are
not obvious.

In this paper we attempt to approach this difficulty for the TXL
language in a non-traditional way - by introducing the paradigms of use
for each kind of problem directly. Rather than simply introducing TXL’s
language features, we present them in context as they are required in
the paradigms for solving particular classes of problems such as parsing,
restructuring, optimization, static analysis and interpretation. In essence
this paper presents the beginnings of a “TXL Cookbook” of recipes for
effectively using TXL, and to some extent other similar tools, in a range
of common source processing and analysis problems. We begin with a
short introduction to TXL concepts, then dive right in to some specific
problems in parsing, restructuring and static analysis.

Keywords: source transformation, source analysis, TXL, coding
paradigms.

1 Introduction

Source transformation systems and languages like DMS [2], Stratego [6], ASF
+ SDF [3,5], Rascal [20] and TXL [8] provide a very general, powerful set of
capabilities for addressing a wide range of software analysis and migration prob-
lems. However, almost all successful practical applications of these systems have
involved the original authors or long-time experts with the tools. New potential
users usually find it difficult and frustrating to discover how they can leverage
these systems to attack the particular problems they are facing.

This is not an accident. These systems are intentionally designed to be be very
general, and their features and facilities are therefore at a level of abstraction far
from the level at which new users understand their particular problems. What

R. Lämmel et al. (Eds.): GTTSE 2009, LNCS 6491, pp. 27–91, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.cs.queensu.ca/~cordy


28 J.R. Cordy

they are interested in is not what the general language features are, but rather
how they should be used to solve problems of the kind they are facing. The real
core of the solution for any particular problem is not in the language or system
itself, but rather in the paradigm for using it to solve that kind of problem.

In this paper we aim to address this issue head-on, by explicitly outlining
the paradigms for solving a representative set of parsing, transformation and
analysis problems using the TXL source transformation language. In the long
run we are aiming at a “TXL Cookbook”, a set of recipes for applying TXL
to the many different kinds of problems for which it is well suited. While the
paradigms are couched here in terms of TXL, in many cases the same paradigms
can be used with other source transformation systems as well.

In what follows we begin with a short introduction to the basics of TXL,
just to set the context, and then dive directly into some representative problems
from four different problem domains: parsing, restructuring, optimization, and
static and dynamic analysis. With each specific problem we outline the basic
paradigms used in concrete solutions written in TXL. Along the way we discuss
TXL’s philosophy and implementation as they influence the solutions. Although
it covers many issues, this set of problems is by no means complete, and it is
expected that the cookbook will grow in future to be more comprehensive.

Our example problems are set in the context of a small, simple imperative
language designed for the purpose of demonstrating transformation and analysis
toolsets. The language, TIL (“Tiny Imperative Language”) [11], was designed
by Jim Cordy and Eelco Visser as the intended basis of a set of benchmarks for
source transformation and analysis systems.

It is not our intention to cover the features of the TXL language itself here -
there are already other published papers on the language [8] and programming
in it [9], and features of the language are covered in detail in the TXL reference
manual [10]. Rather, here we concentrate on the paradigms for solving problems
using it, assuming only a basic knowledge.

2 TXL Basics

TXL [8] is a programming language explicitly designed for authoring source
transformation tasks of all kinds. It has been used in a wide range of applications
involving millions of lines of code [7]. Unlike most other source transformation
tools, TXL is completely self-contained - all aspects of the source transformation,
including the scanner, parser, transformer and output pretty-printer are all writ-
ten in TXL. Because they have no dependencies on external parsers, frameworks
or libraries, TXL programs are easily ported across platforms.

2.1 The TXL Paradigm

The TXL paradigm is the usual for source transformation systems (Figure 1).
Input text is scanned and parsed into an internal parse tree, pattern-replacement
rewriting rules are applied to the parse tree to transform it to another, and then
the transformed tree is unparsed to the new output text.



Excerpts from the TXL Cookbook 29

Parse
Input
Text

Parse

Tree

Trans-
formed

Parse
Tree

Output
Text

blue fish marlin

fish

blue

[repeat word]

[repeat word][word]

[word] [empty]

[repeat word]

[word] [empty]

marlin

Transform Unparse

Fig. 1. The TXL Paradigm

Grammars and transformation rules are specified in the TXL language, which
is efficiently implemented by the TXL Processor (Figure 2). The TXL processor
is directly interpretive, with no parser generator or compile phase, which means
there is little overhead and no maintenance barrier to running multiple trans-
formations end-to-end. Thus TXL is well suited to test-driven development and
rapid turnaround. But more importantly, transformations can be decomposed
into independent steps with only a very small performance penalty, and thus
most complex TXL transformations are architected as a sequence of successive
approximations to the final result.

2.2 Anatomy of a TXL Program

A TXL program typically has three parts (Figure 3) : The base grammar defines
the lexical forms (tokens) and the rooted set of syntactic forms (nonterminals or
types) of the input language. Often the base grammar is kept in a separate file
and included using an include statement. The program nonterminal is the root
of the grammar, defining the form of the entire input. The optional grammar
overrides extend or modify the syntactic forms of the grammar to allow output
and intermediate forms of the transformation that are not part of the input
language. Finally, the rule set defines the rooted set of transformation rules and
functions to be applied to the input. The main rule or function is the root of
the rule set, and is automatically applied to the entire input.

TXL

Processor

Original
Source

Artifact

TXL Program

Grammatical Structure
Specification

Structural
Transformation Rules

Transformed
Source

Artifact

Fig. 2. The TXL Processor

Grammar Overrides

program  nonterminal

Grammar

main  rule

Transformation
Rules

Fig. 3. Parts of a TXL Program



30 J.R. Cordy

While TXL programs are typically laid out as base grammar followed by
overrides then rules, there is no ordering requirement and grammatical forms and
rules can be mixed in the TXL program. To aid in readability, both grammars
and rule sets are typically defined in topological order, starting from the program
nonterminal and the main rule.

2.3 The Grammar: Specifying Lexical Forms

Lexical forms specify how the input text is partitioned into indivisible basic
symbols (tokens or terminal symbols) of the input language. These form the
basic types of the TXL program. The tokens statement gives regular expressions
for each kind of token in the input language, for example, C hexadecimal integers:

tokens
hexintegernumber "0[xX][abcdefABCDEF\d]+"

end tokens

Tokens are referred to in the grammar using their name enclosed in square
brackets (e.g., [hexintegernumber] ). A set of default token forms are predefined
in TXL, including C-style identifiers [id], integer and floating point numbers
[number], string literals [stringlit], and character literals [charlit].

The comments statement specifies the commenting conventions of the input
language, that is, sections of input source that are to be considered as commen-
tary. For example, C commenting conventions can be defined as follows:

comments
/* */
//

end comments

By default, comments are ignored (treated as white space) by TXL, but they can
be treated as significant input tokens if desired. Most analysis tasks can ignore
comments, but transformation tasks may want to preserve them.

The keys statement specifies that certain identifiers are to be treated as unique
special symbols (and not as identifiers), that is, keywords of the input language.
For example, the following could be used to specify the keywords of a subset
of standard Pascal. The “end” keyword must be quoted (preceded by a single
quote) to distinguish it from TXL’s own end keyword. In general, TXL’s own
keywords and special symbols are the only things that need to be quoted in
TXL, and other words and symbols simply represent themselves.

keys
program procedure function
repeat until for while do begin ’end

end keys

The compounds statement specifies character sequences to be treated as a single
character, that is, compound tokens. Since “%” is TXL’s end-of-line comment
character, symbols containing percent signs must be quoted in TXL programs.
Compounds are really just a shorthand for (unnamed) token definitions.

compounds
:= <= >= -> <-> ’%= % note quoted "%"

end compounds



Excerpts from the TXL Cookbook 31

2.4 The Grammar: Specifying Syntactic Forms

Syntactic forms (nonterminal symbols or types) specify how sequences of input
tokens are grouped into the structures of the input language. These form the
structured types of the TXL program - In essence, each TXL program defines
its own symbols and type system. Syntactic forms are specified using an (almost)
unrestricted ambiguous context free grammar in extended BNF notation, where:

X literal terminal symbols (tokens) represent themselves
[X] terminal (token) and nonterminal types appear in brackets
| or bar separates alternative syntactic forms

Each syntactic form is specified using a define statement. The special type [pro-
gram] describes the structure of the entire input. For example, here is a simple
precedence grammar for numeric expressions:

File "Expr.grm"

define program % goal symbol of input
[expression]

end define

define expression
[term]

| [expression] + [term]
| [expression] - [term]

end define

define term
[primary]

| [term] * [primary]
| [term] / [primary]

end define

define primary
[number]

| ( [expression] )
end define

Grammars are most efficient and natural in TXL when most user-oriented, using
sequences in preference to recursion, and simpler forms rather than semantically
distinguished cases. In general, yacc-style compiler “implementation” grammars
should be avoided.

Sequences and optional items can be specified using an extended BNF-like
sequence notation:

[repeat X] or [X*] sequence of zero or more (X*)
[repeat X+] or [X+] sequence of one or more (X+)
[list X] or [X,] comma-separated list of zero or more
[list X+] or [X,+] comma-separated list one or more
[opt X] or [X?] optional (zero or one)

For more natural patterns in transformation rules, these forms should always be
used in preference to hand-coded recursion for specifying sequences in grammars,
since TXL is optimized for handling them.

Formatting cues in defines specify how output text is to be formatted:

[NL] newline in unparsed output
[IN] indent subsequent unparsed output by four spaces
[EX] exdent subsequent unparsed output by four spaces

Formatting cues have no effect on input parsing and transformation patterns.

2.5 Input Parsing

Input is automatically tokenized and parsed according to the grammar. The
entire input must be recognizable as the type [program], and the result is repre-
sented internally as a parse tree representing the structural understanding of the



32 J.R. Cordy

[expression]

+

[primary]

[term]

[number]  17

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

[number] 5

[number]  31

[program]

Fig. 4. Parse tree for the expression 31+5+17 according to the example grammar

input according to the grammar. Figure 4 shows the parse tree resulting from
the input of the numeric expression “31+5+17” to a TXL program using the
TXL grammar shown above.

All pattern matching and transformation operations in TXL rules and func-
tions work on the parse tree. Since each TXL program defines its own grammar,
it is important to remember that syntax errors in the input may indicate an
incorrect grammar rather than a malformed input.

2.6 Base Grammars and Overrides

The base grammar for the syntax of the input language is normally kept in
a separate grammar file which is rarely if ever changed, and is included in the
TXL program using a TXL include statement. While the base grammar itself can
serve for many purposes, since TXL is strongly typed in the type system of the
grammar (that is, all trees manipulated or produced by a TXL transformation
rule must be valid instances of their grammatical type, so that malformed results
cannot be created), it is often necessary to add output or intermediate forms.
Analysis and transformation tasks that require output or intermediate forms not
explained by the grammar can add their own forms using grammar overrides.

Grammar overrides modify or extend the base grammar’s lexical and syn-
tactic forms by modifying existing forms using redefine statements. Redefine
statements can completely replace an original form, for example, this redefine of
[primary] in the example grammar above will modify it to allow identifiers and
lists of expressions:

include "Expr.grm" % the original example grammar

redefine primary
[id]

| [number]
| ( [expression,+] )

end redefine

The semantics of such a redefine is that the original form is replaced by the new
form in the grammar.



Excerpts from the TXL Cookbook 33

Grammar overrides can also extend the existing forms of a grammatical type,
using the notation “...” to refer to the original definition of the nonterminal
type. For example, this redefine will allow XML markup on any [statement] by
extending the definition of [statement] to allow a marked-up statement.

include "C.grm" % the C language grammar

redefine statement
... % includes the original forms

| <[id]> [statement] </[id]> % adds the new XML markup form
end redefine

The redefine says that a statement can be any form it was before (“...”), or the
new form. “...” is not an elision here, it is part of the TXL language syntax,
meaning “whatever [statement] was before”.

2.7 Transformation Rules

Once the input is parsed, the actual input to output source transformation is
specified in TXL using a rooted set of transformation rules. Each transformation
rule specifies a target type to be transformed, a pattern (an example of the partic-
ular instance of the type that we are interested in replacing) and a replacement
(an example of the result we want when we find such an instance).

% replace every 1+1 expression with 2
rule addOnePlusOne

replace [expression] % target type to search for
1 + 1 % pattern to match

by
2 % replacement to make

end rule

TXL rules are strongly typed - that is, the replacement must be of the same
grammatical type as the pattern (that is, the target type). While this seems to
preclude cross-language and cross-form transformations, as we shall see, because
of grammar overrides this is not the case!

The pattern can be thought of as an actual source text example of the in-
stances we want to replace, and when programming TXL one should think by
example, not by parse tree. Patterns consist of a combination of tokens (input
symbols, which represent themselves) and named variables (tagged nonterminal
types, which match any instance of the type). For example, the TXL variable
N1 in the pattern of the following rule will match any item of type [number] :

rule optimizeAddZero
replace [expression]

N1 [number] + 0
by

N1
end rule

When the pattern is matched, variable names are bound to the corresponding
item of their type in the matched instance of the target type. Variables can be
used in the replacement to copy their bound instance into the result, for example
the item bound to N1 will be copied to the replacement of each [expression]
matching the pattern of the rule above.



34 J.R. Cordy

Similarly, the replacement can be thought of as a source text example of the
desired result. Replacements consist of tokens (input symbols, which represent
themselves) and references to bound variables (using the tag name of the variable
from the pattern). References to bound variables in the replacement denote
copying of the variable’s bound instance into the result.

References to variables can be optionally further transformed by subrules
(other transformation rules), which further transform (only) the copy of the
variable’s bound instance before it is copied into the result. Subrules are applied
to a variable reference using postfix square bracket notation X[f], which in func-
tional notation would be f(X). X[f][g] denotes functional composition of subrules
- that is, g(f(X)). For example, this rule looks for instances of expressions (in-
cluding subexpressions) consisting of a number plus a number, and resolves the
addition by transforming copy of the first number using the [+] subrule to add
the second number to it. ( [+] is one of a large set of TXL built-in functions.)

rule resolveAdditions
replace [expression]

N1 [number] + N2 [number]
by

N1 [+ N2]
end rule

When a rule is applied to a variable, we say that the variable’s copied value is the
rule’s scope. A rule application only transforms inside the scope it is applied to.
The distinguished rule called main is automatically applied to the entire input
as its scope - any other rules must be explicitly applied as subrules to have any
effect. Often the main rule is a simple function to apply other rules:

function main
replace [program]

EntireInput [program]
by

EntireInput [resolveAdditions] [resolveSubtractions]
[resolveMultiplys] [resolveDivisions]

end function

2.8 Rules and Functions

TXL has two kinds of transformation rules, rules and functions, which are dis-
tinguished by whether they should transform only one (for functions) or many
(for rules) occurrences of their pattern. By default, rules repeatedly search their
scope for the first instance of their target type matching their pattern, trans-
form it to yield a new scope, and then reapply to the entire new scope until no
more matches are found. By default, functions do not search, but attempt to
match only their entire scope to their pattern, transforming it if it matches. For
example, this function will match only if the entire expression it is applied to is
a number plus a number, and will not search for matching subexpressions:

function resolveEntireAdditionExpression
replace [expression]

N1 [number] + N2 [number]
by

N1 [+ N2]
end function



Excerpts from the TXL Cookbook 35

Searching functions, denoted by “replace *”, search to find and transform the
first occurrence of their pattern in their scope, but do not repeat. Searching
functions are used when only one match is expected, or only the first match
should be transformed.

function resolveFirstAdditionExpression
replace * [expression]

N1 [number] + N2 [number]
by

N1 [+ N2]
end function

2.9 Rule Parameters

Rules and functions may be passed parameters, which bind the values of variables
in the applying rule to the formal parameters of the subrule. Parameters can be
used to build transformed results out of many parts, or to pass global context
into a transformation rule or function. In this example, the [resolveConstants]
outer rule finds a Pascal named constant declaration, and passes both the name
and the value to the subrule [replaceByValue] which replaces all references to the
constant name in the following statements by its value. The constant declaration
is then removed by [resolveConstants] in its replacement.

rule resolveConstants
replace [statement*]

const C [id] = V [primary];
RestOfScope [statement*]

by
RestOfScope [replaceByValue C V]

end rule

rule replaceByValue ConstName [id] Value [primary]
replace [primary]

ConstName
by

Value
end rule

2.10 Patterns and Replacements

The example-like patterns and replacements in rules and functions are parsed us-
ing the grammar in the same way as the input, to make pattern-tree / replacement-
tree pairs. Figure 5 shows an example of the pattern and replacement trees for the
[resolveAdditions] example rule. While sometimes it is helpful to be aware of the
tree representation of patterns, in general it is best to think at the source level in
a by-example style when programming TXL.

Rules are implemented by searching the scope parse tree for tree pattern
matches of the pattern tree, and replacing each matched instance with a cor-
responding instantiation of the replacement tree. In Figure 6 we can see the
sequence of matches that the rule [resolveAdditions] will find in the parse tree
for the input expression “36+5+17”. It’s important to note that the second
match does not even exist in the original scope - it only comes to be after the
first replacement. This underlines the semantics of TXL rules, which search for



36 J.R. Cordy

rule resolveAdditions
replace [expression]

      N1[number] + N2[number]
by

      N1 [+ N2]
end rule

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

N2: [number] (v2)

N1: [number] (v1)

[expression]

[primary]

[term]

[number] (v1+v2)

Fig. 5. Pattern and replacement trees for the [resolveAdditions] rule

one match at a time in their scope, and following a replacement, search the entire
new scope for the next match.

Patterns may refer to a previously bound variable later in the same pattern
(technically called strong pattern matching). This parameterizes the pattern with
a copy of the bound variable, to specify that two parts of the matching in-
stance must be the same in order to have a match. For example, the following
rule’s pattern matches only expressions consisting of the addition of two identical
subexpressions (e.g., 1+1, 2*4+2*4, and (3-2*7)+(3-2*7) ).

rule optimizeDoubles
replace [expression]

E [term] + E
by

2 * E
end rule

Patterns can also be parameterized by formal parameters of the rule, or other
bound variables, to specify that matching instances must contain an identical
copy of the variable’s bound value at that point in the pattern. (We saw an
example in the [replaceByValue] rule on the previous page.) A simple way to
think about TXL variables is that references to a variable always mean a copy
of its bound value, no matter what the context is.

