
Evaluation of UML-RT and Papyrus-RT for
Modelling Self-Adaptive Systems

Nafiseh Kahani, Nicolas Hili, James R. Cordy, Juergen Dingel
School of Computing, Queen’s University

Kingston, Ontario, Canada
Email: {kahani, hili, cordy, dingel}@cs.queensu.ca

Abstract—This paper is an evaluation of UML for Real-Time

(UML-RT) for modelling Self-Adaptive Software (SAS) systems.

Using a systematic review of the different features of UML-RT

(optional capsules, SAP/SPP communication, hierarchical state

machines, etc.), we analyse the suitability of the language for

modelling structural and behavioural adaptations at design- and

run-time. We evaluate these features in the context of their

current state of support in Papyrus-RT, an Eclipse-based MDE

tool for UML-RT recently developed by the Eclipse PolarSys

Working Group. The use of UML-RT and Eclipse Papyrus for

Real-Time (Papyrus-RT) for different kinds of adaptation is

demonstrated using two real-time system case studies.

I. INTRODUCTION

Self-adaptation mechanisms [1], [2] play a central role when
designing Distributed Real-time Systems (DRTSs), specifically
in critical areas such as automotive or telecommunication,
where systems are subject to rapid changes in their surround-
ing environment or rapid evolution of their requirements. This
requires support for automatic reconfiguration of systems at
run-time in order to adapt them to changes in their context.
To support adaptability at run-time, a Self-Adaptive Software
(SAS) system requires a set of properties called self-* proper-
ties [1], [3], [4], used to specify the degree of adaptability that
the system requires. Examples of these properties are “self-
configuring” which deals with automatically reconfiguring
the system in response to changes, and “self-optimizing/self-
adjusting” which deals with automatically tuning system per-
formance in response to changes in load.

In SAS systems, highly dynamic environments are com-
plicated to specify, develop, validate, and to verify. More-
over, when the number of configurations an adaptive system
can adopt is large, the adaptive system often becomes too
complex to be specified and verified directly. In this case,
Model-Driven Engineering (MDE) techniques can be applied
to manage the increased design complexity posed by the
adaptation process and increase reliability. MDE is a model-
centric framework that uses models as the primary artifacts
in the software development process [5], [6]. Models of a
system can be used at both design-time and run-time to provide
an abstract, precise and unambiguous representation of the
system. Models can help to model the adaptation behaviour of
systems independently of the functional behaviour. This can
reduce intertwining of adaptive and non-adaptive behaviour,
which can significantly decrease the complexity of specifying
the adaptation scenarios. In addition, the models can be

analyzed before the actual functionality is implemented. This
allows discovery of design flaws and inconsistencies in system
specifications early in the software development cycle. Thus
errors can be corrected more easily and at lower cost, and
important issue for safety-critical applications.

Despite a strong interest in modelling SAS systems for real-
time, few evaluations of modelling languages exist to assess
their suitability for providing an appropriate set of concepts for
modelling adaptations. Consequently, it falls to the end-user
to evaluate and compare different modelling solutions.

In this work, we evaluate the suitability of UML for Real-
Time (UML-RT) for modelling SAS systems. We explore
the basic and advanced features of UML-RT suitable for
modelling structural and behavioural adaptations. Each feature
is evaluated with respect to the different adaptations it can
cover at design- and run-time. In addition, we relate these
features to their current state of support in Papyrus-RT, an
Eclipse/Papyrus based development environment for UML-RT.

Paper structure: The rest of this paper is structured as
follows: Section II presents the state of the art in self-
adaptation and introduces UML-RT. Sections III to V evaluate
the suitability of UML-RT and Papyrus-RT for modelling
adaptations and discusses current limitations. Section VI de-
tails related work, and Section VII concludes.

II. BACKGROUND

A. Self-adaptive Systems
In many real-time systems, a software or hardware compo-

nent failure could cause injury, financial loss, system thrashing
problems, or environmental impact. Self-adaptivity can help
these systems react to changing environmental conditions or
recover from system failures during execution. Self-adaptation
is often designed and implemented using a closed-loop with
feedback from the system and environment (i.e., the part of
the external world with which the system interacts [2]) [7].
In autonomic computing, this control loop is called MAPE-K,
and includes monitoring, analyzing, planning, and executing
functions [3]. All phases of the control loop access a shared
knowledge model of the managed system, its goals and en-
vironment. Monitoring is responsible for collecting relevant
information about the status of the system and its surrounding
environment. Analyzing is responsible for evaluating the col-
lected data and checks for violations of requirements. In the
case of a violation, the planning function triggers plans for



strategy adaptation that are executed by the executing function.
The following focuses on the different kinds of adaptations that
are possible to execute during the executing function.

TABLE I
TAXONOMY OF ADAPTATIONS

Structural

Static Component Create / remove / update

Connector Create / remove / update

Dynamic Component Create / remove / update

Connector Create / remove / update

Behavioural

Static Component Behaviour adaptation

Connector Behaviour adaptation

Dynamic Component Behaviour reconfiguration

Connector Message re-routing

Table I shows a taxonomy of adaptations that are relevant
to modelling real-time systems. Adaptations can be structural,
behavioural, or a combination of the two [8]. Structural
adaptation aims to adapt system behaviour by changing the
system’s architecture or environmental constraints. Structural
SAS systems support fundamental operations such as adding,
deleting, and updating new or existing components and their
interconnections [9].

