Ontology-Based Software Analysis and Reengineering Tool Integration:
The OASIS Service-Sharing Methodology

Dean Jin

Department of Computer Science

University of Manitoba
Winnipeg, Manitoba, Canada
djin@cs.umanitoba.ca

Abstract

A common and difficult maintenance activity is the in-
tegration of existing software components or tools into a
consistent and interoperable whole. One area in which this
has proven particularly difficult is in the domain of soft-
ware analysis and reengineering tools, which have a very
poor record of interoperability. This paper outlines our
experience in facilitating tool integration using a service-
sharing methodology that employs a domain ontology and
specially constructed, external tool adapters. A proof of
concept implementation among three tools allowed us to
explore service-sharing as a viable means for facilitating
interoperability among these tools.

1. Introduction

The software reengineering community has actively re-
sponded to the needs of maintenance practitioners involved
in program comprehension and software analysis. Many
tools that provide assistance in carrying out reengineering
tasks have been developed. Each of these tools typically
provides a specific, specialized functionality to software
practitioners [4, 2]. While they are effective operating as
independent systems, the usefulness of these tools cannot
be maximized without the ability for them to interoperate
with other tools [1, 5, 6]. Creation of a suite of tools to sup-
port software reengineering requires a means for sharing the
services each tool provides among other tools participating
in an integration environment.

The Ontological Adaptive Service-Sharing Integration
System (OASIS) is a novel approach to integration that
makes use of specially constructed, external tool adapters
and a domain ontology to facilitate software reengineering
tool interoperability through service-sharing. This short pa-
per provides an outline of the design and function of OASIS.

James R. Cordy
School of Computing
Queen’s University
Kingston, Ontario, Canada
cordy@cs.gueensu.ca

2. Data vs. Service-Sharing Integration

While the motivation to interoperate software reengi-
neering tools remains strong, very little progress towards
achieving this goal has been made. Previous approaches to
reengineering tool integration have been data centric, con-
centrating on the exchange of data through specialized hard-
coded interfaces (APIs) or rigid standardized exchange for-
mats. The main problem with these approaches is that they
are prescriptive. They force tool developers to provide a
particular functionality to another tool or conform to an id-
iomatic standard to participate in the integration process.

For developers who integrate their tools, all the time and
effort spent generally yields a solution that is specialized for
a single tool-to-tool application. Transforming the syntactic
and semantic information represented in one tool to a form
that is compatible with another tool is tedious and time-
consuming, and the effort expended is largely lost when
developers want to integrate with other tools. For n tools
that want to interoperate, the transformation process must
be repeated n — 1 times. As a consequence, data centric in-
tegration has left software maintainers with a broad range
of autonomous tools that do not work effectively with other
tools. Linkages among tools that do interoperate are hard
to unravel and difficult to generalize for use in an open in-
tegration environment. This makes it difficult for other tool
developers to participate in the integration process.

We advocate non-prescriptive integration, focusing on
sharing the services offered by each tool rather than simply
exchanging data among them. A tool service is the func-
tionality provided by a tool that, when given a set of one or
more inputs, generates a corresponding output that is rele-
vant to software maintainers. In the case of reengineering
tools, the inputs are typically source code (or facts derived
or inferred from source code) and the output is typically a
report or visualization. Often a tool will provide more than
one tool service.

""" » O, A

=

A, = Conceptual Service Adapter
0, = Transaction Set

I, = Factbase Instance
Sy = Schema

O = Domain Ontology
T = Tool Participant

Figure 1. The OASIS Architecture

3. The OASIS Architecture

OASIS is an integration methodology that provides a
means for reengineering tools to work cooperatively to
share services and assist maintainers in carrying out soft-
ware analysis and program comprehension tasks.

Consider two or more reengineering tools that we want
to cooperate in an integration. Here we use the term inte-
gration to define the environmental boundaries (i.e. the set
of tools) that OASIS will operate between. A tool in the
integration is referred to as a participant.

Each participant offers a set of services to the integration
that are shared with the other participants. It is not nec-
essary to share all the services offered by a participant in
the integration, although at least one service must be shared
(otherwise there is no reason for the tool to participate).
Note that a tool that only supplies a factbase is in fact pro-
viding a service, namely one of representing software facts
extracted from source code in a particular structured format.