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

[number] (17)

[number] (36)

53

[expression]

+

[primary]

[term]

[number] (17)

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

[number] (5)

[number] (31)

31 + 5 + 17 36 + 17

[expression]

[term]

[primary]

[number] (53)

Fig. 6. Example application of the [resolveAdditions] rule



Excerpts from the TXL Cookbook 37

2.11 Deconstructors and Constructors

Patterns can be piecewise refined to more specific patterns using deconstruct
clauses. Deconstructors specify that the deconstructed variable’s bound value
must match the given pattern - if not, the entire pattern match fails. Decon-
structors act like functions - by default, the entire bound value must match
the deconstructor’s pattern, but “deconstruct *” (a deep deconstruct) searches
within the bound value for a match. The following example demonstrates both
kinds - a deep deconstruct matches the [if condition] in the matched IfStatement,
and the second deconstruct matches the entire IfCond only if it is exactly the
word false.

rule optimizeFalseIfs
replace [statement*]

IfStatement [if_statement] ;
RestOfStatements [statement*]

deconstruct * [if_condition] IfStatement
IfCond [if_condition]

deconstruct IfCond
’false

by
RestOfStatements

end rule

Pattern matches can also be constrained using where clauses, which allow for
arbitrary matching conditions to be tested by subrules. The where clause suc-
ceeds only if its subrules find a match of their patterns. Like deconstructors, if a
where clause fails, the entire pattern match fails. Here’s an example use of where
clauses to test that two sequential assignment statements do not interfere with
each other (and thus the pair can be parallelized):

rule vectorizeScalarAssignments
replace [statement*]

V1 [variable] := E1 [expression];
V2 [variable] := E2 [expression];
RestOfScope [statement*]

where not
E2 [references V1]

where not
E1 [references V2]

by
< V1,V2 > := < E1,E2 > ;
RestOfScope

end rule

While where clauses are more general, for efficiency reasons it is always better to
use a deconstruct than a where clause when possible. Where clauses use a special
kind of rule called a condition rule, for example [references] in the example above.

function references V [variable]
deconstruct * [id] V

Vid [id]
match * [id]

Vid
end function

Condition rules are different in that they have only a (possibly very complex)
pattern, but no replacement - they simply succeed or fail to match their



38 J.R. Cordy

pattern, but do not make any replacement. In this case, [references] looks inside
its expression scope to see if there are any uses of the main identifier naming the
variable it is passed.

Replacements can also be piecewise refined, to construct results from several
independent pieces using construct clauses. Constructors allow partial results to
be bound to new variables, allowing subrules to further transform them in the
replacement or other constructors. In the example below, NewUnsortedSequence
is constructed so that it can be further transformed by the subrule [sortFirstIn-
toPlace] in the replacement.

rule addToSortedSequence NewNum [number]
replace [number*]

OldSortedSequence [number*]
construct NewUnsortedSequence [number*]

NewNum OldSortedSequence
by

NewUnsortedSequence [sortFirstIntoPlace]
end rule

Even when constructors are not really required, constructing a complex replace-
ment in well-named pieces can aid in readability of the rule.

This ends our basic introduction to TXL. We now move on to the real focus of
this paper - the paradigms for solving real parsing, analysis and transformation
problems using it. We begin by introducing TIL, the toy example language used
as a platform for our example problems.

3 The TIL Chairmarks

TIL (Tiny Imperative Language) is a very small imperative language with as-
signments, conditionals, and loops, designed by Eelco Visser and James Cordy
as a basis for small illustrative example transformations. All of the example ap-
plications in the TXL Cookbook work on TIL or extended dialects of it. Figure
7 shows two examples of basic TIL programs.

The TIL Chairmarks [12] are a small set of benchmark transformation and
analysis tasks based on TIL. They are called “chairmarks” because they are too

File "factors.til"

// Find factors of a given number
var n;
write "Input n please";
read n;
write "The factors of n are";
var f;
f := 2;
while n != 1 do

while (n / f) * f = n do
write f;
n := n / f;

end;
f := f + 1;

end;

File "multiples.til"

// First 10 multiples of numbers 1 through 9
for i := 1 to 9 do
for j := 1 to 10 do

write i*j;
end; end;

Fig. 7. Example TIL programs



Excerpts from the TXL Cookbook 39

small to be called “benchmarks”. These tasks form the basis of our cookbook,
and the examples in this tutorial are TXL solutions to some of the problems
posed in the Chairmarks. The TIL Chairmark problems are split into six cat-
egories: parsing, restructuring, optimization, static and dynamic analysis, and
language implementation. In this tutorial we only have room for one or two spe-
cific problems from each category. In each case, a specific concrete problem is
proposed and a TXL solution is demonstrated, introducing the corresponding
TXL solution paradigms and additional language features as we go along. We
begin with the most important category: parsing.

4 Parsing Problems

Every transformation or analysis task begins with the creation or selection of a
TXL grammar for the source language. The form of the language grammar has a
big influence on the ease of writing transformation rules. In these first problems,
we explore the creation of language grammars, pretty-printers and syntactic
extensions using the parsing aspect of TXL only, with no transformations. The
grammars we create here will serve as the basis of the transformation and analysis
problems in the following sections. In many cases, a TXL grammar is already
available for the language you want to process on the TXL website.

It is important to remember that the purpose of the TXL grammar for an
input language is not, in general, to serve as a syntax checker (unless of course
that is what we are implementing). We can normally assume that inputs to be
transformed are well-formed. This allows us to craft grammars that are simpler
and more abstract than the true language grammar, for example allowing all
statements uniformly everywhere in the language even if some are semantically
valid only in certain contexts, such as the return statement in Pascal, which is
valid only inside procedures. In general, such uniformity in the grammar makes
analyzing and transforming the language forms easier. In the case of TIL, the
language is simple enough that such simplification of the grammar is unnecessary.

4.1 Basic Parser / Syntax Checker

In this first problem, our purpose is only to create a grammar for the language
we plan to process, in this case TIL. Figure 8 shows a basic TXL grammar (file
“TIL.grm”) for TIL. The main nonterminal of a TXL grammar must always
be called [program], and there must be a nonterminal definition for [program]
somewhere in the grammar. Implementing a parser and syntax checker using this
grammar is straightforward, simply including the grammar in a TXL program
that does nothing but match its input (Figure 9, file “TILparser.txl”).

Paradigm. The grammar is the parser. TXL “grammars” are in some sense
misnamed - they are not really grammars in the usual BNF specification sense, to
be processed and analyzed by a parser generator such as SDF or Bison. Rather,
a TXL grammar is a directly interpreted recursive descent parser, written in
grammatical style. Thus in TXL the grammar is really a program for parsing



40 J.R. Cordy

File "TIL.grm"

% TXL grammar for Tiny Imperative Language

% When pretty-printing, we parse and output
% comments, controlled by this pragma
% #pragma -comment

% Keywords of TIL, a reserved-word language
keys

var if then else while do for
read write ’end

end keys

% Compound tokens to be recognized
% as a single lexical unit
compounds

:= != <= >=
end compounds

% Commenting convention for TIL -
% comments are ignored unless -comment is set
comments

//
end comments

% Direct TXL encoding of the TIL grammar.
% [NL], [IN] and [EX] on the right are
% optional pretty-printing cues

define program
[statement*]

end define

define statement
[declaration]

| [assignment_statement]
| [if_statement]
| [while_statement]
| [for_statement]
| [read_statement]
| [write_statement]
| [comment_statement]

end define

% Untyped variables
define declaration

’var [name] ; [NL]
end define

define assignment_statement
[name] := [expression] ; [NL]

end define

define if_statement
’if [expression] ’then [IN][NL]

[statement*] [EX]
[opt else_statement]
’end ’; [NL]

end define

define else_statement
’else [IN][NL]

[statement*] [EX]
end define

define while_statement
’while [expression] ’do [IN][NL]

[statement*] [EX]
’end ’; [NL]

end define

define for_statement
’for [name] := [expression]

’to [expression] ’do [IN][NL]
[statement*] [EX]

’end ’; [NL]
end define

define read_statement
’read [name] ; [NL]

end define

define write_statement
’write [expression] ; [NL]

end define

define comment_statement
% Only ever present if -comment is set
[NL] [comment] [NL]

end define

% Traditional priority expression grammar
define expression

[comparison]
| [expression] [logop] [comparison]

end define

define logop
’and | ’or

end define

define comparison
[term]

| [comparison] [eqop] [term]
end define

define eqop
= | != | > | < | >= | <=

end define

define term
[factor]

| [term] [addop] [factor]
end define

define addop
+ | -

end define

define factor
[primary]

| [factor] [mulop] [primary]
end define

define mulop
* | /

end define

define primary
[name]

| [literal]
| ( [expression] )

end define

define literal
[integernumber]

| [stringlit]
end define

define name
[id]

end define

Fig. 8. TIL grammar in TXL



Excerpts from the TXL Cookbook 41

File "TILparser.txl"

% TXL parser for Tiny Imperative Language

% All TXL parsers are automatically also pretty-printers if the
% grammar includes the optional formatting cues, as in this case

% Use the TIL grammar
include "TIL.grm"

% No need to do anything except recognize the input, since the grammar
% includes the output formatting cues

function main
match [program]

_ [program]
end function

Fig. 9. TIL parser and pretty-printer

the input language, where the input is source text and the output is a parse tree.
When crafting TXL grammars, one needs to be aware of this fact, and think (at
least partly) like a programmer rather than a language specifier.

The creation of a TXL grammar begins with the specification of the lexical
forms (tokens, or terminal symbols) of the language, using TXL’s regular expres-
sion pattern notation. Several common lexical forms are built in to TXL, notably
[id], which matches C-style identifiers, [number], which matches C-style integer
and float constants, [stringlit], which matches double-quoted C-style string lit-
erals, and [charlit], which matches single-quoted C-style character literals.

The TIL grammar uses only the default tokens [id], [integernumber] and
[stringlit] as its terminal symbols, thus avoiding defining any token patterns
of its own. ([integernumber] is a built-in refinement of [number] to non-floating
point forms.) More commonly, it would be necessary to define at least some of
the lexical forms of the input language explicitly using TXL tokens statements.

The TIL keywords are specified in the grammar using the keys statement,
which tells TXL that the given words are reserved and not to be mistaken for
identifiers. The compounds section tells us that the TIL symbols := and != are
to be treated as single tokens, and the comments section tells TXL that TIL
comments begin with // and go to the end of line. Comments are by default
ignored and removed from the parsed input, and do not appear in the parse tree
or output. However, they can be preserved (see section 4.2).

Paradigm. Use sequences, not recursions. The fact that TXL grammars are
actually parsing programs has a strong influence on the expression of language
forms. For example, in general it is better to express sequences of statements
or expressions directly as sequences ( [X*] or equivalently [repeat X] ) rather
than right- or left-recursive productions. This is both because the parser will be
more efficient, and because the TXL pattern matching engine is optimized for
searching sequences. Thus forms such as this one, which is often seen in BNF
grammars, should be converted to sequences (in this case [statement*] ) in TXL:

statements -> statement
| statements statement



42 J.R. Cordy

Paradigm. Join similar forms. In order to avoid backtracking, multiple similar
forms are typically joined together into one in TXL grammars. For example,
when expressed in traditional BNF, the TIL grammar shows two forms for the
if statement, with and without an else clause, as separate cases.

if_statement -> "if" expression "then"
statement*

"end" ";"
| "if" expression "then"

statement*
"else"

statement*
"end" ";"

While we could have coded this directly into the TXL grammar, because it is
directly interpreted, when instances of the second form were parsed, TXL would
have to begin parsing the first form until it failed, then backtrack and start over
trying the second form to match the input. When many such similar forms are in
the grammar, this backtracking can become expensive, and it is better to avoid it
by programming the grammar more efficiently in TXL. In this case, both forms
are subsumed into one by separating and making the else clause optional in the
TXL define for [if statement] (Figure 8).

Paradigm. Encode precedence and associativity directly in the grammar. As in
all direct top-down parsing methods, left-recursive nonterminal forms can be a
particular problem and should in general be avoided. However, sometimes, as
with left-associative operators, direct left-recursion is required, and TXL will
recognize and optimize such direct left-recursions. An example of this can be
seen in the expression grammar for TIL (Figure 8), which encodes precedence
and associativity of operators directly in the grammar using a traditional prece-
dence chain. Rather than separate precedence and associativity into separate
disambiguation rules, TXL normally includes them in the grammar in this way.

Figure 9 shows a TXL program using the TIL grammar that simply parses
input programs, and the result of running it on the example program “multi-
ples.til” of Figure 7, using the command:

txl -xml multiples.til TILparser.txl

is shown in Figure 10. The “-xml” output shows the internal XML form of the
parse tree of the input program.

4.2 Pretty Printing

The next problem we tackle is creating a pretty-printer for the input language, in
this case TIL. Pretty-printing is a natural application of source transformation
systems since they all have to create source output of some kind.

Paradigm. Using formatting cues to control output format. TXL is designed
for pretty-printing, and output formatting is controlled by inserting formatting
cues for indent [IN], exdent [EX] and new line [NL] into the grammar. These
cues look like nonterminal symbols, but have no effect on input parsing. Their



Excerpts from the TXL Cookbook 43

linux% txl multiples.til TILparser.txl -xml

<program>

<repeat statement>

<statement><for_statement> for

<name><id>i</id></name> :=

<expression><primary><literal><integernumber>1</integernumber></literal></primary></expression> to

<expression><primary><literal><integernumber>9</integernumber></literal></primary></expression> do

<repeat statement>

<statement><for_statement> for

<name><id>j</id></name> :=

<expression><primary><literal><integernumber>1</integernumber></literal></primary></expression> to

<expression><primary><literal><integernumber>10</integernumber></literal></primary></expression> do

<repeat statement>

<statement><write_statement> write

<expression>

<expression><primary><name><id>i</id></name></primary></expression>

<op>*</op>

<expression><primary><name><id>j</id></name></primary></expression>

</expression> ;

</write_statement>

</statement>

</repeat statement> end ;

</for_statement>

</statement>

</repeat statement> end ;

</for_statement>

</statement>

</repeat statement>

</program>

Fig. 10. Example XML parse tree output of TIL parser

only role is to specify how output is to be formatted. For example, in the TIL
grammar of Figure 8, the definition for [while statement] uses [IN][NL] following
the while clause, specifying that subsequent lines should be indented, and that a
new line should begin following the clause. The [EX] after the statements in the
body specifies that subsequent lines should no longer be indented, and the [NL]
following the end of the loop specifies that a new line should begin following the
while statement.

Paradigm. Preserving comments in output. By default TXL ignores comments
specified using the comments section as shown in Figure 8, where TIL comments
are specified as from // to end of line. In order to preserve comments in output,
we must tell TXL that we wish to do that using the -comment command-line
argument or the equivalent #pragma directive,

#pragma -comment

Once we have done that, comments become first-class tokens and the grammar
must allow comments anywhere they may appear. For well-formed input code
this is not difficult, but in general it is tricky and can require significant tuning.
It is a weakness of TXL that it has no other good way to preserve comments.

In the TIL case, we have only end-of-line comments and we will assume that
they are used only at the statement level - if we observe other cases, they can
be added to the grammar. This is specified in the grammar with the statement



44 J.R. Cordy

form [comment statement], (which has no effect when -comment is off because
no [comment] token will be available to parse). [comment statement] is defined
to put a new line before each comment, in order to separate it in the output:

define comment_statement
[NL] [comment] [NL]

end define

Figure 11 shows the result of pretty-printing multiples.til using the parsing pro-
gram of Figure 9.

4.3 Language Extensions

Language extensions, dialects and embedded DSLs are a common application
of source transformation systems. The next problem involves implementing a
number of syntactic extensions to the TIL grammar. Syntactic extension is one of
the things TXL was explicitly designed for, and the paradigm is straightforward.

Figure 12 shows four small language extensions to TIL, the addition of begin-
end statements, the addition of arrays, the addition of functions, and the addition
of modules (i.e., anonymous or singleton classes). New grammatical forms, to-
kens and keywords are defined using the usual tokens, keys and define statements
of TXL, as for example with the [begin statement] definition in the begin-end
extension of TIL and the addition of the function keyword in the function ex-
tension of TIL (both in Figure 12).

Paradigm.Extension of grammatical forms.New forms are integrated into the ex-
isting language grammar using redefinitions of existing forms, such as [statement]
in the begin-end dialect of TIL. TXL’s redefine statement is explicitly designed
to support language modifications and extensions. In the begin-end extension we
can see the use of redefine to add a new statement form to an existing language:

redefine statement
... % refers to all existing forms

| [begin_statement] % add alternative for our new form
end redefine

linux% cat Examples/multiples.til

// Output first 10 multiples of numbers 1 through 9
for i:=1 to 9 do for j:=1 to 10 do

// Output each multiple
write i*j; end; end;

linux% txl -comment multiples.til TILparser.txl

// Output first 10 multiples of numbers 1 through 9
for i := 1 to 9 do

for j := 1 to 10 do
// Output each multiple
write i * j;

end;
end;

Fig. 11. Example output of the TIL pretty-printer



Excerpts from the TXL Cookbook 45

File "TILbeginend.grm"

% TXL grammar overrides for begin-end
% extension of the Tiny Imperative Language

% Add begin-end statements
redefine statement

... % existing forms
| [begin_statement] % adds new form

end redefine

define begin_statement
’begin [IN][NL]

[statement*] [EX]
’end [NL]

end define

File "TILfunctions.grm"

% TXL grammar overrides for functions
% extension of the Tiny Imperative Language

% Add functions using grammar overrides

redefine declaration
... % existing

| [function_definition] % new form
end redefine

redefine statement
... % existing

| [call_statement]
end redefine

keys
’function

end keys

define function_definition
’function [name] ’( [name,] ’)

[opt colon_id] [IN][NL]
[statement*] [EX]

’end; [NL][NL]
end define

define call_statement
[opt id_assign]

[name] ’( [expression,] ’) ’; [NL]
end define

define colon_id
’: [name]

end define

define id_assign
[name] ’:=

end define

File "TILarrays.grm"

% TXL grammar overrides for array
% extension of the Tiny Imperative Language

% Add arrays using grammar overrides
redefine declaration

’var [name] [opt subscript] ’; [NL]
| ...

end redefine

redefine primary
[name] [opt subscript]

| ...
end redefine

redefine assignment_statement
[name] [opt subscript] ’:=

[expression] ’; [NL]
end redefine

define subscript
’[ [expression] ’]

end define

File "TILmodules.grm"

% TXL grammar overrides for module
% extension of the Tiny Imperative Language

% Add modules using grammar overrides
% Requires functions extension

redefine declaration
... % existing forms

| [module_definition] % add new form
end redefine

keys
’module ’public

end keys

define module_definition
’module [name] [IN] [NL]

[statement*] [EX]
’end ; [NL] [NL]

end define

redefine function_definition
[opt ’public] ...

end redefine

Fig. 12. TXL overrides for four dialects of TIL

Such a grammar modification is called a grammar override in TXL since
it “overrides” or replaces the original definition with the new one. The “...”
notation in this example is not an elision, it is an actual part of the TXL syntax.
It refers to all of the previously defined alternative forms for the nonterminal
type, in this case [statement], and is a shorthand for repeating them all in the
redefine. It also makes the redefinition largely independent of the base grammar,
so if the definition of [statement] in TIL changes, the language extension will not
require any change, it will just inherit the new definition.



46 J.R. Cordy

Because TXL grammars are actually directly interpreted programs for pars-
ing, any ambiguities of the extension with existing forms are automatically re-
solved - the first defined alternative that matches an input will always be the
one recognized. So even if the base language changes such that some or all of
the language extension’s forms are subsumed by the base language grammar,
the extension will continue to be valid.

Paradigm. Grammar overrides files. Language extension and dialect files are
normally stored in a separate grammar file. Such a grammar modification file is
called a grammar overrides file, and is included in the TXL program following
the include of the base grammar, so that it can refer to the base grammar’s
defined grammatical types:

include "TIL.grm"
include "TILbeginend.grm"

For example, while the TIL begin-end extension is independent of the grammat-
ical forms of TIL other than the [statement] form it is extending, in the arrays
extension of Figure 12, [expression] and [name] refer to existing grammatical
types of TIL.

Paradigm. Preferential ordering of grammatical forms. In the begin-end exten-
sion the new form is listed as the last alternative, indicating a simple extension
that adds to the existing language. When the new forms should be used in prefer-
ence to existing ones, as in the arrays example, the new form is given as the first
alternative and the existing alternatives are listed below, as in the [declaration]
and [primary] redefinitions in the arrays extension of TIL:

redefine declaration
’var [name] [opt subscript] ’; [NL]

| ...
end redefine

redefine primary
[name] [opt subscript]

| ...
end redefine

Because grammatical types are interpreted directly as a parsing program, this
means that any input that matches will be parsed as the new form, even if
existing old forms would have matched it. So, for example, every var declaration
in the arrays extension, including those without a subscript (e.g., “var x;”) will
be parsed with an optional subscript in the extended language, even though
the base grammar for TIL already has a form for it. Similarly, every [name]
reference which appears as a [primary] in the extension will be parsed with an
[opt subscript] even though there is an existing [name] form for [primary].

Pretty-printing cues for extended forms are specified in redefine statements
in the usual way, by adding [NL], [IN] and [EX] output formatting nonterminals
to the definitions of the new forms, as in the new [declaration] form above.

Paradigm. Replacement of grammatical forms. Grammar type redefinitions can
also completely replace the original form in the base grammar. For example, the



Excerpts from the TXL Cookbook 47

[assignment statement] form of the arrays extension of TIL ignores the definition
in the base grammar, and defines its own form which completely replaces it.
This means that every occurrence of an [assignment statement] in the extended
language must match the form defined in the dialect.

redefine assignment_statement
[name] [opt subscript] ’:= [expression] ’; [NL]

end redefine

Paradigm. Composition of dialects and extensions. Language extensions and
dialects can be composed and combined to create more sophisticated dialects.
For example, the module (anonymous class) extension of TIL shown in Figure
12 is itself an extension of the function extension. Extensions are combined by
including their grammars in the TXL program in dependency order, for example:

include "TIL.grm"
include "TILarrays.grm"
include "TILfunctions.grm"
include "TILmodules.grm"

Paradigm. Modification of existing forms. Extended forms need not be com-
pletely separate alternatives or replacements. When used directly in a redefine
rather than as an alternative, the “...” notation still refers to all of the origi-
nal forms of the nonterminal, modified by the additional syntax around it. For
example, in the module extension of TIL (Figure 12), the [function declaration]
form is extended to have an optional public keyword preceding it. In this way the
module dialect does not depend on what a [function definition] looks like, only
that it exists. Figure 13 shows an example of a program written in the modular
TIL language dialect described by the composition of the arrays, functions and
modules grammar overrides in Figure 12.

4.4 Robust Parsing

Robust parsing [1] is a general term for grammars and parsers that are insensi-
tive to minor syntax errors and / or sections of code that are unexplained by the
input language grammar. Robust parsing is very important in production pro-
gram analysis and transformation systems since production software languages
are often poorly documented, making it difficult to get an accurate grammar,
because language compilers and interpreters often allow forms not officially in
the language definition, and because languages often have dialects or local cus-
tom extensions in practice. For all of these reasons, it is important that analysis
and transformation tools such as those implemented in TXL be able to handle
exceptions to the grammar so that systems can be at least partially processed.

Paradigm. Fall-through forms. The basic paradigm for robust parsing in TXL
is to explicitly allow for unexplained input as a dialect of the grammar that
adds a last, uninterpreted, alternative to the grammatical forms for which there
may be such unofficial or custom variants. For example, we may want to allow
for statements that are not in the official grammar by making them the last
alternative when we are expecting a statement.



48 J.R. Cordy

File "primes.mtil"

// this program determines the primes up to maxprimes using the sieve method
var maxprimes;
var maxfactor;
maxprimes := 100;
maxfactor := 50; // maxprimes div 2

var prime;
var notprime;
prime := 1;
notprime := 0;

module flags
var flagvector [maxprimes];

public function flagset (f, tf)
flagvector [f] := tf;

end;

public function flagget (f) : tf
tf := flagvector [f];

end;
end;

// everything begins as prime
var i;
i := 1;
while i <= maxprimes do

flagset (i, prime);
i := i + 1;

end;

. . .

Fig. 13. Part of an example program in the TIL arrays, functions, modules dialect

Figure 14 shows the grammar overrides for a dialect of TIL that allows for
unexplained statement forms. The key idea is that all statements in TIL end
with a semicolon - so if we have a form ending in a semicolon that does not
match any of the known forms, it must be an unknown statement form. Because
alternatives in TXL grammars are tried in order, we can encode this by adding
the unknown case as the last form for [statement]:

redefine statement
... % existing forms for [statement]

| [unknown_statement] % fall-through if not recognized
end redefine

Paradigm. Uninterpreted forms. When parsing, all other alternatives are tested,
after which we fall through to the [unknown statement] form. [unknown state-
ment] is any sequence of input items that are not semicolons [not semicolon*],
ended with a semicolon. This ensures that we don’t accidentally accept uninter-
preted input over a statement boundary.

The [not semicolon] nonterminal type is the key to flushing uninterpreted
input, and uses a standard TXL paradigm for flushing input, [token or key].
[token] is a special TXL built-in type that matches any input token that is not
a keyword of the grammar, and [key] is a special built-in type that matches
any keyword. Thus the following definition describes a type that will accept any
single item from the input:



Excerpts from the TXL Cookbook 49

define token_or_key
[token] % any input token that is not a keyword

| [key] % any keyword
end define

Paradigm. Guarded forms. In the robust TIL dialect, we must be careful not
to throw away a semicolon, and thus we have guarded [token or key] with a
nonterminal guard. In the [not semicolon] definition, [not ’;] indicates that if the
next input token is a semicolon, then we should not accept it as a [token or key].

define not_semicolon
[not ’;] [token_or_key] % any item except semicolon

end define

[not X] is a generalized grammatical guard that can be used to limit what can
be matched by the form following it to those inputs that cannot be recognized
as an [X], which can be any grammatical type. Its semantics are simple: if an [X]
can be parsed at the current point in the input, then the following form is not
tested, otherwise it is. In either case, [not X] does not itself consume any input.

File "TILrobust.grm"

% TXL grammar overrides for robust parsing extension of Tiny Imperative Language

% Allow for unrecognized statement forms
redefine statement

... % refers to all existing forms for [statement]
| [unknown_statement] % add fall-through if we don’t recognize a statement

end redefine

define unknown_statement
[not_semicolon*] ; [NL]

end define

define not_semicolon
[not ’;] [token_or_key] % any input item that is not a semicolon

end define

define token_or_key
[token] % any input token that is not a keyword

| [key] % any keyword
end define

Fig. 14. TXL overrides for robust statement parsing in TIL

4.5 Island Grammars

Island grammars [14,19] address a related problem to robust parsing, the problem
of embedded code we wish to process in a sea of other text we don’t want
to process. For example, we may want to analyze only the embedded C code
examples in the chapters of a textbook or a set of HTML pages, or only the
EXEC SQL blocks in a large set of Cobol programs.

The basic strategy for island grammars in TXL is to invert the robust parsing
strategy - we treat the input as a sequence of meaningful things (“islands”)
and unmeaningful things (‘water”) (Figure 15). The meaningful things are, for
example, TIL programs, and the unmeaningful things are any sequence of input
items not beginning with a TIL program.



50 J.R. Cordy

File "Islands.grm"

% Generic grammar for parsing documents
% with embedded islands

% The input is a sequence of interesting
% islands and uninteresting water
redefine program

[island_or_water*]
end redefine

define island_or_water
[island]

| [water]
end define

% Water is any input that is not an island
define water

[not_island+]
end define

define not_island
% any item that does not begin an island
[not island] [token_or_key]

end define

define token_or_key
[token] % any token not a keyword

| [key] % any keyword
end define

File "TILislands.txl"

% TXL program for parsing documents
% with embedded TIL programs

% Begin with the TIL grammar
include "TIL.grm"

% And the generic island grammar
include "Islands.grm"

% In this case the islands are TIL programs
define island

[til_program]
end define

define til_program
[statement+]

end define

% We can now target rules at embedded TIL
% [island]s. But in this case, we just
% delete the non-TIL, to yield code only
rule main

replace [island_or_water*]
Water [water]
Rest [island_or_water*]

by
Rest

end rule

Fig. 15. TXL generic island grammar (left), and an island parser for embedded TIL
programs based on it (right)

Paradigm. Preferential island parsing. Figure 15 shows a generic TXL gram-
mar for implementing island grammars to parse documents such as this one,
recognizing the embedded islands (such as TIL programs) and ignoring the rest
of the text (such as this paragraph). As usual, the trick is that the first alter-
native [island] is preferred, and the second [water] is tried only if the first fails.
Parameterized generic grammars such as this one are frequently used in TXL to
encode reusable parsing paradigms such as island grammars.

The generic island grammar is used by defining [island], the interesting form,
in the TXL program that includes the generic grammar. The second half of Fig-
ure 15 is a TXL program that uses the generic island grammar to make an island
grammar for embedded TIL programs in documents such as this tutorial. [island]
is defined as [til program], which uses the included TIL grammar’s [statement]
form. The analysis or transformation rules can then target the [island] forms
only, ignoring the uninterpreted water. In this case, the program simply replaces
all occurrences of [water] by the empty sequence, leaving only the embedded TIL
programs in the output.

4.6 Agile Parsing

Agile parsing [13] refers to the use of grammar tuning on an individual analysis
or transformation task basis. By using the parser to change the parse to better
isolate the parts of the program of interest or make them more amenable to the
particular transformation or analysis, we can greatly simplify the rules necessary
to perform the task.



Excerpts from the TXL Cookbook 51

Paradigm. Transformation-specific forms. Agile parsing is implemented in TXL
using grammar overrides (redefines) in exactly the same way as we have done for
language extensions and dialects. In essence, we create a special dialect grammar
for the language in support of the particular task.

The remainder of this paper consists of a sampling of example problems in
various applications of source transformation, highlighting the TXL paradigms
that are used in each solution.

5 Restructuring Problems

Once we have crafted grammars for our input languages, we can begin using them
to support the real work - the transformation and analysis tasks that support
software understanding, maintenance, renovation, migration and evolution. The
flexibility of the TXL parser is a key to its application in many domains - for
example, we exploit agile parsing in many solutions. But the real work is in the
transformation and analysis rules.

In the remaining problems from the TXL Cookbook, we concentrate on source
code transformation and analysis problems in three categories: restructuring
problems, optimization problems, and static and dynamic analysis problems. In
each category, we will look at a set of small but real challenges, each couched
in terms of TIL and its extensions. We only have space for a few representative
examples in each category, chosen not because they are the most useful, but
because they introduce new recipes and paradigms.

As we have seen, a TXL “grammar” is not really a grammar - rather it is a
functional program for parsing the input, which gives us direct control over the
parse, yielding both flexibility and generality. Similarly, a TXL transformation
“rule set” is not really a term rewriting system - rather, the rules form a func-
tional program for transforming the input, with similar direct control over tree
traversal and strategy, again yielding flexibility and generality.

We begin with problems in basic program restructuring, the heart of appli-
cations in refactoring and code improvement. As with our parsing examples, all
of our example problems are based on the Tiny Imperative Language (TIL) and
its extensions. We will use the grammars and parsing techniques we developed
in Section 4 to support all our solutions.

Paradigm. Programmed functional control. Transformations and analyses are
coded in TXL using rules and functions. The basic difference between the two
is that rules repeatedly search for and transform instances of their pattern until
no more can be found, whereas functions transform exactly one instance of their
pattern. TXL is a functional language, and the transformation is driven by the
application of one rule or function, the main rule, to the parse tree of the entire
input. All other rules and functions must be explicitly invoked, either in the
main rule or in other rules invoked by it.

In contrast to pure term rewriting systems, this functional style gives the pro-
grammer fine-grained programmed control over the application of transformation
rules on an invocation-by-invocation basis, and tree traversals and strategies can



52 J.R. Cordy

be customized to each task. Of course, the downside of this flexibility and control
is that you must do so, the price we pay in TXL for detailed programmability.
As we shall see, in practice the common traversals and strategies are simply TXL
coding paradigms, which we can learn quickly and reuse as need be. It is these
functional paradigms that we will be exploiting in our solutions.

Paradigm. Transformation scopes. The result of a TXL rule or function invo-
cation is a transformed copy of the scope (parse tree) it is directly applied to. In
TXL, scopes of application are explicitly programmed - rules are not global, but
transform only the subtree they are applied to. The result of a rule application
is (semantically) a completely separate copy from the scope itself - the original
TXL variable bound to the scope is unchanged by a rule invocation on it, and
retains its original value (parse tree), as in all functional languages. For example,
if the TXL variable X is bound to the [number] 1, the rule invocation X [+ 1]
yields 2, but does not change X, which retains its original value, 1.

5.1 Feature Reduction

Applications in code analysis and transformation often begin by normalizing the
code to reduce the number of features in the code to be analyzed in order to
expose basic semantics and reduce the number of cases to analyze. Figure 16
is a simple example of such a feature reduction transformation, the elimination
of TIL for loops by translation to an equivalent while. The transformation has
only one rule, [main], which searches for sequences of [statement] beginning with
a for statement and replaces the for with an equivalent while statement. While
small, this simple example introduces us to a number of TXL paradigms.

It may surprise you to see that the rule is targeted at the type [statement*],
a sequence of statements, rather than just [statement], since it is a single for
statement that we are replacing. The reason for this is that we need to replace
the for loop with not one statement but several - the initialization of the iteration
variable, the declaration and computation of the upper limit, and the while loop
itself. If we had tried to replace a single [statement] with this sequence, we would
get a syntax error in the replacement, because TXL rules are constrained to
preserve grammatical type in order to guarantee a well-formed result. A sequence
of statements [statement*] is not an instance of the type [statement], and thus
a replacement of several statements would violate the type constraint.

Paradigm. Raising the scope of application. This situation is an example of
a general paradigm in TXL - transforming a pattern that is further up the
parse tree than what we really want to match, in order to be able to create a
result that is significantly different. The saying in TXL is: if you can’t create
the replacement you want, target further up the tree. In this specific case, we
need to create several [statement]s out of one - so we must target the statement
sequence [statement*] of which the for statement is a part.

Note that the statements following the for are also captured in the pattern
(MoreStatements) and preserved in the result. This is a part of the paradigm - if
we had not allowed for these, the pattern could match only sequences containing



Excerpts from the TXL Cookbook 53

File "TILfortowhile.txl"

% Convert Tiny Imperative Language "for" statements to "while" form

% Based on the TIL grammar
include "TIL.grm"

% Preserve comments in output
#pragma -comment

% Rule to convert every "for" statement
rule main

% Capture each "for" statement, in its statement sequence context
% so that we can replace it with multiple statements
replace [statement*]

’for Id [id] := Expn1 [expression] ’to Expn2 [expression] ’do
Statements [statement*]

’end;
MoreStatements [statement*]

% Need a unique new identifier for the upper bound
construct UpperId [id]

Id [_ ’upper] [!]

% Construct the iterator
construct IterateStatement [statement]

Id := Id + 1;

% Replace the whole thing
by

’var Id;
Id := Expn1;
’var UpperId;
UpperId := (Expn2) + 1;
’while Id - UpperId ’do

Statements [. IterateStatement]
’end;
MoreStatements

end rule

Fig. 16. TXL transformation to convert for statements to while statements

exactly one statement - that is, the last statement of a sequence. There is no
cost to copying these from the pattern to the result, since like many functional
languages TXL optimizes flow-through copies.

Paradigm. Explicit patterns. The pattern for the for loop is fully explicated,
that is, it matches all of its parts right away rather than just a [for statement]
which we could then take apart. Similarly, the replacement contains all the parts
of the result explicitly rather than constructing a [while statement] and replacing
it whole. This example-like way of expressing rules is a TXL style - making the
pattern and replacement show as much as possible of the form of the actual
intended pattern and result target code rather than the constructed terms.

TXL uses the same parser (i.e., the TXL grammar you specify) to parse
patterns and replacements in rules as it does for input. Thus it constructs all of
the intermediate terms for you. This means that there is no cost to explicating
details in a pattern, and it would be no more efficient to have a pattern searching
for a [for statement] only than for the entire pattern we have coded in the [main]
rule, because the parsed pattern is in fact a [for statement] anyway.



54 J.R. Cordy

Given this preference for an example-like style, it may also surprise you to see
that the iteration statement (IterateStatement) is separately constructed and
appended [.] to the sequence of statements in the body of the loop rather than
appearing in the replacement directly. The reason for this is the definition of
sequence in TXL - the sequence type [X*] has a recursive definition, deriving
[X] [X*] or [empty]. Thus although a statement at the head of a sequence (
[statement] [statement*] as in the pattern of this rule) is a valid [statement*],
a statement at the end, [statement*] [statement], is not. Therefore the TXL [.]
(sequence append) built-in function is provided to allow for this, and the rule
uses it to append the new statement to those in the loop body.

It may also surprise you to see that the literal identifiers and keywords in
both the pattern and the replacement have been quoted using a single quote ’ in
all cases. While this is not necessary (except for the TXL keyword “end”), TXL
programmers often choose to quote literal identifiers to remind the reader that
they are not TXL variable references but part of the output text.

Paradigm. Generating unique new identifiers. The rule uses two built-in func-
tions, [ ] and [!], to generate a unique new identifier for the introduced upper
bound variable. In the construct of UpperId, a new identifier is constructed from
the original for iteration variable name Id, to which the literal identifier “upper”
is appended with underscore using the [ ] built-in function to form a new iden-
tifier (for example, if Id is “i”, then we have “i upper”). The new identifier is
then made globally unique using the unique built-in function [!], which appends
a number to it to create a new identifier unused anywhere else in the input (for
example, “i upper27”).

This first example did its transformations in place - let’s look at one that
moves things around a bit.

5.2 Declarations-to-Global

One of the standard challenges for transformation tools is the ability to move
things about, and in particular to make transformations at an outer level that
depend on things deeply embedded in an inner level and vice-versa. In the next
two examples, we will look at each of these kinds of problems in turn.

In the first problem, we are simply going to move all declarations in the TIL
program to the global scope. Even though TIL declarations seem to be able to
appear anywhere according to the TIL grammar, their meaning is apparently
global, since no scope rules are defined. In this transformation, we make the true
meaning of embedded declarations explicit by promoting all declarations to one
global list at the beginning of the program.