Figure 1 provides an architectural view of OASIS. To
keep things simple, we show only two tools (7} and T3) in-
volved in an integration. An actual OASIS integration can
have any number of participants. Each of the participant
tools (77 and T5) provides a set of transactions (Q; and Q,),
a schema (S and $,) and a correspondingly structured fact-
base instance (/1 and I»).

Within each tool, a directed, dashed line reflects the im-
portant role the schema plays in defining the representation
supported by the instance and the structure of the transac-
tions that operate on the instance. A solid, bidirectional
line indicates the close operative relationship the transac-

tions have on the instance.
The OASIS methodology involves the creation of two
sets of components:

1. Domain Ontology (O). This component stores all the
knowledge required to support service-sharing among
each of the tools participating in the integration. The
knowledge is stored as a tabularized, cross-referenced
compilation of representational concepts and services
offered by each integration participant.

Taken together, the representational concepts stored in
the domain ontology define a conceptual space, con-
sisting of conceptual ‘slots’ that fact instances fit into.
A fact instance fits into a slot only when the concept it
represents matches a concept in the domain ontology.
We say that a tool has concept support when this oc-
curs. We describe concept support in more detail in an
earlier paper [3]. Shared services only operate on fact
instances that actually fit into these conceptual slots.

A service offered by a tool participating in an OASIS
integration can be shared only when the concepts re-
quired by the service intersect with the concepts sup-
ported by another participant tool.

Each OASIS implementation requires only one do-
main ontology.

2. Conceptual Service Adapters (A|,A;). These com-
ponents function as integration facilitators for tools
participating in the integration. In an OASIS imple-
mentation, each tool is affiliated with a single concep-
tual service adapter. Each makes use of the domain

ontology to get the information it needs to regulate the
integration process.

Conceptual service adapters perform the following
three main functions:

(a) Shared Service and Concept Support ldentifica-
tion. Making use of the knowledge stored in
the domain ontology, each conceptual service
adapter identifies requests for shared services and
determines the concepts each service requires.

(b) Factbase Filtering. Depending on the mode
of operation invoked, each conceptual service
adapter will map all fact instances into and out of
the conceptual space defined by the domain on-
tology. This process is known as filtering. Map-
ping fact instances into the conceptual space is
performed by an inFilter. Mapping from the con-
ceptual space is performed by an outFilter. Both
of these filters are specially tailored to work with
the representation supported by the factbase for
the tool that the conceptual service adapter is as-
sociated with.

(c) Shared Service Execution. Each conceptual ser-
vice adapter manages requests from other con-
ceptual service adapters for the execution of
shared services on the tool they are associated
with.

Although all the conceptual service adapters have the
same basic architecture and operating characteristics,
each is specially constructed to handle the functional
and information filtering aspects of it’s corresponding
tool that are required to facilitate interoperability.

The communication links between the domain ontology,
the conceptual service adapters, and tools they are associ-
ated with are shown as solid black lines in Figure 1.

4. How OASIS Works

In order to show how an OASIS implementation works,
consider the two reengineering tools 77 and 7, as shown in
Figure 1. This is the base case for our integration paradigm.
An OASIS implementation can have any number of partic-
ipants. We only show two here to keep the explanation on
how OASIS works as simple as possible.

The goal of our integration effort is to apply a service
available in one participant to the factbase of another par-
ticipant. In this example, T, offers a service V consisting
of the sequential application of transactions gy, gy and g, (a
subset of the complete set of transactions offered by Q,).
We would like to apply service V to Iy, the factbase for 7.
This has the effect of sharing service V with 7.

The domain ontology O has been constructed and con-
tains knowledge of the representational concepts and ser-
vices supported by tools 77 and 7>. The conceptual service
adapters A and A, facilitate the interoperability we need to
achieve our goal.

The flow of information through the OASIS components
is shown for each of the following steps in Figure 2.

(1) We start with I;. The user calls A; and requests ser-
vice V. Adapter A; uses the ontology to identify V
as a service offered by 7. It also learns that V re-
quires a factbase that supports (in this example) three
concepts known as ¢y, ¢, and c3 in the ontology. The
factbase for 77 must support the concepts that service
V operates on. A; accesses the ontology for a second
time and verifies that 77 supports a representation for
concepts ¢y, ¢p and c3. If a tool does not support the
required concept(s), the integration attempt will termi-
nate at this point.

(2) A invokes it’s inFilter to map all fact instances from
the I; factbase into the conceptual space. A; then sends
a request to A, asking it to execute service V.

(3) Acting on the request from A1, A invokes it’s outFilter
to map the conceptual space representation to fiemp, a
local factbase instance for 75.

(4) A, then instructs 75 to apply service V to liepmp. This
produces results in the new 7, factbase I,z

(5) A; invokes it’s inFilter to map the results in 7, to
the conceptual space. It then sends a message to A;
indicating the service has completed.

(6) Acting on the message from A;, A; invokes it’s outFil-
ter to map the conceptual space representation to e,
a local factbase for 77. The completed integration ter-
minates.

In this example, service V is essentially shared; it can be
applied to fact instances from /; and /. Any reengineering
tool that supports concepts c1, ¢ and c3 can share service V
from 75 in this manner.

Using Figure 1 as a reference, the effect of service-
sharing can be indicated by a solid bidirectional line stem-
ming from a set of transactions from one tool (Q,) to a fact-
base instance of another tool (/).

This tiny example serves to demonstrate the technique.
In practice we have demonstrated integration between
shared services offered by three tools in our OASIS proof-
of-concept implementation. We applied our OASIS imple-
mentation towards the analysis of production-sized software
systems including Linux Kernel v2.0.27a (14,338 source
facts), the TXL language processor v6.0 (9,000 Turing+
LOC, 6,780 design facts) and IBM’s Tobey code generation
system (250,000 PLIX LOC, 11,066 architecture facts).

2

A, inFilter (6)

A, outFilter

)]

(a T, factbase) (a T, factbase)

Conceptual
Space

3) A, inFilter A, outFilter

(a T, factbase) (a T, factbase)

Figure 2. Sharing Service V with Tool T}

5. Discussion and Conclusion

One of the major pitfalls of previous attempts to facil-
itate integration among reengineering tools has been the
prescriptive methodologies that tool developers have been
forced to work with. The primary goal of OASIS is to sim-
plify the work involved in participating in the integration
process. We believe that this can be accomplished by main-
taining a clear separation between each participant and the
components that look after the complexities of integration.
This provides the following advantages:

Independence. Each integration participant works in an in-
dependent manner with no dependencies among them
except for those that relate to either of the interfaces
that OASIS provides.

Changeability. Any participant can be changed without af-
fecting the integration as long as the changes do not
affect any of the interfaces provided by OASIS.

Localization. Maintaining the participants is made easier
through the separation of concerns that exists among
them. Any implementation problem in a participant
remains localized unless it affects either the conceptual
or operational interfaces offered by OASIS.

OASIS provides a conceptual interface (the domain on-
tology) and operational interfaces (conceptual transaction
adapters) to each participant that facilitate integration with-
out revealing the details of their implementation.

This work was supported by Natural Sciences and Engi-
neering Research Council of Canada. We thank the anony-
mous referees for their helpful and useful suggestions for
improving the original paper, and apologize that the restric-
tions on a short paper make it difficult to act on them in any
meaningful way.

References

[1] J. Ebert, B. Kullbach, and A. Winter. “GraX — An Inter-
change Format for Reengineering Tools”. In Proceedings of

WCRE’99, pages 89-98, 1999.
[2] G. Y. Guo, J. M. Atlee, and R. Kazman. “A Software Ar-

chitecture Reconstruction Method”. In Software Architecture,

pages 15-33. Kluwer Academic Publisher, February 1999.
[3] D. Jin, J. R. Cordy, and T. R. Dean. ‘“Transparent Reverse

Engineering Tool Integration Using a Conceptual Transaction
Adapter”. In Proceedings of the 7th European Conference
on Software Maintenance and Reengineering (CSMR 2003),

pages 399-408, Benevento, Italy, March 2003.

[4] T. C. Lethbridge. Requirements and Proposal for a
Software Information Exchange Format (SIEF) Stan-
dard. Draft Manuscript, November 21 1998. URL:
http://www.site.uottawa.ca/~tcl/papers/
sief/standardProposal.html.

[5] S. Perelgut. “The Case for a Single Data Exchange Format”.
In Proceedings of WCRE’00, Nov. 2000.

[6] S. Woods, L. O’Brien, T. Lin, K. Gallagher, and A. Quilici.
“An Architecture For Interoperable Program Understanding
Tools”. In Proceedings of the 6th International Workshop
on Program Comprehension (IWPC’98), pages 54-63, Ischia,
Italy, June 1998.