The simplest solution to this problem (Figure 17) uses two common paradigms
of TXL, type extraction and type filtering. The basic strategy is shown in the
main rule, which has three steps: construct a copy of all the declarations in the
program as a sequence, construct a copy of the program with all declarations
removed, and concatenate the one to the other to form the result.



Excerpts from the TXL Cookbook 55

File "TILtoglobal.txl"

% Make all TIL declarations global

% Based on the TIL base grammar
include "TIL.grm"

% Preserve comments in output
#pragma -comment

% The main rule - in this case a function,
% applies only once

function main
replace [program]

Program [statement*]

% Extract all statements,
% then filter for declarations only
construct Declarations [statement*]

_ [^ Program] [removeNonDeclarations]

% Make a copy of the program
% with all declarations removed
construct ProgramSansDeclarations [statement*]

Program [removeDeclarations]

% The result consists of the declarations
% concatenated with the non-declarations
by

Declarations [. ProgramSansDeclarations]
end function

rule removeDeclarations
% Rule to remove every declaration
% at every level from statements
replace [statement*]

Declaration [declaration]
FollowingStatements [statement*]

by
FollowingStatements

end rule

rule removeNonDeclarations
% Rule to remove all statements that
% are not declarations from statements
replace [statement*]

NonDeclaration [statement]
FollowingStatements [statement*]

% Check the statement isn’t a declaration
deconstruct not NonDeclaration

_ [declaration]

% If so, take it out
by

FollowingStatements
end rule

Fig. 17. TXL transformation to move all declarations to the global scope

Extracting all the declarations from the program is done in two steps, using
the extract [ˆ ] built-in rule to get a sequence of all the statements of the program,
and then removing all those that are not declarations.

construct Declarations [statement*]
_ [^ Program] [removeNonDeclarations]

Paradigm. Extracting all instances of a type. The extract built-in function [ˆ
] is applied to a scope of type [T*] for any type [T], and takes as parameter
a bound variable V of any type. The rule constructs a sequence containing a
copy of every occurrence of an item of type [T] in V and replaces its scope with
the result. In our case, a sequence containing a copy of every [statement] in
the program is constructed. Extract ignores its original scope, so it is normally
empty to begin with. In this case, we have used the empty variable “ ”, a special
TXL variable denoting an empty item, as the scope of the rule. This is the usual
way that extract is used.

Paradigm. Filtering all instances of a type. The second step in this construct
uses the subrule [removeNonDeclarations] to remove all non-declarations from
the constructed sequence of all statements. (The constructor could have ex-
tracted all [declaration]s directly, but this would cause problems later when we
tried to concatenate them to the beginning of the program.) The subrule uses
a common filtering paradigm in TXL, looking for any occurrence of a sequence
of statements beginning with a statement that is not a declaration, and replacing



56 J.R. Cordy

it with the sequence without the beginning statement. The rule continues until
it can find no remaining instances in its scope.

Paradigm. Negative patterns. Determining that a statement is not a declaration
involves another common paradigm in TXL - a negated deconstructor. A normal
deconstructor simply matches a bound variable to a pattern for example:

deconstruct Statement
Assignment [assignment_statement]

which succeeds and binds Assignment if the [statement] to which Statement is
bound consists entirely of an assignment statement.

In this case, however, we are interested in statements that are not a [decla-
ration], so we use deconstruct not to say that our match succeeds only if the
deconstructor fails (that is, the [statement] bound to NonDeclaration is not a
[declaration]. Although it has a pattern, a deconstruct not does not bind any pat-
tern variables, since to succeed it must not match its pattern. Thus any variable
names in the negated deconstructor’s pattern are irrelevant, and in this case we
have explicitly indicated that by using the anonymous name “ ” in the pattern.

deconstruct not NonDeclaration
_ [declaration]

The same filtering paradigm is used in the second constructor of the main rule
to remove all declarations from the copy of the program used in the result of the
rule. This general removal paradigm can be used with any simple, complex or
guarded pattern to remove items matching any criterion from a scope.

Finally, the replacement of the rule simply appends the copy of the program
without declarations to the extracted declarations, yielding a result with all
declarations at the beginning of the program.

5.3 Declarations-to-Local

The other half of the movement challenge is the ability to make transformations
on an inner level that depend on things from an outer level. One such problem is
localization, in which things at an outer level are to be gathered and moved to an
inner level. It can be used to support clustering of related methods, refactoring
to infer methods, creation of inferred classes, and so on.

In this next problem, we assume that TIL is a scoped language rather than
unscoped. The idea is to find all declarations of variables that are artificially
global, and localize them as much as possible to the deepest inner scope in
which they are used. In some sense it is the inverse of the previous problem.

Figure 18 shows a TXL solution to this problem. The main rule for this
transformation uses two steps - “immediatize” and “localize”. The [immedia-
tizeDeclarations] rule moves declarations as far down in their scope as possible,
to immediately before the first statement that uses their declared variable.

For example, if we have the scope shown on the left below (a), then the first
step, [immediatizeDeclarations], will yield the intermediate result in the middle
(b). The second step, [localizeDeclarations], then looks for compound statements



Excerpts from the TXL Cookbook 57

File "TILtolocal.txl"

% Move all declarations in a TIL program
% to their most local location

% Based on the TIL base grammar
include "TIL.grm"

% Preserve comments
#pragma -comment

% Transformation to move all declarations
% to their most local location -
% immediately before their first use,
% in the innermost block they can be.

rule main
% This rule’s pattern matches its result,
% so it has no natural termination point
replace [program]

Program [program]

% So we add an explicit fixed-point
% guard - after each application of the
% two transformations, we check to see
% that something more was actually done
construct NewProgram [program]

Program [immediatizeDeclarations]
[localizeDeclarations]

deconstruct not NewProgram
Program

by
NewProgram

end rule

rule immediatizeDeclarations
% Move declarations past statements
% that don’t depend on them.
% Use a one pass ($) traversal
replace $ [statement*]

’var V [id];
Statement [statement]
MoreStatements [statement*]

% We can move the declaration past a
% statement if the statement does not
% refer to the declared variable
deconstruct not * [id] Statement

V
by

Statement
’var V;
MoreStatements

end rule

rule localizeDeclarations
% Move declarations outside a structured
% statement inside if following statements
% do not depend on the declared variable.
% Again, use a one pass ($) traversal
replace $ [statement*]

Declaration [declaration]
CompoundStatement [statement]
MoreStatements [statement*]

% Check that it is some kind of compound
% statement (one with a statement list inside)
deconstruct * [statement*] CompoundStatement

_ [statement*]

% Check that the following statements
% don’t depend on the declaration
deconstruct * [id] Declaration

V [id]
deconstruct not * [id] MoreStatements

V

% Alright, we can move it in.
% Another solution might use agile parsing
% to abstract all these similar cases into one
by

CompoundStatement
[injectDeclarationWhile Declaration]
[injectDeclarationFor Declaration]
[injectDeclarationIfThen Declaration]
[injectDeclarationIfElse Declaration]

MoreStatements
end rule

function injectDeclarationWhile
Declaration [declaration]

% There is no legal way that the while
% Expn can depend on the declaration,
% since there are no assignments between
% the declaration and the Expn
replace [statement]

’while Expn [expression] ’do
Statements [statement*]

’end;
by

’while Expn ’do
Declaration
Statements

’end;
end function

. . . (other injection rules similar)

Fig. 18. TXL transformation to localize all declarations

into which an immediately preceding declaration can be moved, and moves the
declaration (“var x;” in the example) inside, yielding the result (c) on the right.

var y;
var x;
read y;
y := y + 6;
if y > 10 then

x := y * 2;
write x;

end;

(a)

var y;
read y;
y := y + 6;
var x;
if y > 10 then

x := y * 2;
write x;

end;

(b)

var y;
read y;
y := y + 6;
if y > 10 then

var x;
x := y * 2;
write x;

end;

(c)



58 J.R. Cordy

Paradigm. Transformation to a fixed point. Because declarations may be more
than one level too global, the process must be repeated on the result until a
fixed point is reached. This is encoded in the main rule, which is an instance of
the standard fixed-point paradigm for TXL rules.

Although its only purpose is to invoke the other rules, [main] is a rule rather
than a function because we expect it to continue to look for more opportunities
to transform its result after each application. But unless we check that some-
thing was actually done on each application, the rule will never halt since its
replacement NewProgram is a [program] and therefore matches its pattern. To
terminate the rule, we use a deconstructor as an explicit fixed-point test:

deconstruct not NewProgram
Program

The deconstructor simply tests whether the set of rules has changed anything on
each repeated application, that is, if the NewProgram is exactly the same as the
matched Program. If nothing has changed, we are by definition at a fixed point.
This rule is a complete generic paradigm for fixed-point application of any rule
set - only the set of rules applied in the constructor changes.

Paradigm. Dependency sorting. The rule [immediatizeDeclarations] works by
iteratively moving declarations over statements that do not depend on them. In
essence, this is a dependency sort of the code. The rule continues to move dec-
larations down until every declaration is immediately before the first statement
that uses its declared variable. (This could be done more efficiently by moving
declarations directly, but our purpose here is to demonstrate as many paradigms
as possible in the clearest and simplest way.) Dependency sorting in this way is
a common paradigm in TXL, and we will see it again in other solutions.

Paradigm. Deep pattern match. The dependency test uses another common
paradigm in TXL - a deep deconstruct. This is similar to the negated deconstruct
used in the previous problem, but this time we are not just interested in whether
Statement does not match something, we are interested in whether it does not
contain something. Deep deconstructs test for containment by specifying the
type of the pattern they are looking for inside the bound variable, and a pattern
of that type to find. In this case, we are looking to see if there is an instance of
an identifier (type [id]) exactly like the declared one (bound to V).

Paradigm. One pass rules. The [immediatizeDeclarations] rule also demon-
strates another paradigm of TXL - the “one-pass” rule. If there are two dec-
larations in a row, this rule will contually move them over one another, never
coming to a fixed point. For this reason, the rule is marked as one-pass using
replace $. This means that the scope should be searched in linear fashion for
instances of the pattern, and replacements should not be directly reexamined
for instances of the pattern. In this case, if we move a declaration over another,
we don’t try to move the other over it again because we move on to the next
sequence of statements in one-pass rather than recursive fashion.

The second rule in this transformation, [localizeDeclarations], looks for in-
stances of a declaration that has been moved to immediately before a compound



Excerpts from the TXL Cookbook 59

statement (such as if, while, for) and checks to see whether it can be moved
inside the statement’s scope. The rule uses all of the paradigms outlined above -
it is one-pass (replace $) so that it does not try the same case twice, and it uses
deep pattern matching both to get the declared identifier V from the Declaration
and to check that the following statements MoreStatements do not depend on
the declaration we want to move inside, by searching for uses of V in them.

A new use of deconstruct in this rule is the deep deconstruct of Compound-
Statement, which is simply used to check that we actually have an inner scope
in the statement in which to move the declaration.

Paradigm. Multiple transformation cases. The replacement of this rule demon-
strates another paradigm, the programming of cases in TXL. There are several
different compound statements into which we can move the declaration: while
statements, for statements, then clauses and else clauses. Each one is slightly
different, and so they have different patterns and replacements. In TXL such
multiple cases use one function for each case, all applied to the same scope.

In essence this is the paradigm for case selection or if-then-else in TXL -
application of one function for each case. Only one of the functions will match
any particular instance of CompoundStatement, and the others that do not
match will leave the scope untouched. TXL functions and rules are total, that is,
they have a defined result, the identify transformation, when they do not match.

Paradigm. Context-dependent transformation rules. In each case, the Declara-
tion to be inserted into the CompoundStatement is passed into the function for
the case using a rule parameter. Rule parameters allow us to carry context from
outer scopes into rules that transform inner scopes, and this is the paradigm for
context-dependent transformation in TXL. In this case we pass the Declaration
from the outer scope into the rule that transforms the inner scope.

The context carried in can be arbitrarily large or complex - for example, if
the inner transformation rule wanted to change small things inside its scope
but depended on global things, we could pass a copy of the entire program into
the rule. Outer context can also be passed arbitrarily deeply into subrules, so if
a small change deeply inside a sub-sub-subrule depended on something in the
outer scope, we could pass a copy all the way in.

5.4 Goto Elimination

The flagship of all restructuring problems is goto elimination - the inference of
structured code such as while loops and nested if-then-else from spaghetti-coded
goto statements in legacy languages such as Cobol. In this example we imagine
a dialect of TIL that has goto statements, and infer equivalent while statements
where possible. Figure 19 gives the grammar for a dialect of TIL that adds goto
statements and labels, so that we can write programs like the one shown on
the left below (a). Our goal is to recognize and transform loop-equivalent goto
structures into their while loop form, like the result (b) on the right.



60 J.R. Cordy

// Factor an input number
var n;
var f;
write "Input n please";
read n;
write "The factors of n are";
f := 2;
// Outer loop over potential factors
factors:

if n = 1 then
goto endfactors;

end;
// Inner loop over multiple instances
// of same factor
multiples:

if (n / f) * f != n then
goto endmultiples;

end;
write f;
n := n / f;
goto multiples;

endmultiples:
f := f + 1;
goto factors;

endfactors:

(a)

// Factor an input number
var n;
var f;
write "Input n please";
read n;
write "The factors of n are";
f := 2;
// Outer loop over potential factors
while n != 1 do

// Inner loop over multiple instances
// of same factor
while (n / f) * f = n do

write f;
n := n / f;

end;
f := f + 1;

end;

(b)

An example TXL solution to the problem of recognizing and transforming
while-equivalent goto structures is shown in Figure 19. The basic strategy is to
catalogue the patterns of use we observe, encode them as patterns, and use one
rule per pattern to replace them with their equivalent loop structures. In practice
we would first run a goto normalization (feature reduction) transformation to
reduce the number of cases.

The program presently recognizes two cases: “forward’ while structures, which
begin with an if statement guarding a goto and end with a goto back to the if
statement, and “backward” whiles, which begin with a labelled statement and
end with an if statement guarding a goto branching back to it.

By now most of the TXL code will be looking pretty familiar. However, this
example has two new paradigms to teach us. The first is the match of the pattern
in the rule [transformForwardWhile]. Ideally, we are looking for a pattern of the
form:

replace [statement*]
L0 [label] ’:

’if C [expression] ’then
’goto L1 [label] ’;

’end;
Statements [statement*]
’goto L0 ’;

L1 ’:
Follow [statement]

Rest [statement*]

Paradigm. Matching a subsequence. The trailing Rest [statement*] is necessary
since we are matching a subsequence of an entire sequence. If the pattern were
to end without including the trailing sequence (i.e., without Rest), then it would
only match when the pattern appeared as the last statements in the sequence of
statements, which is not what we intend.



Excerpts from the TXL Cookbook 61

File "TILgotos.grm"

% Dialect of TIL that adds goto statements

redefine statement
...

| [labelled_statement]
| [goto_statement]
| [null_statement]

end redefine

define labelled_statement
[label] ’: [statement]

end define

define goto_statement
’goto [label] ’; [NL]

end define

% Allow for trailing labels
define null_statement

[NL]
end define

define label
[id]

end define

% Add missing "not" operator to TIL
redefine primary

...
| ’! [primary]

end redefine

File "TILgotoelim.txl"

% Goto elimination in TIL programs

% Recognize and resolve while-equivalent
% goto structures.

% Using the goto dialect of basic TIL
include "TIL.grm"
include "TILgotos.grm"

% Preserve comments in this transformation
#pragma -comment

% Main program - just applies the rules
% for cases we know how to transform.

function main
replace [program]

P [program]
by

P [transformForwardWhile]
[transformBackwardWhile]

end function

% Case 1 - structures of the form
% loop:
% if Cond then goto endloop; end
% LoopStatements
% goto loop;
% endloop:
% TrailingStatements

rule transformForwardWhile
% We’re looking for a labelled if guarding
% a goto - it could be the head of a loop
replace [statement*]

L0 [label] ’:
’if C [expression] ’then

’goto L1 [label] ’;
’end;

Rest [statement*]
% If we have a goto back to the labelled if,
% we have a guarded loop (i.e., a while)
% The "skipping" makes sure we look only
% in this statement sequence, not deeper
skipping [statement]
deconstruct * Rest

’goto L0 ’;
L1 ’:

Follow [statement]
FinalRest [statement*]

% The body of the loop is the statements
% after the if and before the goto back
construct LoopBody [statement*]

Rest [truncateGoto L0 L1]
by

’while ’! (C) ’do
LoopBody

’end;
Follow
FinalRest

end rule

rule transformBackwardWhile

. . . (similar to above for backward case)

end rule

% Utility rule used by all cases

function truncateGoto L0 [label] L1 [label]
skipping [statement]
replace * [statement*]

’goto L0 ’;
L1 ’:

Follow [statement]
FinalRest [statement*]

by
% nothing

end function

Fig. 19. TXL dialect grammar to add goto statements and labels to TIL, and trans-
formation to eliminate gotos (showing first case only)

What is not so obvious is why we could not simply write the pattern above
directly in the rule. The reason again has to do with the definition of [X*],
which as we recall is recursively defined as [X] [X*] or empty. The pattern above
is trying to match [statement] [statement*] [statement] [statement] [statement*],
which can’t be parsed using that definition no matter how we group it.



62 J.R. Cordy

Paradigm. Matching a gapped subsequence. The TXL paradigm to match such
“gapped” sequences is the one used in the [transformForwardWhile] rule. In it,
we first match the head of the pattern we are looking for, that is, the leading
if statement and the statements following it. We then search in the statements
following it for the trailing pattern, the goto back and the ending forward label.
The trick of the paradigm is that we must not look inside the statements of
the sequence, because we want the trailing pattern to be in the same statement
sequence. This is achieved using a skipping deep deconstruct.

skipping [statement]
deconstruct * Rest

’goto L0 ’;
L1 ’:

Follow [statement]
FinalRest [statement*]

This deconstructor says that we only have a match if we can find the goto back
and the ending forward label without looking inside any of the statements in the
sequence (that is, if they are both at the same level, in the statement sequence
itself). “skipping [T]” limits a search to the parse tree nodes above any embedded
[T]s - in our case, above any statements, so that the goto back is in the same
sequence as the heading if statement, completing the pattern we are looking for.

Paradigm. Truncating the tail of a sequence. The other new paradigm this
example shows us is the truncation of a trailing subsequence, achieved by the
function [truncateGoto], which removes everything from the goto on from the
statements following the initial if statement. The trick in this function is to
look for the pattern heading the trailing subsequence we want to truncate, and
replacing it and the following items by an empty sequence. Once again we use the
skipping notation, since we don’t want to accidentally match a similar instance
in a deeper statement.

6 Optimization Problems

Source transformation tools are often used in source code optimization tasks of
various kinds, and TXL is no exception. In this section we attack some traditional
source code optimizations, observing the TXL paradigms that support these
kinds of tasks. Once again, our examples are based on the Tiny Imperative
Language (TIL) and its extensions.

6.1 Statement-Level Code Motion

The first example problem is on the border between restructuring and optimiza-
tion: moving invariant assignments and computations out of while loops. In the
first solution, we simply look for assignment statements in while loops that are
independent of the loop (that is, that don’t change over the iterations of the
loop). For example, in this loop, the assignment to x does not depend on the
loop and can be moved out:



Excerpts from the TXL Cookbook 63

var j; var x; var y; var z;
j := 1; x := 5; z := 7;
while j != 100 do

y := y + j -1;
x := z * z;
j := j + 1;

end;

Figure 20 shows a solution to this problem for TIL programs. The key to the
solution is the function [loopLift], which, given a while loop and an assignment
statement in it, checks to see whether the assigned expression of the assignment
contains only variables that are not assigned in the loop, and that the assigned
variable of the assignment is assigned exactly once in the loop. If both these
conditions are met, then the assignment is moved out by putting a copy of it
before the loop and deleting it from the loop.

The function uses a number of TXL paradigms. It begins by deconstructing
the assignment statement it is passed to get its parts, then uses the extract
paradigm to get all of the variable references in the assigned expression. Both
of these paradigms we have seen before. The interesting new paradigm is the
guarding of the transformation using where clauses:

% We can only lift the assignment out if all the identifiers in its
% expression are not assigned in the loop ...
where not

Loop [assigns each IdsInExpression]

% ... and X itself is assigned only once
deconstruct * Body

X := _ [expression];
Rest [statement*]

where not
Rest [assigns X]

% ... and the effect of it does not wrap around the loop
construct PreContext [statement*]

Body [deleteAssignmentAndRest X]
where not

PreContext [refers X]

Paradigm. Guarding a transformation with a complex condition. Where clauses
guard the pattern match of a rule or function with conditions that are tested
by a subrule or set of subrules. If the where clause is positive (i.e., has no not
modifier), then the subrule must match its pattern for the rule to proceed. If it
is a where not, as in these cases, then it must not match its pattern.

Paradigm. Condition rules. The subrules used in a where clause are of a special
kind called condition rules, which have only a pattern and no replacement. The
pattern may be simple, as in the [assigns] and [refers] subrules of this example,
which simply check to see if their parameter occurs in the context of their scope,
or they may be complex, involving other deconstructors, where clauses and sub-
rules. In either case, a condition subrule simply matches its pattern or not, and
the where clause using it succeeds or not depending on whether it matches. If
multiple subrules are used in the condition, the where clause succeeds if any one
of them matches, and fails only if all do not match (or conversely for where not,
succeeds only if none match).



64 J.R. Cordy

File "TILcodemotion.txl"

% Lift independent TIL assignments outside
% of while loops

% Based on the TIL grammar
include "TIL.grm"

% Lift all independent assignments out of loops
rule main

% Find every loop
replace [statement*]

while Expn [expression] do
Body [statement*]

’end;
Rest [statement*]

% Get all the top-level assignments in it
construct AllAssignments [statement*]

Body [deleteNonAssignments]

% Make a copy of the loop to work on
construct LiftedLoop [statement*]

while Expn do
Body

’end;

% Only proceed if there are assignments
% left that can be lifted out.
% The [?loopLift] form tests if the
% [loopLift] rule can be matched -
% "each AllAssignments" tests this
% for any of the top-level internal
% assignments
where

LiftedLoop
[?loopLift Body each AllAssignments]

% If the above guard succeeds,
% some can be moved out, so go ahead
% and move them, replacing the original
% loop with the result
by

LiftedLoop
[loopLift Body each AllAssignments]
[. Rest]

end rule

% Attempt to lift a given assignment
% outside the loop

function loopLift Body [statement*]
Assignment [statement]

deconstruct Assignment
X [id] := E [expression];

% Extract a list of all the identifiers
% used in the expression
construct IdsInExpression [id*]

_ [^ E]

% Replace the loop and its contents
replace [statement*]

Loop [statement*]

% We can only lift the assignment out
% if all the identifiers in its
% expression are not assigned in the loop ...

where not
Loop [assigns each IdsInExpression]

% ... and X itself is assigned only once
deconstruct * Body

X := _ [expression];
Rest [statement*]

where not
Rest [assigns X]

% ... and the effect of it
% does not wrap around the loop
construct PreContext [statement*]

Body [deleteAssignmentAndRest X]
where not

PreContext [refers X]

% Now lift out the assignment
by

Assignment
Loop [deleteAssignment Assignment]

end function

% Utility rules used above

% Delete a given assignment from a scope

function deleteAssignment Assignment [statement]
replace * [statement*]

Assignment
Rest [statement*]

by
Rest

end function

% Delete all non-assignments in a scope

rule deleteNonAssignments
replace [statement*]

S [statement]
Rest [statement*]

deconstruct not S
_ [assignment_statement]

by
Rest

end rule

% Delete everything in a scope from
% the first assignment to X on

function deleteAssignmentAndRest X [id]
replace * [statement*]

X := E [expression];
Rest [statement*]

by
% nada

end function

% Does a scope assign to the identifier?

function assigns Id [id]
match * [assignment_statement]

Id := Expn [expression];
end function

% Does a scope refer to the identifier?

function refers Id [id]
match * [id]

Id
end function

Fig. 20. TXL transformation to lift independent assignments out of while loops



Excerpts from the TXL Cookbook 65

Paradigm. Each element of a sequence. The first where condition in the [loopLift]
function also uses another paradigm - the each modifier.

where not
Loop [assigns each IdsInExpression]

each takes a sequence of type [X*] for any type [X], and calls the subrule once
with each element of the sequence as parameter. So for example, if IdsInEx-
pression is bound to the sequence of identifiers “a b c”, then “where not Loop
[assigns each IdsInExpression]” means “where not Loop [assigns ’a] [assigns ’b]
[assigns ’c]”, and the guard succeeds only if none of the [assigns] calls matches its
pattern. This is a common TXL paradigm for checking multiple items at once.

The main rule in this example simply finds every while loop, extracts all the
assignment statements in it by making a copy of the statements in the loop body
and deleting those that are not assignments, and then calls [loopLift] with each
to try to move each of them outside the loop. Rather than use the fixed-point
paradigm, this main rule uses a where clause as a guard to check whether there
are any assignments to move in advance. To do this, it actually uses the [loopLift]
function itself to check - by converting it to a condition using [?].

where
LiftedLoop [?loopLift Body each AllAssignments]

Paradigm. Using a transformation rule as a condition. [?loopLift] means that
[loopLift] should not do any replacement - rather, it should act as a condition
rule, simply checking whether its complex pattern matches or not. Thus the
where clause above simply checks whether [loopLift] will succeed for any of the
assignments, and the rule only proceeds if at least one will match.

6.2 Common Subexpression Elimination

Common subexpression elimination is a traditional optimization transformation
that searches for repeated subexpressions whose value cannot have changed be-
tween two instances. The idea is to introduce a new temporary variable to hold
the value of the subexpression and replace all instances with a reference to the
temporary. For example, if the input contains the code on the left (a) below,
then the output should be the code (b) shown on the right.

var a; var b;
read a;
b := a * (a + 1);
var i;
i := 7;
c := a * (a + 1);

(a)

var a; var b;
read a;
var t;
t := a * (a + 1);
b := t;
var i;
i := 7;
c := t;

(b)

A TXL solution to this problem for TIL programs is shown in Figure 21.
The solution uses a number of new paradigms for us to look at. To begin, the
program uses agile parsing to modify the TIL grammar in two ways.

Paradigm. Grammatical form abstraction. First, it overrides the definition of
[statement] to gather all compound statements into one statement type. This



66 J.R. Cordy

File "TILcommonsubexp.txl"

% Recognize and optimize common subexpressions

% Based on the TIL base grammar
include "TIL.grm"

% Preserve comments
#pragma -comment

% Override to abstract compound statements
redefine statement

[compound_statement]
| ...

end redefine

define compound_statement
[if_statement]

| [while_statement]
| [for_statement]

end define

% Allow statements to be attributed
% so we don’t mistake one we’ve
% generated for one we need
% to process

redefine statement
...

| [statement] [attr ’NEW]
end redefine

% Main rule

rule main
replace [statement*]

S1 [statement]
SS [statement*]

% Don’t process statements we generated
deconstruct not * [attr ’NEW] S1

’NEW

% We’re looking for an expression ...
deconstruct * [expression] S1

E [expression]

% ... that is nontrivial ...
deconstruct not E

_ [primary]

% ... and repeated
deconstruct * [expression] SS

E

% See if we can abstract it
% (checks if variables assigned between)
where

SS [?replaceExpnCopies S1 E ’T]

% If so, generate a new temp name ...
construct T [id]

_ [+ "temp"] [!]

% ... declare it, assign it the expression,
% and replace instances with it
by

’var T; ’NEW
T := E; ’NEW
S1 [replaceExpn E T]
SS [replaceExpnCopies S1 E T]

end rule

% Recursively replace copies of a given
% expression with a given temp variable id,
% provided the variables used in the
% expression are not assigned in between

function replaceExpnCopies S1 [statement]
E [expression] T [id]

construct Eids [id*]
_ [^ E]

% If the previous statement did not assign
% any of the variables in the expression
where not

S1 [assigns each Eids]

% Then we can continue to substitute the
% temporary variable for the expression
% in the next statement ...
replace [statement*]

S [statement]
SS [statement*]

% ... as long as it isn’t a compound
% statement that internally assigs one of
% the variables in the expression
where not all

S [assignsOne Eids]
[isCompoundStatement]

by
S [replaceExpn E T]
SS [replaceExpnCopies S E T]

end function

% Check to see if a statement assigns
% any of a list of variables

function assignsOne Eids [id*]
match [statement]

S [statement]
where

S [assigns each Eids]
end function

function assigns Id [id]
match * [statement]

Id := _ [expression] ;
end function

function isCompoundStatement
match [statement]

_ [compound_statement]
end function

rule replaceExpn E [expression] T [id]
replace [expression]

E
by

T
end rule

Fig. 21. TXL transformation to recognize and optimize common subexpressions



Excerpts from the TXL Cookbook 67

redefinition takes advantage of TXL’s programmed parsing to prefer that if,
while and for statements be parsed as [compound statement]. The original forms
are still in the definition of [statement] (denoted by “...”), but since our new form
appears first, all of them will be parsed as [compound statement]. This paradigm
is often used to gather forms so that we can use one rule to target all of the forms
at once rather than having several rules for the different grammatical types.

Paradigm. Marking using attributes. The second technique used here is gram-
mar attributes, denoted by the [attr] modifier. TXL grammar attributes denote
optional parts of the grammar that will not appear in the unparsed output text.
They can be of any grammatical type, including complex types with lots of infor-
mation in them. In this case, the attribute is simply the identifier “NEW”, and it
is added to allow us to mark statements that are inserted by the transformation
so that we don’t mistake them for a statement to be processed.

Marking things that have been generated or already processed using attributes
is a common technique in TXL, and is often the easiest way to distinguish things
that have been processed from those that have not. The new attributed form is
recursive, allowing any statement to be marked as “NEW”.

The main rule finds any statement containing a nontrivial expression, de-
termined by deconstructing it to ensure that it is not simply a [primary]. It
then deconstructs the following statements to determine if the expression is re-
peated in them. If so, then it uses the conditional guard paradigm to check that
the repetition will be legally transformable [?replaceExpnCopies]. A new unique
temporary name of the form “temp27” is then created using the unique iden-
tifier paradigm, and finally, statements are generated to declare and assign the
expression to the new temporary.

This is where the NEW attribute comes in. By marking the newly generated
statements with the NEW attribute, we are sure that they will not be matched
by the main rule and reprocessed. The remainder of the replacement copies the
original statement and following statements, substituting the new temporary
name for the expression in the original statement [replaceExpn E T] and any
subsequent uses in following statements [replaceExpnCopies S1 E T].

Paradigm. Tail-recursive continuation. Rule [replaceExpnCopies] (Figure 21)
introduces us to another new paradigm - continuing a transformation through a
sequence as long as some condition holds. In this case, we can continue to sub-
stitute the temporary name for the common expression as long as the variables
in the expression are not assigned to.

In TXL such situations are encoded as a tail-recursive function, which pro-
cesses each statement one by one checking that the conditions still hold, until it
fails and terminates the recursion. In each recursion we pass the previous state-
ment as parameter, and first check that it has not assigned any of the identifiers
used in the expression, again using the where-not-each paradigm of the previous
problem. We then match the next statement in the sequence, and check that it is
not a compound statement that assigns any of the identifiers in the expression.



68 J.R. Cordy

Paradigm. Guarding with multiple conditions. This check uses a new paradigm
- where not all. As we’ve seen in previous paradigms, where clauses normally
check whether any of the condition rules matches. When all is specified, the
check is whether all of the condition rules match. Thus the where clause here:

where not all
S [assignsOne Eids]

[isCompoundStatement]

checks whether it is both the case that one of the identifiers used in the expression
is assigned by the statement, and that the statement is a compound statement
(in which case our simple algorithm choose to give up and stop).

If the check succeeds and either the statement is not a compound statement
or does not assign any of the variables in the original expression, then instances
of the expression are substituted in the matched statement and we recursively
move on to the next one.

6.3 Constant Folding

Constant folding, or optimizing by recognizing and precomputing compile-time
known subexpressions, is another traditional optimization technique. In essence,
the solution is a partial evaluation of the program, replacing named constants
by their values and interpreting resulting operations on those values. Thus a
constant folding algorithm must have rules to evaluate much of the expression
sublanguage of the target language.

The solution for TIL (Figure 22) is in two parts: recognition and substitution
of constant assignments to variables that are not destroyed, and interpretation
of constant subexpressions. Of course, these two processes interact, because sub-
stitution of constant values for variables yields more constant subexpressions to
evaluate, and evaluation of constant subexpressions yields more constant values
for variables. So in the main rule we see the now familiar paradigm for a fixed
point, continuing until neither rule changes anything.

The [propagateConstants] rule handles the first half of the problem, searching
for assignments of constant values to variables (e.g., “x := 5;”) that are not
destroyed by a subsequent assignment in the same statement sequence. The two
deep deconstructs of Rest are the key to the rule. The first one ensures that
the following statements do not subsequently assign to the variable, destroying
its constant value. The second one makes sure that there is a reference to the
variable to substitute. When both conditions are met, the value is substituted
for all references to the variable in the following statements.

The second half of the transformation is the interpretation of constant subex-
pressions (possibly created by the first half substituting constant variable values).
The rule [foldConstantExpressions] simply applies a set of rules each of which
knows how to evaluate an operator with constant operands. In addition to the
simple cases, a number of special cases, such as multiplying any expression by
zero, are also handled. [foldConstantExpressions] continues applying the set of
evaluation rules until none of them changes anything and a fixed point is reached.



Excerpts from the TXL Cookbook 69

File "TILconst.txl"

% Constant propagation and folding for TIL

% Begin with the TIL base grammar
include "TIL.grm"

% Preserve comments in this transformation
#pragma -comment

% Main function

rule main
replace [program]

P [program]
construct NewP [program]

P [propagateConstants]
[foldConstantExpressions]

deconstruct not NewP
P

by
NewP

end rule

% Constant propagation - find each
% constant assignment to a variable,
% and if it is not assigned again then
% replace references with the constant

rule propagateConstants
replace [statement*]

Var [id] := Const [literal] ;
Rest [statement*]

deconstruct not * [statement] Rest
Var := _ [expression] ;

deconstruct * [primary] Rest
Var

by
Var := Const;
Rest [replaceExpn Var Const]

end rule

rule replaceExpn Var [id] Const [literal]
replace [primary]

Var
by

Const
end rule

% Constant folding - find and evaluate
% constant expressions

rule foldConstantExpressions
replace [expression]

E [expression]

construct NewE [expression]
E % Generic folding of pure
% constant expressions
[resolveAddition]
[resolveSubtraction]
[resolveMultiplication]
[resolveDivision]

% Other special cases
[resolveAdd0]
[resolveSubtract0]
[resolveMultiply1Right]
[resolveMultiply1Left]
[resolveParentheses]

% Continue until we don’t
% find anything to fold
deconstruct not NewE

E
by

NewE
end rule

% Utility rules to do the arithmetic
rule resolveAddition

replace [expression]
N1 [integernumber]

+ N2 [integernumber]
by

N1 [+ N2]
end rule

rule resolveSubtraction
replace [expression]

N1 [integernumber]
- N2 [integernumber]

by
N1 [- N2]

end rule

% ... other operator folding rules
. . .

Fig. 22. TXL transformation to fold constant subexpressions

6.4 Statement Folding

Our last optimization example is statement folding, the elimination of statements
that cannot be reached because the conditions that guard them are known at
compile time, for example, when an if condition is known to be true or false. In
practice, constant folding and statement folding go together - constant folding
precomputes conditional expressions, some of which are then known to be true or
false, allowing for statement folding. These problems are closely related to condi-
tional compilation. Transformations to implement preprocessors and conditional
compilation are essentially the same as constant and statement folding.

Figure 23 shows a TXL solution to the statement folding problem for TIL
if and while statements with known conditions. In this case the main rule is a



70 J.R. Cordy

File "TILstmtfold.txl"

% Statement folding using TIL

% Look for opportunities to reduce code
% footprint by optimizing out unreachable code

% Begin with the TIL base grammar
include "TIL.grm"

% Preserve comments
#pragma -comment

% Main function
function main

replace [program]
P [program]

by
P [foldTrueIfStatements]

[foldFalseIfStatements]
end function

% Folding rules for constant condition ifs

rule foldTrueIfStatements
% Find an if statement
replace [statement*]

’if Cond [expression] ’then
TrueStatements [statement*]
ElseClause [opt else_statement]

’end;
Rest [statement*]

% with a constant true condition
where

Cond [isTrueEqual] [isTrueNotEqual]

% and replace it with the true part
by

’// Folded true if
TrueStatements [. Rest]

end rule

rule foldFalseIfStatements
% Find an if statement
replace [statement*]

’if Cond [expression] ’then
TrueStatements [statement*]
ElseClause [opt else_statement]

’end;
Rest [statement*]

% with a constant false condition
where not

Cond [isTrueEqual]
[isTrueNotEqual]

% and replace it with the false part
construct FalseStatements [statement*]

_ [getElseStatements ElseClause]
by

’// Folded false if
FalseStatements [. Rest]

end rule

function getElseStatements
ElseClause [opt else_statement]

deconstruct ElseClause
’else

FalseStatements [statement*]
replace [statement*]

% default none
by

FalseStatements
end function

% Utility functions to detect statically
% true conditions - these can be as
% smart as we wish

. . .

Fig. 23. TXL transformation to fold known if statements

function, since none of the rules changes anything that may create new instances
of the others, and thus the fixed point paradigm is not needed.

Paradigm. Handling optional parts. In the false if condition case (rule [foldFal-
seIfStatements]) there is a new paradigm used to get the FalseStatements from
the else clause of the if statement. Beginning with an empty sequence using
the empty variable “ ”, a separate function is used to get the FalseStatements
from the else clause. The reason for this construction is that the [else statement]
is optional - there may not be one. So beginning with the assumption there is
none (i.e., the empty sequence) we used the [getElseStatements] function to both
check if there is one (by deconstructing the ElseClause) and if so to replace the
empty sequence by the FalseStatements.

Paradigm. Creating output comments. Both cases illustrate another TXL
paradigm - the creation of target language comments. Besides explicitly marking
identifiers intended to be literal output, quoting of items in TXL marks some-
thing to be lexically interpreted in the target language rather than TXL. Thus



Excerpts from the TXL Cookbook 71

a target language comment can be created in a TXL replacement simply by pre-
quoting it (Figure 23, rule [foldFalseIfStmts]). This can be handy when marking
sections of code that have been transformed in output.

7 Static and Dynamic Analysis Problems

Now that we’ve tried some of the simpler problems and introduced many of
the standard paradigms for using TXL, it’s time to attack some more realistic
challenges. Static and dynamic analysis tasks, including program comprehension,
security analysis, aspect mining and other analyses, are commonly approached
using parsing and source transformation tools. In this section we demonstrate
the use of TXL in several example static and dynamic analyses, including static
metrics, dynamic tracing, type inference, slicing, clone detection, code markup,
unique renaming and fact extraction.

7.1 Program Statistics

In our first analysis example, we demonstrate TXL’s use in computing static
program metrics. Figure 24 shows a TXL program designed to gather statement
usage statistics for TIL programs. The input is any TIL program, and the output
is empty. However, the program uses the TXL message built-in functions to print
out several statement statistics about the program on the standard error stream
as it matches the measured features. The error stream output of this program
when processing the “factors.til” program of Figure 7 looks like this:

Total: 11
Declarations: 2
Assignments: 3
Ifs: 0
Whiles: 2
Fors: 0
Reads: 1
Writes: 3

The program uses the TXL type extraction paradigm that we have seen before
to collect all statements of each type into sequences, and then counts them using
the sequence [length] built-in function to give the statistic.

Paradigm. Counting feature instances. This is a general paradigm that when
combined with agile parsing (to gather our desired grammatical forms) and the
filtering paradigm we have seen previously (to refine to the exact subset we are
interested in) can be used to count instances of any feature or pattern in the
program, including most standard static metrics. An important point here is the
use of the empty variable “ ” as the [number] scope of the counting constructors.
When used in a [number] context, the empty variable plays the role of the value
zero, which is often a good place to start a numeric computation.

Paradigm. Dynamic error stream output. The program uses the TXL error
stream built-in function [putp] to output messages reporting the statistics as
they are computed. [putp] is modeled after the C printf function, and acts in



72 J.R. Cordy

File "TILstats.txl"

% Gather TIL statement statistics

% Begin with the TIL base grammar
include "TIL.grm"

% Compute and output statement kind counts,
% and replace program with an empty one.
% There are many different ways to do this -
% this naive way is simple and obvioulsy
% correct, but exposes TXL’s need for generics.
% Another less clear solution could use
% polymorphism to avoid the repetition.

function main
replace [program]

Program [program]

% Count each kind of statement we’re
% interested in by extracting all of
% each kind from the program

construct Statements [statement*]
_ [^ Program]

construct StatementCount [number]
_ [length Statements]

[putp "Total: %"]

construct Declarations [declaration*]
_ [^ Program]

construct DeclarationsCount [number]
_ [length Declarations]

[putp "Declarations: %"]

construct Assignments [assignment_statement*]
_ [^ Program]

construct AssignmentsCount [number]
_ [length Assignments]

[putp "Assignments: %"]

construct Ifs [if_statement*]
_ [^ Program]

construct IfCount [number]
_ [length Ifs] [putp "Ifs: %"]

construct Whiles [while_statement*]
_ [^ Program]

construct WhileCount [number]
_ [length Whiles] [putp "Whiles: %"]

construct Fors [for_statement*]
_ [^ Program]

construct ForCount [number]
_ [length Fors] [putp "Fors: %"]

construct Reads [read_statement*]
_ [^ Program]

construct ReadCount [number]
_ [length Reads] [putp "Reads: %"]

construct Writes [write_statement*]
_ [^ Program]

construct WriteCount [number]
_ [length Writes] [putp "Writes: %"]

by
% nothing

end function

Fig. 24. TXL transformation to collect and report statement statistics

much the same way, printing out its string parameter with the output text of the
scope it is applied to substituted for the “%” in the string. In this case, the scope
is a [number], and the corresponding number value is printed in the message.

In general, the scope of [putp] can be any type at all, and both [putp] and its
simpler form [put], which takes no parameter and simply prints out the text of
its scope, can be used to instrument and debug TXL programs as they execute.

7.2 Self Tracing Programs

The addition of auxiliary monitoring code to a program is a common transfor-
mation task, and in this example we demonstrate the paradigms for adding such
code using TXL. The problem is to transform a TIL program to a self-tracing
version of itself, one that prints out each statement just before it is executed.
This is a model for a large number of transformations used in instrumentation
and dynamic analysis tasks such as test coverage and dynamic flow analysis.

To distinguish statements that are generated or have already been processed
by the transformation, the program uses the same attribute marking paradigm
we have seen before to mark statements that have been generated or already
processed, in this case marking with the attribute “TRACED”.

Paradigm. Eliding detail. In order that we don’t print out entire multi-line
messages for compound statements, the program also allows for an elision marker



Excerpts from the TXL Cookbook 73

File "TILtrace.txl"

% Make a TIL program self-tracing

% Replaces every statement with a write
% statement of its text followed by itself

% Begin with the TIL base grammar
include "TIL.grm"

% Don’t bother preserving comments,
% we only want to run the result

% Pragma to tell TXL that our string
% escape convention uses backslash
#pragma -esc "¨

% Allow elided structured statements

redefine statement
...

| [SP] ’... [SP]
end redefine

% Allow for traced statements - the TRACED
% attribute marks statements already done

redefine statement
...

| [traced_statement]
end redefine

define traced_statement
[statement] [attr ’TRACED]

end define

% Main rule

rule main
% Result has two statements where one
% was before, so work on the sequence
replace [statement*]

S [statement]
Rest [statement*]

% Semantic guard: if it’s already
% done don’t do it again
deconstruct not S

_ [statement] ’TRACED
% Make a concise version of
% structured statements
construct ConciseS [statement]

S [deleteBody]
% Get text of the concise statement
construct QuotedS [stringlit]

_ [+ "Trace: "] [quote ConciseS]
by

’write QuotedS; ’TRACED
S ’TRACED
Rest

end rule

% Utility function - replace the body
% of a structured statement with ...

function deleteBody
replace * [statement*]

_ [statement*]
by

’...
end function

Fig. 25. TXL transformation to transform TIL program to self-tracing

“...” as a [statement]. This is used in the function [deleteBody], which makes a
copy of a statement in which the body has been replaced by “...” so that the
trace will be more terse. The function uses a deep search (replace * ) to find the
outermost sequence of statements embedded in the statement which is its scope.

The main rule does all of the work, searching for every statement that has not
yet been transformed (i.e., that is not yet marked with the attribute TRACED)
and inserting a write statement to print out its quoted text before it is executed.
Both the write statement and the original are attributed with TRACED in the
replacement so that they are not themselves transformed again.

Once again we see the paradigm for replacing one element of a sequence with
more than one by targeting the higher level sequence [statement*] rather than
the element [statement] - and again the pattern and replacement of the rule must
preserve the Rest of the statements following the one we are transforming.

Paradigm. Converting program text to strings. The construction of the quoted
string version of the statement’s text to be printed in the trace uses the TXL
string manipulation built-in functions [+] and [quote]. Beginning with an empty
[stringlit], once again denoted by the empty variable “ ”, the constructor con-
catenates the string literal ”Trace: ” to the quoted text of the statement.

construct QuotedS [stringlit]
_ [+ "Trace: "] [quote ConciseS]



74 J.R. Cordy

The [quote] built-in function creates a string literal containing the text of its
parameter, which may be any grammatical type, and concatenates it to its scope,
in this case the string “Trace: ”. The output of a run of the traced version of the
“factors.til” TIL program of Figure 7, when executed, looks like this:

Trace: var n;
Trace: write "Input n please";
Input n please
Trace: read n;
read: 6
Trace: write "The factors of n are";
The factors of n are
Trace: var f;
Trace: f := 2;

Trace: while n != 1 do ... end;
Trace: while (n / f) * f = n do ... end;
Trace: write f;
2
Trace: n := n / f;
Trace: f := f + 1;
Trace: while (n / f) * f = n do ... end;
Trace: write f;
3

7.3 Type Inference

Calculation of derived or inferred attributes of items in a program is a common
analysis task, forming part of type checking, optimization of dynamically typed
programs, translation between languages, and business type analysis such as the
Y2K problem. In this example we demonstrate the TXL paradigms for concrete
and abstract type inference, using a transformation to infer static types for the
untyped variables in a TIL program from the contexts in which they are used.

TIL declares untyped variables, originally intended to be all integer. However,
the addition of string values to the language led to string variables, making the
language effectively dynamically typed. However, perhaps TIL variables could
be statically typed if they are used consistently. This transformation infers the
type of every variable in a TIL program from its uses and explicitly adds types
to declarations using the new form: “var x: integer;” where the valid types are
“integer” and “string”. Variables of inconsistent type are flagged as an error.

Figure 26 shows a solution to this problem. Using the precedence (PRIOR-
ITY) version of the TIL grammar, the program begins with several grammar
overrides. First, the new form of declarations is added, by allowing for an op-
tional type specification on each variable declaration. Types “int”, “string” and
“UNKNOWN” are allowed. The special type UNKNOWN is included so that we
can mark variables whose type is inconsistent or that we cannot infer, so that
error messages can be generated when we are done.

Next, we override the definition of [primary] to allow for a type attribute
on every variable reference, literal constant and parenthesized expression in the
program. We will use these attributes to record local inferences we make about
types of variables and expressions.

Finally, to make the transformation more convenient, we use agile parsing to
make the grammar easier to deal with for this particular problem. Everywhere
in the TIL grammar where a variable appears as an [id] (i.e., “left hand side”
references outside of expressions), we allow instead a [primary], so that it can
be type attributed in the same way as in expressions.

redefine assignment_statement
[primary] ’:= [expression] ’; [NL]

end redefine



Excerpts from the TXL Cookbook 75

File "TILtypeinfer.txl"

% Infer types for variables and expressions

% Infer all expression and variable types,
% add types to variable declarations,
% and flag type conflicts.

% Based on the TIL base grammar
include "TIL.grm"

% Preserve comments
#pragma -comment

% Allow type specs on declarations.

redefine declaration
’var [primary]

[opt colon_type_spec] ’; [NL]
end redefine

define colon_type_spec
’: [type_spec]

end define

define type_spec
’int | ’string | ’UNKNOWN

end define

% Allow type attributes on primaries.

redefine primary
[subprimary] [attr type_attr]

end redefine

define subprimary
[id] | [literal] | ’( [expression] ’)

end define

define type_attr
’{ [opt type_spec] ’}

end define

% Conflate all [id] refs to [primary],
% to make attribution rules simpler.

redefine assignment_statement
[primary] ’:= [expression] ’; [NL]

end redefine

redefine for_statement
’for [primary] := [expression]

’to [expression] ’do [IN][NL]
[statement*] [EX]

’end ’; [NL]
end redefine

redefine read_statement
’read [primary] ’; [NL]

end redefine

% The typing process has several steps:

% 1. introduce complete parenthesization,
% 2. enter default empty type attributes,
% 3. attribute literal expressions,
% 4. infer attributes from context until
% a fixed point is reached,
% 5. set type attribute of uninferred
% items to UNKNOWN,
% 6. add declaration types from variables’
% inferred type attribute,
% 7. report errors (i.e., UNKNOWN types),
% 8. undo complete parenthesization.

function main
replace [program]

P [program]
by

P [bracket]
[enterDefaultAttributes]
[attributeStringConstants]
[attributeIntConstants]
[attributeProgramToFixedPoint]
[completeWithUnknown]
[typeDeclarations]
[reportErrors]
[unbracket]

end function

% Rules to introduce and undo complete
% parenthesization to allow for detailed
% unambiguous type attribution

function bracket
replace [program]

P [program]
by

P [bracketExpressions]
[bracketComparisons]
[bracketTerms] [bracketFactors]

end function

rule bracketExpressions
skipping [expression]
replace [expression]

E [expression] Op [logop] C [comparison]
by

’( E [bracketExpressions]
Op C [bracketExpressions] ’)

end rule

. . . (bracketComparisons, bracketTerms,
bracketFactors similar)

function unbracket
replace [program]

P [program]
by

P [unbracketExpressions]
[unbracketComparisons]
[unbracketTerms] [unbracketFactors]

end function

rule unbracketExpressions
replace [expression]

’( E [expression] ’)
{ Type [type_spec] }

by
E

end rule

. . . (unbracketComparisons, unbracketTerms,
unbracketFactors similar)

% Rule to add empty type attributes
% to every primary expression and variable

rule enterDefaultAttributes
replace [attr type_attr]
by

{ }
end rule

Fig. 26. TXL transformation to infer types of TIL variables



76 J.R. Cordy

% The meat of the type inference algorithm.
% Infer empty type attributes from the types
% in the context in which they are used.
% Continue until no more can be inferred.

rule attributeProgramToFixedPoint
replace [program]

P [program]
construct NP [program]

P [attributeAssignments]
[attributeExpressions]
[attributeComparisons]
[attributeTerms]
[attributeFactors]
[attributeForIds]
[attributeDeclarations]

deconstruct not NP
P

by
NP

end rule

rule attributeStringConstants
replace [primary]

S [stringlit] { }
by

S { string }
end rule

rule attributeIntConstants
replace [primary]

I [integernumber] { }
by

I { int }
end rule

rule attributeAssignments
replace [assignment_statement]

X [id] { } := SP [subprimary]
{Type [type_spec] };

by
X { Type } := SP { Type };

end rule

. . . (attributeForIds similar)

rule attributeExpressions
replace [primary]

( P1 [subprimary] {Type [type_spec]}
Op [logop] P2 [subprimary] {Type} ) { }

by
( P1 {Type} Op P2 {Type} ) {Type}

end rule

. . . (attributeComparisons, attributeTerms,
attributeFactors similar)

rule attributeDeclarations
replace [statement*]

’var Id [id] { } ;
S [statement*]

deconstruct * [primary] S
Id { Type [type_spec] }

by
’var Id { Type };
S [attributeReferences Id Type]

end rule

rule attributeReferences
Id [id] Type [type_spec]

replace [primary]
Id { }

by
Id { Type }

end rule

% Once a fixed point has been reached,
% set all such remaining empty type
% attributes to UNKNOWN.

rule completeWithUnknown
replace [attr type_attr]

{ }
by

{ UNKNOWN }
end rule

% Add an explicit type to every untyped
% variable declaration, from the
% variable’s inferred type attribute.

rule typeDeclarations
replace [declaration]

’var Id [id] { Type [type_spec] };
by

’var Id { Type } : Type;
end rule

% Report type errors. An UNKNOWN
% attribute indicates either a conflict or
% not enough information to infer a type.

rule reportErrors
replace $ [statement]

S [statement]
skipping [statement*]
deconstruct * [type_spec] S

’UNKNOWN

% Issue an error message.
% [pragma "-attr"] allows attributes
% to be printed in the message.

construct Message [statement]
S [pragma "-attr"] [message

"*** ERROR: Unable to resolve types in:"]
[stripBody] [putp "%"]
[pragma "-noattr"]

by
S

end rule

function stripBody
replace * [statement*]

_ [statement*]
by

% nothing
end function

Fig. 27. TXL transformation to infer types of TIL variables (continued)



Excerpts from the TXL Cookbook 77

redefine for_statement
’for [primary] := [expression] ’to [expression] ’do [IN][NL]

[statement*] [EX]
’end [NL]

end redefine

redefine read_statement
’read [primary] ’; [NL]

end redefine

Paradigm. Grammatical form generalization. Technically this allows for many
forms that are not legal in TIL - for example, the form “4 := 7;”. But since
this is a program analysis transformation, we can assume that our input is well-
formed. This is a general paradigm in TXL - using a more lenient grammar than
the target language in order to subsume forms that will be handled in the same
way into a single grammatical type in order to simplify transformation rules.
This is the core idea in agile parsing [13].

The transformation rules use a number of new paradigms: normalization of
the program so that all cases are the same, inference of attributes to a fixed
point using a set of local inference rules, promotion of locally inferred attributes
to the global scope, and denormalization of the final result.

Paradigm. Program normalization. In this case the normalization is simple -
the normalizing rule [bracketExpressions] converts every [expression] in the pro-
gram to a fully parenthesized version. Full parenthesization both makes every
expression into a [primary], which allows it to be attributed with a type due to
the overrides above, and limits every [expression] to one operator, since subex-
pression operands will be also be fully parenthesized. This reduces our inference
problem to only one case - that of a single operator, simplifying and clarifying
the inference rules. This kind of simplifying normalization is typical of many
source analysis tasks, and is essential to any complex inference problem in TXL.

The denormalizing rule [unbracketExpressions] both unparenthesizes and re-
moves the inferred type attribute of the expression, since the result of type
inference is in the explicit types on variable declarations in the result.

Paradigm. Default analysis results. Following normalization, a default empty
type attribute is added to every [primary] in the input program using the rule
[enterDefaultAttributes]. This secondary normalization again reduces the num-
ber of cases, since rules can handle both attributed and unattributed primaries
in the same way. Such defaulting is also typical of inference tasks in TXL.

Once these normalizations are complete, the actual type inference algorithm is
simple - we just look for opportunities to infer the type of as yet untyped items in
a context where other types are known. This begins with simple typing of literal
primaries, whose type is native to their value, using the rules [attributeString-
Constants] and [attributeIntConstants]. This is the base case of the inductive
inference algorithm.

Paradigm. Inductive transformation. The process then proceeds using a small
set of contextual inference rules, using the fixed-point paradigm to halt when not
more types can be inferred. The key rule is [attributeOperations], which infers



78 J.R. Cordy

the type of an operator expression from the types of its operands, which looks for
operations with two operands of the same type, and infers that the result must
also be of that type. Of course, such inference rules depend on the programming
language, but the basic strategy remains the same.

Another key inference rule is [attributeDeclarations], which infers the type of
a variable declaration from any one of its references, and then marks all other
references with the same type. [attributeDeclarations] uses a deep deconstructor
of the statements following the declaration to see if a type has been inferred
for any reference to the variable, and if so, gives the declaration that type and
marks all other references in the following statements with it. (Using the local-
to-global paradigm we saw in the restructuring examples.) This new typing can
in turn can give more information for the next iteration of the operator inference
rule above, and so on. Once the inference rules have come to a fixed point, any
remaining unknown types are given the special type UNKNOWN.

Finally, we insert the inferred types into all variable declarations, and then
report errors by printing out all statements containing types we could not infer
- those attributed as UNKNOWN.

construct Message [statement]
S [pragma "-attr"]

[message "*** ERROR: Unable to resolve types in:"] [stripBody] [putp "%"]
[pragma "-noattr"]

Paradigm. Making attributes visible. The message constructor illustrates the
ability of TXL to include attributes in the output text - by turning on the “-
attr” option, attributes are printed in the output text, in this case of the [putp]
function, so that they can be seen in the error message:

"*** ERROR: Unable to resolve types in:
x {UNKNOWN} := ( y {string} + 1 {int} ) {UNKNOWN};

The [pragma] function allows us to turn TXL options on and off dynamically.

7.4 Static Slicing

Dependency analysis is an important and common static analysis technique, and
one of the most common dependency analyses is the static slice. As defined by
Weiser [22], a (backward) slice is the executable subset of the statements in a
program that preserves the behavior observable at a particular statement. If the
slice is executed with the same input as the program, then all variable values
when the slice reaches the statement will be the same as if the original program
were to be executed to the same point. Often the value of one particular variable
is designated as the one of interest, in which case values of others can be ignored.

Slicing algorithms are usually carried out by building a dependency graph for
the program and then using graph algorithms to reduce it to the slice, which
is mapped back to source statements afterward. However, as we have seen in
the type inference example, in TXL we can compute dependency chains directly,
using the inductive transformation paradigm.

Figure 28 shows a TXL program for backward slicing of TIL programs. The
program uses a related TXL paradigm called cascaded markup, in which, begin-
ning with one statement marked as the one of interest, statements which directly



Excerpts from the TXL Cookbook 79

influence that statement are marked, and then those that influence those state-
ments, and so on until a fixed point is reached.

The program begins with grammar overrides to allow for XML-like markup of
TIL statements. The input to the program will have one such statement marked
as the one of interest, as shown on the left (a) below. The output slice for this
input is shown on the right (b).

var chars;
var n;
read n;
var eof_flag;
read eof_flag;
chars := n;
var lines;
lines := 0;
while eof_flag do

lines := lines + 1;
read n;
read eof_flag;
chars := chars + n;

end;
write (lines);

<mark> write (chars); </mark>

(a)

var chars;
var n;
read n;
var eof_flag;
read eof_flag;
chars := n;

while eof_flag do

read n;
read eof_flag;
chars := chars + n;

end;

write (chars);

(b)

Here the statement “write (chars);” has been marked. The challenge for the
slicer is to trace dependencies backwards in the program to mark only those
statements that can influence the marked one, yielding the backward slice for
the program (b).

Paradigm. Cascaded markup. The basic strategy is simple: an assignment to a
variable is in the backward slice if any subsequent use of the variable is already in
the slice. The rule that implements the strategy is [backPropogateAssignments]
(Figure 28). We have previously seen the “skipping” paradigm - here it prevents
us from remarking statements inside an already marked statement.

The other markup propagation rules are simply special cases of this basic rule
that propagate markup backwards into loop and if statements and around loops,
and out to containing statements when an inner statement is marked. The whole
set of markup propagation rules is controlled by the usual fixed-point paradigm
that detects when no more propagation can be done.

Once a fixed point is reached, the program simply removes all unmarked
statements [removeUnmarkedStatements] and unused declarations [removeRe-
dundantDeclarations], then removes all markup to yield the program slice. The
result fot the example (a) above is shown on the right (b). (Line spacing is shown
to align with the original code, and is not part of the output.)

7.5 Clone Detection

Clone detection is a popular and interesting source analysis problem with a
wide range of applications, including code reduction and refactoring. In this
problem, we demonstrate the basic techniques for clone detection using TXL.
Clone detection can vary in granularity from statements to functions or classes.



80 J.R. Cordy

File "TILbackslice.txl"

% Backward static slicing of TIL programs

% Backward slice from a statement marked up
% using <mark> </mark>

% Begin with the TIL base grammar
include "TIL.grm"

% Allow for XML markup of TIL statements
redefine statement

...
| [marked_statement]

end redefine

define marked_statement
[xmltag] [statement] [xmlend]

end define

define xmltag
< [SPOFF] [id] > [SPON]

end define

define xmlend
< [SPOFF] / [id] > [SPON]

end define

% Conflate while and for statements
% into one form to optimize handling
% of both forms in one rule
redefine statement

[loop_statement]
| ...

end redefine

define loop_statement
[loop_head] [NL][IN]

[statement*] [EX]
’end; [NL]

end define

define loop_head
while [expression] do

| for [id] := [expression]
to [expression] do

end define

% The main function gathers the steps
% of the transformation: induce markup
% to a fixed point, remove unmarked
% statements, remove declarations for
% variables not used in the slice,
% and strip markups to yield the
% sliced program

function main
replace [program]

P [program]
by

P [propagateMarkupToFixedPoint]
[removeUnmarkedStatements]
[removeRedundantDeclarations]
[stripMarkup]

end function

% Back propagate markup of statements
% beginning with the initially marked
% statement of interest.
% Continue until a fixed point

rule propagateMarkupToFixedPoint
replace [program]

P [program]

construct NP [program]
P [backPropogateAssignments]
[backPropogateReads]
[whilePropogateControlVariables]
[loopPropogateMarkup]
[loopPropogateMarkupIn]
[ifPropogateMarkupIn]
[compoundPropogateMarkupOut]

% We’re at a fixed point when P = NP
deconstruct not NP

P
by

NP
end rule

% Rule to back-propagate markup of
% assignments. A previous assignment is
% in the slice if its assigned variable
% is used in a following marked statement

rule backPropogateAssignments
skipping [marked_statement]
replace [statement*]

X [id] := E [expression] ;
More [statement*]

where
More [hasMarkedUse X]

by
<mark> X := E; </mark>
More

end rule

% Similar rule for read statements

rule backPropogateReads
skipping [marked_statement]
replace [statement*]

read X [id] ;
More [statement*]

where
More [hasMarkedUse X]

by
<mark> read X; </mark>
More

end rule

function hasMarkedUse X [id]
match * [marked_statement]

M [marked_statement]
deconstruct * [expression] M

E [expression]
deconstruct * [id] E

X
end function

% Other propagation rules for loops
% and compound statements

. . .

Fig. 28. TXL transformation to compute a backward slice



Excerpts from the TXL Cookbook 81

Since TIL does not have functions or classes, we are using structured statements
(if, for, while) as a simple example. While this is clearly not a realistic case,
detection of function or block clones (in any language) would be very similar.

Figure 29 shows a TXL solution to the detection of structured statement
clones in TIL. The program begins with a set of grammar overrides to gather all
of the structured statements into one type so that we don’t need separate rules
for each kind. As with the backward slicing example, we use XML-like markup
to mark the results of our analysis. In this case, we want to mark up all instances
of the same statement as members of the same clone class, so we allow for an
XML attribute in the tags.

Paradigm. Precise control of output spacing. These overrides illustrate another
output formatting cue that we have not seen before - the explicit control of out-
put spacing. TXL normally uses a set of default output spacing rules that insert
spaces around operators and other special symbols such as “<”. Unfortunately,
these spacing rules lead to strange output in the case of XML markup - for exam-
ple, the XML tag “<clone class=4>” would be output as “< clone class = 4 >”,
which is not even legal XML.

The TXL built-in types [SPOFF], [SPON] and [SP] used here allow the pro-
grammer to take complete control of output spacing. Like [NL], [IN] and [EX],
none of these has any effect on input parsing. [SPOFF] temporarily turns off
TXL’s output spacing rules, and [SPON] restores them. Between the two, items
will be output with no spacing at all. The [SP] type allows programmers to insert
spacing as they see fit, in this case forcing a space between the tag identifier and
the attribute identifier in output tags.

As we have seen is often the case, the main TXL program works in two
stages. In the first stage, a sequence containing one instance of each the cloned
compound statements in the program is constructed using the function [find-
StructuredStatementClones]. In the second stage, all instances of each one of
these are marked up in XML as instances of that clone class, assigning class
numbers as we go (function [markCloneInstances] ).

Paradigm. Context-dependent rules. The function [findStructuredStatement-
Clones] works by using the subrule [addIfClone] to examine each of the set of
all structured statements in the program (StructuredStatements) to see if it ap-
pears more than once, and if so adds it to its scope, which begins empty. While
we have seen most of this paradigm before, we have not before seen a case where
the transformation rule needs to look at both a local item and its entire global
context at the same time to determine if it applies.

This kind of global contextual dependency is implemented in TXL using rule
parameters. In this case an entire separate copy of StructuredStatements is
passed to [addIfClone] so that it can use the global context in its transforma-
tion, in this case simply to check if each particular statement it is considering
appears twice. This is an instance of the general TXL paradigm for context-
dependent transformations, which allows for arbitrary contextual information,
including if necessary a copy of the entire original program, to be passed in to a



82 J.R. Cordy

File "TILclonesexact.txl"

% Clone detection for TIL programs

% Find exact clones of structured statements,
% and output the program with clones marked
% up to indicate their clone class.

% Begin with the TIL base grammar
include "TIL.grm"

% We are NOT interested in comments

% Overrides to conflate all structured
% statements into one nonterminal type.

redefine statement
[structured_statement]

| ...
end redefine

define structured_statement
[if_statement]

| [for_statement]
| [while_statement]

end define

% Allow XML markup of statements.

redefine statement
...

| [marked_statement]
end redefine

define marked_statement
[xmltag] [NL][IN]

[statement] [EX]
[xmlend] [NL]

end define

% [SPOFF] and [SPON] temporarily disable
% default TXL output spacing in tags

define xmltag
< [SPOFF] [id] [SP] [id] = [number] > [SPON]

end define

define xmlend
< [SPOFF] / [id] > [SPON]

end define

% Main program

function main
replace [program]

P [program]

% First make a table of all repeated
% structured statements
construct StructuredClones

[structured_statement*]
_ [findStructuredStatementClones P]

% Mark up all instances of each of them.
% CloneNumber keeps track of the index of
% each in the table as we step through it
export CloneNumber [number] 0
by

P [markCloneInstances
each StructuredClones]

end function

% We make a table of the cloned structured
% statements by first making a table
% of all structured statements in the program,
% then looking for repeats

function findStructuredStatementClones
P [program]

% Extract a list of all structured
% statements in the program
construct StructuredStatements

[structured_statement*]
_ [^ P]

% Add each one that is repeated
% to the table of clones
replace [structured_statement*]

% empty to begin with
by

_ [addIfClone StructuredStatements
each StructuredStatements]

end function

function addIfClone
StructuredStatements [structured_statement*]
Stmt [structured_statement]

% A structured statement is cloned if it
% appears twice in the list of all statements
deconstruct * StructuredStatements

Stmt
Rest [structured_statement*]

deconstruct * [structured_statement] Rest
Stmt

% If it does appear (at least) twice,
% add it to the table of clones
replace [structured_statement*]

StructuredClones [structured_statement*]
% Make sure it’s not already in the table
deconstruct not * [structured_statement]

StructuredClones
Stmt

by
StructuredClones [. Stmt]

end function

% Once we have the table of all clones,
% we mark up each instance of each of them
% in the program with its clone class,
% that is, the index of it in the clone table

rule markCloneInstances
StructuredClone [structured_statement]

% Keep track of the index of this clone
% in the table
import CloneNumber [number]
export CloneNumber

CloneNumber [+ 1]

% Mark all instances of it in the program
% ’skipping’ avoids marking twice
skipping [marked_statement]
replace [statement]

StructuredClone
by

<clone class=CloneNumber>
StructuredClone

</clone>
end rule

Fig. 29. TXL transformation to detect exact structured statement clones in TIL



Excerpts from the TXL Cookbook 83

local transformation. There it can be used both in conditions to guard the local
transformation, as is the case this time, or as a source of additional parts to be
used in the result of the local transformation.

Paradigm. Accumulating multiple results. [addIfClone] also demonstrates an-
other common paradigm - the accumulation of results into a single sequence.
Beginning with an empty sequence using the empty variable “ ” in the replace-
ment of [findStructuredStatementClones], [addIfClone] adds each result it finds
to the end of its scope sequence. It makes sure that it does not put the same
statement in twice using a guarding deconstructor, which checks to see if the
cloned statement is already in the list:

deconstruct not * [structured_statement] StructuredClones
Stmt

Once [findStructuredStatements] has constructed a unique list of all of the
cloned structured statements in the program, [markCloneInstances] marks up
all of the instances of each one in the program. Each is assigned a unique class
number to identify it with its instances using the global variable CloneNumber,
which begins at 0 and is incremented by [markCloneInstances] on each call.

Paradigm. Updating global state. While TXL is primarily a pure functional
language, global state is sometimes required in complex transformations. For
this purpose TXL allows global variables, which can be of any grammatical type
(including forms that are not in the input language). In this case the global
variable CloneNumber is a simple [number] that begins with the value 0. Inside
a TXL rule, globals are simply normal local TXL variables. But they can be
“exported” to the global scope where their value can be “imported” into another
rule where they once again act as a local variable of the rule. Within a rule, the
value bound to an imported global is set when it is imported, as if it were bound
in a pattern match. The value bound to the variable can only be changed if the
rule re-imports or exports the global with a new value.

In this case, on each invocation, [markCloneInstances] imports CloneNumber
and immediately constructs and exports a new value for it, the previous value
plus one. This new value is used in the replacement of the rule to mark up every
instance of the current clone with that clone class number, making it clear which
marked up statements are clones of one another in the result.

Of course, exact clone detection is the simplest case, and although interest-
ing, not very realistic. Fortunately, we are using TXL, so modifying our clone
detector to handle more aggressive techniques is not difficult. In particular, we
can make the clones identifier-independent, like CCFinder [18], just by adding a
normalization rule to make all identifiers the same when comparing:

rule normalizeIdentifiers
replace $ [id]

_ [id]
by

’X
end rule

If we want to be more precise, we can compare with consistent renaming -
that is, where identifiers are normalized consistently with their original names.



84 J.R. Cordy

% Rule to normalize structured statements
% by consistent renaming of identifiers
% to normal form (x1, x2, x3, ...)

rule renameStructuredStatement
% For each outer structured statement
% in the scope
skipping [structured_statement]
replace $ [structured_statement]

Stmt [structured_statement]

% Make a list of all of the unique
% identifiers in the statement
construct Ids [id*]

_ [^ Stmt] [removeDuplicateIds]

% Make normalized new names of the
% form xN for each of them
construct GenIds [id*]

Ids [genIds 0]

% Consistently replace each instance
% of each one by its normalized form
by

Stmt [$ each Ids GenIds]
end rule

% Utility rule -
% remove duplicate ids from a list

rule removeDuplicateIds
replace [id*]

Id [id] Rest [id*]
deconstruct * [id] Rest

Id
by

Rest
end rule

% Utility rule -
% make a normalized id of the form xN
% for each unique id in a list

function genIds NM1 [number]
% For each id in the list
replace [id*]

_ [id]
Rest [id*]

% Generate the next xN id
construct N [number]

NM1 [+ 1]
construct GenId [id]

_ [+ ’x] [+ N]

% Replace the id with the generated one
% and recursively do the next one
by

GenId
Rest [genIds N]

end function

Fig. 30. TXL rule to consistently normalize identifiers in a TIL statement

Figure 30 shows a TXL rule to consistently rename the identifiers in a TIL
structured statement. The rule works by extracting an ordered list of all of
the identifiers used in the structured statement, and then generates a list of
identifiers of the form x1, x2, x3 and so on of the same length by recursively
replacing each identifier in a copy of the list with a generated one.

The result lists might look like this:
Ids xyz abc n wid zoo
GenIds x1 x2 x3 x4 x5

Paradigm. Each corresponding pair. The actual transformation of the origi-
nal ids to the generated ones is done using the built-in rule [$], which is TXL
shorthand for a fast global substitute. The rule application uses a paired each to
pass the substitute rule each pair of corresponding identifiers in the lists, that
is, [′xyz′x1], [ ’abc ’x2], and so on. This general paradigm can be used to match
any two sequences of corresponding items, for example formals and actuals when
analyzing function calls.

7.6 Unique Renaming

Unique renaming [15] gives scope-independent names to all declared items in a
program. Unique naming flattens the name space so that every item declared
in a program can be unambiguously referred to independent of its context. In



Excerpts from the TXL Cookbook 85

particular, unique naming is useful when creating a relationship database for the
program in the form of facts, as in Rigi’s RSF [21] or Holt’s TA [16] format.

In this example transformation (Figure 31), we uniquely rename all declared
variables, functions and modules in programs written in the module extension of
TIL to reflect their complete scope. For example, a variable named X declared
in function F of module M is renamed M.F.X .

This transformation demonstrates a number of new paradigms. Most obvious
is that this process must be done from the innermost scopes to the outermost,
so that when renaming things declared in a module M, all of the things declared
in an embedded function F have already been renamed F.X. That way, we can
simply rename everything transitively inside M with M. to reflect its scope, for
example yielding M.F.X .

Paradigm. Bottom-up traversal. The paradigm for applying rules “inside out”
(from the bottom up, from a parse tree point of view) is used in the main rule of
this transformation, [uniqueRename] (Figure 31). [uniqueRename]’s real purpose
is to find each declaration or statement that forms a scope, to get its declared
name (ScopeName) and then use the [uniqueRenameScope] subrule to rename
every declaration in the scope with the ScopeName. But in order for this to work
correctly, it must handle the scopes from the inside out (bottom-up).

Bottom-up traversal is done by recursively applying the rule to each matched
Scope more deeply before calling [uniqueRenameScope] for the current scope.
The paradigm consists of two parts: “skipping [statement]” in [uniqueRename]
assures that we go down only one level at a time, and the call to [uniqueRe-
nameDeeper], which simply recursively applies [uniqueRename] to the inside of
the current scope, ensures that we process deeper levels before we call [uniqueR-
enameScope] for the current level. This paradigm is generic and can be used
whenever inner elements should be processed before outer.

The actual renaming is done by the rule [uniqueRenameScope], which finds
every embedded declaration in a scope (no matter how deeply embedded), and
renames both the declaration and all of its references in the scope to begin
with the given ScopeName. For example, if ScopeName is M and some inner
declaration is so far named F.G.X, then both the declaration and all references
to it get renamed as M.F.G.X . Since we are processing inside out, there is no
ambiguity with deeper declarations whose scopes have already been processed.

Paradigm. Abstracted patterns. [uniqueRenameScope] demonstrates another
new paradigm: abstracted matching. Even though the real pattern it is looking
for is a Declaration followed by its RestOfScope, the rule matches less precisely
and uses a deconstructor to check for the pattern. This is because the replace-
ment will have to consistently change both the Declaration and the RestOfScope
in the same way (i.e. renaming occurrences of the declared name). By matching
the part that requires change in one piece, the transformation requires only one
use of the renaming substitution rule [$], making the rule simpler and clearer.

Once all declarations and embedded references have been renamed, there are
two remaining tasks: renaming references to a module’s public functions that



86 J.R. Cordy

File "TILuniquerename.txl"

% Uniquely rename every Modular TIL variable
% and function with respect to its context.
% e.g., variable V declared in a while
% statement in function F of module M
% is renamed as M.F.whileN.V

% Begin with the MTIL grammar
include "TIL.grm"
include "TILarrays.grm"
include "TILfunctions.grm"
include "TILmodules.grm"

% Allow for unique names - in this case,
% TIL does not have a field selection operator,
% so we can use X.Y notation for scoped names.
redefine name

[id]
| [id] . [name]

end redefine

% Main program
function main

replace [program]
P [program]

by
P [uniqueRenameDeeper]

[uniqueRenameScope ’MAIN]
[renameModulePublicReferences]
[renameFunctionFormalParameters]

end function

rule uniqueRename
% Do each statement on each level once
skipping [statement]
replace $ [statement]

Scope [statement]
% Only interested in statements with scopes
deconstruct * [statement*] Scope

_ [statement*]
% Use the function, module or unique
% structure name for it
construct ScopeName [id]

_ [makeKeyName Scope]
[getDeclaredName Scope]

% Visit inner scopes first, then this one
by

Scope [uniqueRenameDeeper]
[uniqueRenameScope ScopeName]

end rule

% Recursively implement bottom-up renaming
function uniqueRenameDeeper

replace * [statement*]
EmbeddedStatements [statement*]

by
EmbeddedStatements [uniqueRename]

end function

% Make an identifier for the scope -
% if a declaration, use the declared id,
% otherwise synthesize a unique id from the
% statement keyword
function makeKeyName Scope [statement]

deconstruct * [key] Scope
Key [key]

construct KeyId [id]
_ [+ Key] [!]

replace [id]
_ [id]

by
KeyId

end function

function getDeclaredName Scope [statement]
replace [id]

_ [id]
deconstruct Scope

DeclaredScope [declaration]
deconstruct * [id] DeclaredScope

ScopeName [id]
by

ScopeName
end function

% Do the actual work - rename each declaration
% and its references with the scope id
rule uniqueRenameScope ScopeName [id]

% Find a declaration in the scope
replace $ [statement*]

DeclScope [statement*]
deconstruct DeclScope

Declaration [declaration]
RestOfScope [statement*]

% Get its original id
deconstruct * [name] Declaration

Name [name]
% Add the scope id to its name
construct UniqueName [name]

ScopeName ’. Name
% Rename the declaration and all
% references in the scope.
by

DeclScope [$ Name UniqueName]
end rule

% This section handles the problem of
% references to a public function outside
% of the module it is declared in

rule renameModulePublicReferences
% Find a module and its scope
replace $ [statement*]

’module ModuleName [name]
ModuleStatements [statement*]

’end ;
RestOfScope [statement*]

% Get all its public function names
construct

UniquePublicFunctionNames [name*]
_ [extractPublicFunctionName

each ModuleStatements]
% Rename all references in the outer scope
by

’module ModuleName
ModuleStatements

’end ;
RestOfScope

[updatePublicFunctionCall
each UniquePublicFunctionNames]

end rule

Fig. 31. TXL transformation to uniquely rename all declared items in TIL programs
to reflect their scope



Excerpts from the TXL Cookbook 87

function extractPublicFunctionName
Statement [statement]

% We’re interested only in functions
deconstruct Statement

Function [function_definition]
% Which are public
deconstruct * [opt ’public] Function

’public
% Get the function id
deconstruct * [name] Function

UniquePublicFunctionName [name]
% Add it to the end of the list
replace * [name*]
by

UniquePublicFunctionName
end function

rule updatePublicFunctionCall
UniquePublicFunctionName [name]

% Get the original name
deconstruct * [name]

UniquePublicFunctionName
PublicFunctionName [id]

% Replace all uses with unique name
skipping [name]
replace $ [name]

PublicFunctionName
by

UniquePublicFunctionName
end rule

% Rules to rename function formal parameters

... (similar to rules above)

Fig. 32. TXL transformation to uniquely rename all declared items in TIL programs
to reflect their scope (continued)

are outside its inner scope, and renaming formal parameters. Both of these pose
a new kind of transformation problem: how to do a transformation on an outer
level of the parse that depends on information from an inner level? Such a trans-
formation is called a local-to-global transformation, and is a standard challenge
for source transformation systems.

The TXL solution is demonstrated by the rule [renameModulePublicRefer-
ences] in Figure 32. We need to make a transformation of all references to the
original name of any public function of the module that occur in the scope in
which the module is declared, that is, in RestOfScope. But the public functions
of the module cannot be in the pattern of the rule - what to do?

Paradigm. Inner context-dependent transformation. The answer is to contextu-
alize the transformation by raising the information we need from the inner scope
to the level we are at. In this case, that is done by the construct of UniquePub-
licFunctionNames, which uses the subrule [extractPublicFunctionName] to get a
copy of the unique name of every public function declared in the module. Once
we have brought the context up to the level we are at, we can do the trans-
formation we need using [updatePublicFunctionCall] by passing it each public
function unique name.

In general, the inner context to be raised could be much deeper or more com-
plex than simply public functions declared one level down. Using a constructor
and subrule to bring deeper context up, we can always get what is needed.

7.7 Design Recovery

Design recovery, or fact generation, is the extraction of basic program entities
and relationships into an external graph or database that can be explored using
graph and relationship analysis tools such as CrocoPat [4], Grok [17], or Prolog.
In this problem, we show how TXL can be used to extract facts from programs
using source transformation.



88 J.R. Cordy

File "TILgeneratefacts.txl"

% Design recovery (fact extraction) for MTIL

% Given a uniquely renamed MTIL program,
% infer and generate architecture design facts
% contains(), calls(), reads(), writes()

% Begin with the MTIL grammar
include "TIL.grm"
include "TILarrays.grm"
include "TILfunctions.grm"
include "TILmodules.grm"

% Our input has been uniquely renamed by
% TILuniquerename.txl using X.Y notation
redefine name

[id]
| [id] . [name]

end redefine

% Grammar for Prolog facts
include "Facts.grm"

% Override to allow facts on any statement
redefine statement

...
| ’; % null statement,

% so we can add facts anywhere
end redefine

% Override to allow facts on any statement
redefine statement

[fact*] ...
end redefine

% Override to allow facts on any expression
redefine primary

[fact*] ...
end redefine

% Our output is the facts alone
redefine program

...
| [fact*]

end redefine

% Main program
function main

replace [program]
P [program]

construct ProgramName [name]
’MAIN

construct AnnotatedP [program]
P [addContainsFacts ProgramName]

[inferContains]
[addCallsFacts ProgramName]
[inferCalls]
[addReadsFacts ProgramName]
[inferReads]
[addWritesFacts ProgramName]
[inferWrites]

construct Facts [fact*]
_ [^ AnnotatedP]

by
Facts

end function

% Infer contains() relationships
rule inferContains

replace $ [declaration]
ScopeDecl [declaration]

deconstruct * [statement*] ScopeDecl
Statements [statement*]

deconstruct * [name] ScopeDecl
ScopeName [name]

by
ScopeDecl

[addContainsFacts ScopeName]
[addContainsParameters ScopeName]

end rule

rule addContainsFacts ScopeName [name]
skipping [statement]
replace $ [statement]

Facts [fact*] Declaration [declaration]
deconstruct * [name] Declaration

DeclName [name]
construct NewFacts [fact*]

’contains ’( ScopeName, DeclName ’)
Facts

by
NewFacts Declaration

end rule

function addContainsParameters ScopeName [name]
replace [declaration]

Public [opt ’public]
’function Fname [name]

’( ParameterNames [name,] )
OptResultParameter [opt colon_id]

Statements [statement*]
’end;

construct OptResultParameterName [name*]
_ [getResultParameterName

OptResultParameter]
construct ParameterContainsFacts [fact*]

_ [makeFact ’contains ScopeName
each ParameterNames]

[makeFact ’contains ScopeName
each OptResultParameterName]

construct FactsStatement [statement]
ParameterContainsFacts ’;

by
Public
’function Fname ’( ParameterNames )
OptResultParameter

FactsStatement
Statements

’end;
end function

function getResultParameterName
OptResultParameter [opt colon_id]

deconstruct OptResultParameter
’: ResultParameterName [name]

replace [name*]
by

ResultParameterName
end function

Fig. 33. TXL transformation to generate basic facts for an MTIL program



Excerpts from the TXL Cookbook 89

% Infer calls() relationships
rule inferCalls

replace $ [declaration]
ScopeDecl [declaration]

deconstruct * [statement*] ScopeDecl
Statements [statement*]

deconstruct * [name] ScopeDecl
ScopeName [name]

by
ScopeDecl [addCallsFacts ScopeName]

end rule

rule addCallsFacts ScopeName [name]
skipping [declaration]
replace $ [statement]

Facts [fact*]
CallStatement [call_statement]

skipping [id_assign]
deconstruct * [name] CallStatement

CalledName [name]
by

’calls ’( ScopeName, CalledName ’)
Facts
CallStatement

end rule

% Infer reads() relationships
rule inferReads

replace $ [declaration]
ScopeDecl [declaration]

deconstruct * [statement*] ScopeDecl
Statements [statement*]

deconstruct * [name] ScopeDecl
ScopeName [name]

by
ScopeDecl [addReadsFacts ScopeName]

end rule

rule addReadsFacts ScopeName [name]
skipping [statement]
replace $ [statement]

Statement [statement]
by

Statement
[addExpressionReadsFacts ScopeName]

end rule

rule addExpressionReadsFacts ScopeName [name]
skipping [declaration]
replace $ [primary]

Primary [primary]
deconstruct * [name] Primary

FetchedName [name]
construct ReadsFact [fact*]

’reads ( ScopeName, FetchedName )
by

Primary [addFacts ReadsFact]
end rule

% Infer writes() relationships
. . . ( similar to reads() )

% Utility functions
function makeFact FactId [id]

Name1 [name] Name2 [name]
replace * [fact*]
by

FactId ( Name1, Name2 )
end function

function addFacts NewFacts [fact*]
replace * [fact*]

Facts [fact*]
by

Facts [. NewFacts]
end function

Fig. 34. TXL transformation to generate basic facts for an MTIL program (continued)

Figure 33 shows a program that extracts basic structural and usage facts for
programs written in the module dialect of TIL. Facts extracted include con-
tains(), calls(), reads() and writes() relationships for all modules and functions.

Paradigm. Local fact annotation. The basic strategy of the program is to an-
notate the program with facts directly in the local contexts where the fact can
be inferred. For example, for the statement: x.y.z := a.b.c; appearing in function
M.F, we will annotate the statement with the facts:

writes (M.F, x.y.z)
reads (M.F, a.b.c)
x.y.z := a.b.c;

In this way we can use local transformations to create the facts where the
evidence for them occurs. The actual rules to infer each kind of fact are fairly
simple: for each declaration in a scope, we annotate with a contains() fact. For
each reference to a name in a scope, we annotate with a reads() fact. And so on.
If more information is needed to infer a fact, we can leverage all of the previous
techniques we have seen to assist us: context-dependent transformation, inner
context-dependent transformation, bottom-up traversal, and any others we need.



90 J.R. Cordy

Once the program is completely annotated with facts, the only remaining
task is to gather them together, which is done using the usual type extraction
paradigm to bring all the facts into one sequence, which we can then output as
the result of our fact generation transformation. The final result of this program
is a fact base in Prolog form, that looks like this:

contains (MAIN, MAIN.maxprimes)
contains (MAIN, MAIN.maxfactor)
writes (MAIN, MAIN.maxprimes)
writes (MAIN, MAIN.maxfactor)
contains (MAIN, MAIN.prime)
writes (MAIN, MAIN.prime)

contains (MAIN, MAIN.flags)
contains (MAIN.flags, MAIN.flags.flagvector)
contains (MAIN.flags, MAIN.flags.flagset)
contains (MAIN.flags.flagset, MAIN.flags.flagset.f)
writes (MAIN.flags.flagset, MAIN.flags.flagvector)
reads (MAIN.flags.flagset, MAIN.flags.flagset.f)
. . .

8 Conclusion and Future Work

The TXL Cookbook is very much a work in progress, and what we have seen is
only part of what we hope will eventually be a comprehensive guide to using TXL
in every kind of software analysis and transformation task. We have chosen this
set of examples specifically to highlight some of the non-obvious ways in which
TXL can be used to efficiently implement many tasks.

By using a range of real problems rather than small toy examples, we have
been able to expose a number of paradigms of use that allow TXL to be effective.
The real power of the language lies not in its own features, but rather in the
way it is used - these solution paradigms. The purpose of the cookbook is to
document and demonstrate these paradigms so that potential users can see how
to solve their own problems using TXL and similar tools.

References

1. Barnard, D.T., Holt, R.C.: Hierarchic Syntax Error Repair for LR Grammars. Int.
J. Computing and Info. Sci. 11(4), 231–258 (1982)

2. Baxter, I., Pidgeon, P., Mehlich, M.: DMS: Program Transformations for Practical
Scalable Software Evolution. In: Proc. Int. Conf. on Software Engineering, pp.
625–634. ACM Press, New York (2004)

3. Bergstra, J.A., Heering, J., Klint, P.: Algebraic Specification. ACM Press, New
York (1989)

4. Beyer, D.: Relational programming with CrocoPat. In: Proc. Int. Conf. on Software
Engineering, pp. 807–810. ACM Press, New York (2006)

5. van den Brand, M., Klint, P., Vinju, J.J.: Term Rewriting with Traversal Functions.
ACM Trans. on Software Eng. and Meth. 12(2), 152–190 (2003)

6. Bravenboer, M., Kalleberg, K.T., Vermaas, R., Visser, E.: Stratego/XT 0.17. A
Language and Toolset for Program Transformation. Sci. Comput. Program. 72(1-
2), 52–70 (2008)

7. Cordy, J.R., Dean, T.R., Malton, A.J., Schneider, K.A.: Source Transformation in
Software Engineering using the TXL Transformation System. J. Info. and Software
Tech. 44(13), 827–837 (2002)

8. Cordy, J.R.: The TXL Source Transformation Language. Sci. Comput. Pro-
gram. 61(3), 190–210 (2006)



Excerpts from the TXL Cookbook 91

9. Cordy, J.R.: Source Transformation, Analysis and Generation in TXL. In: Proc.
ACM SIGPLAN Works. on Partial Eval. and Program Manip., pp. 1–11. ACM
Press, New York (2006)

10. Cordy, J.R.: The TXL Programming Language, Version 10.5. Queen’s University
at Kingston, Canada (2007), http://www.txl.ca/docs/TXL105ProgLang.pdf

11. Cordy, J.R., Visser, E.: Tiny Imperative Language,
http://www.program-transformation.org/Sts/TinyImperativeLanguage

12. Cordy, J.R.: The TIL Chairmarks,
http://www.program-transformation.org/Sts/TILChairmarks

13. Dean, T.R., Cordy, J.R., Malton, A.J., Schneider, K.A.: Agile Parsing in TXL. J.
Automated Softw. Eng. 10(4), 311–336 (2003)

14. van Deursen, A., Kuipers, T.: Building Documentation Generators. In: Proc. 1999
Int. Conf. on Software Maint., pp. 40–49. IEEE Press, Los Alamitos (1999)

15. Guo, X., Cordy, J.R., Dean, T.R.: Unique Renaming of Java Using Source Trans-
formation. In: Proc. IEEE Int. Works. on Source Code Analysis and Manip., pp.
151–160. IEEE Press, Los Alamitos (2003)

16. Holt, R.C.: An introduction to TA: The Tuple-Attribute Language. Technical re-
port, University of Toronto (1997),
http://plg.uwaterloo.ca/~holt/papers/ta-intro.htm

17. Holt, R.C.: Structural Manipulations of Software Architecture using Tarski Rela-
tional Algebra. In: Proc. Int. Working Conf. on Reverse Eng., pp. 210–219. IEEE
Press, Los Alamitos (1998)

18. Kamiya, T., Kusumoto, S., Inoue, K.: CCFinder: A Multilinguistic Token-Based
Code Clone Detection System for Large Scale Source Code. IEEE Trans. Software
Eng. 28(7), 654–670 (2002)

19. Moonen, L.: Generating Robust Parsers using Island Grammars. In: Proc. Int.
Working Conf. on Reverse Eng., pp. 13–22. IEEE Press, Los Alamitos (2001)

20. Vinju, J., Klint, P., van der Storm, T.: Rascal: a Domain Specific Language for
Source Code Analysis and Manipulation. In: Proc. Int. Working Conf. on Source
Code Analysis and Manip., pp. 168–177. IEEE Press, Los Alamitos (2009)

21. Martin, J.: RSF file format. Technical report, University of Victoria (August 1999),
http://strategoxt.org/Transform/RigiRSFSpecification

22. Weiser, M.D.: Program slices: Formal, Psychological, and Practical Investigations
of an Automatic Program Abstraction Method. University of Michigan, Ann Arbor
(1979)

http://www.txl.ca/docs/TXL105ProgLang.pdf
http://www.program-transformation.org/Sts/TinyImperativeLanguage
http://www.program-transformation.org/Sts/TILChairmarks
http://plg.uwaterloo.ca/~holt/papers/ta-intro.htm
http://strategoxt.org/Transform/RigiRSFSpecification

	The TXL Cookbook
	Introduction
	TXL Basics
	The TXL Paradigm
	Anatomy of a TXL Program
	The Grammar: Specifying Lexical Forms
	The Grammar: Specifying Syntactic Forms
	Input Parsing
	Base Grammars and Overrides
	Transformation Rules
	Rules and Functions
	Rule Parameters
	Patterns and Replacements
	Deconstructors and Constructors

	The TIL Chairmarks
	Parsing Problems
	Basic Parser / Syntax Checker
	Pretty Printing
	Language Extensions
	Robust Parsing
	Island Grammars
	Agile Parsing

	Restructuring Problems
	Feature Reduction
	Declarations-to-Global
	Declarations-to-Local
	Goto Elimination

	Optimization Problems
	Statement-Level Code Motion
	Common Subexpression Elimination
	Constant Folding
	Statement Folding

	Static and Dynamic Analysis Problems
	Program Statistics
	Self Tracing Programs
	Type Inference
	Static Slicing
	Clone Detection
	Unique Renaming
	Design Recovery

	Conclusion and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006c006100750061002d0020006a00610020006b006f006e00740072006f006c006c007400f5006d006d006900730065007000720069006e0074006500720069007400650020006a0061006f006b00730020006b00760061006c006900740065006500740073006500740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0074007500730020006b00760061006c0069007400610074012b0076006100690020006400720075006b010101610061006e00610069002000610072002000670061006c006400610020007000720069006e00740065007200690065006d00200075006e0020007000610072006100750067006e006f00760069006c006b0075006d0075002000690065007300700069006500640113006a00690065006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f00620065002000500044004600200070007200650020006b00760061006c00690074006e00fa00200074006c0061010d0020006e0061002000730074006f006c006e00fd0063006800200074006c0061010d00690061007201480061006300680020006100200074006c0061010d006f007600fd006300680020007a006100720069006100640065006e0069006100630068002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e000d000a>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