Behavioural adaptation focuses on changes to the func-
tionality or interaction of the computational entities. Because
establishing a taxonomy of all possible behavioural adaptations
may be difficult and the range of formalisms to express be-
haviour (e.g., code, discrete models, equation-based systems)
is wide, we will narrow our study to modelling behaviour using
transition systems for the purposes of this paper. Transition
systems can be used to represent system behaviour in terms
of states and transitions. One of the most widely used state
transition formalisms is Harel’s Statecharts [10].

Different techniques exist for adapting the system be-
haviour. Run-time reconfiguration is a fundamental concept
inspired by programming techniques such as aspect-oriented
programming, “monkey patching” techniques in JavaScript /
Python, and bytecode manipulation. It consists of modifying
the behaviour of the system in response to requirement or en-
vironmental changes that were not expected when the system
was initially designed. One relevant work introducing run-time
reconfiguration capabilities is the use of traits in MDE [11].

To further refine the classification in Table I, we differen-
tiate between static and dynamic adaptation: static adaptation
allows reconfiguation of the system during deployment or code
generation, whereas dynamic adaptation supports reconfigura-
tion at run-time.

B. UML for Real-Time
UML-RT [12], [13] is a profile for UML specifically de-

signed for modelling real-time systems with soft real-time con-
straints. It has its roots in the definition of Real-time Object-
Oriented Modeling (ROOM) [14], a domain-specific language

for the development of real-time systems, initially adopted by
ObjecTime [15]. UML-RT has a long and successful track
record of application and tool support in, for example, IBM
Rational RoseRT, IBM RSA-RTE [16], and more recently
Papyrus-RT [17].

UML-RT features a rather small set of concepts. The main
concept is the capsule, an active class which owns a state
machine and can exchange messages through its ports. Ports
are typed with protocols, a formal definition of the incoming
and outgoing messages a capsule can send or receive. Ports can
be connected through connectors if their ports are typed with
the same protocol. In addition, UML-RT provides only two di-
agrams to represent the structural part and the behavioural part
of a system: capsule diagrams representing how capsules are
instantiated and inter-connected, and state machine diagrams
for modelling the behaviour of each capsule.

While the main concepts of UML-RT are rather simple, the
language also features more advanced constructs which make
it a good candidate for modelling SAS systems. Examples of
such constructs include Service Access Point (SAP) and Ser-
vice Provision Point (SPP) ports to dynamically bind service
providers to clients, capsule and state machine inheritance,
optional capsules which are dynamically created and wired at
run-time, and so on. These features allow UML-RT to support
some structural and behavioural adaptations at both design-
and run-time.

III. EVALUATION OF UML-RT
This section presents a systematic review of the UML-RT

features suitable for modelling SAS systems. We illustrate
these features using a running example, a Failover system.

A. Running Example: a Failover System
To assess the suitability of UML-RT for supporting the

different adaptations summarised in Table I, we introduce the
adaptive failover system as a case study. This system involves
a set of server components to handle client requests. It relies
on either passive or active replications [18], two common
strategies for maximizing availability when building real-time
distributed fault-tolerant systems. In passive replication, one
server component works as a master, handling all the client
requests while the backup servers are largely idle. Passive
replication does not create run-time overhead, except for
handshake operations, and for receiving state updates from
the master [19]. In active replication, the clients requests are
multicast and can be served by all service components. In case
of server failure, the remaining servers can continue to provide
the service to the clients, which leads to faster failure recovery.

We use a load-balancing scenario to evaluate the support
of UML-RT for dynamic adaptations. In this scenario, each
server component can only handle a limited number of re-
quests. In that case, the system has to constantly adapt its
available resources by dynamically adding or removing server
components in response to workload changes.

The following discusses the support and the pertinence
of different UML-RT structures for modelling structural and
behavioural adaptations at both design- and run-time.



Failover

backup: Server [5]backup: Server [5] master: Server [1]

pServer: P [1] pServer: ~P [5]

Notation:

C Capsule

c: C [1] Capsule part (aka.
Capsule instance)

p: P [1]

base port

p: ~P [1]

conjugated
port

connector

Fig. 1. Failover Model with Five Backup Servers (Static Replication)

B. Structural Adaptations

Static adaptations are usually well addressed by component-
based modelling languages, including UML-RT. Replication is
supported by the concept of multiplicity, coming from UML.
In UML-RT, a capsule is responsible for the life cycle of
all capsule parts it composes, from their creation to their
destruction. A multiplicity can be defined for a capsule part in
order to instantiate it multiple times. To illustrate this concept,
let us consider the simple UML-RT model in Fig. 1. It shows
a master server connected to five backup servers in order to
balance the client request workload between multiple servers.
Replication is statically defined in the model through the
multiplicity set for the backup capsule part. The port of the
master server has to be replicated as well, and should match
the multiplicity of the connected capsule part. In UML-RT,
replication of either capsule parts or ports is denoted using
graphical duplicates.

UML-RT can also support dynamic replication. The central
concept is the optional capsule. An optional capsule is a
capsule whose incarnation is not statically set in the model.
It can be useful in the load-balancing scenario, where the

Failover

backup: Server [0..n]backup: Server [0..n] master: Server [1]

pServer: P [1] pServer: ~P [n]

Notation: c: C [0..n] Optional
capsule part

Fig. 2. Failover Model with Several Backup Servers (Dynamic Replication)

number of servers to replicate is not known at modelling
time and evolves at run-time according to the workload.
Another important concept is the plug-in capsule. It acts as
a placeholder which can be dynamically imported and shared
by different capsules. However, due to the limited space, this
concept will not be further investigated.

Fig. 2 illustrates how optional capsules are modeled in
UML-RT. It shows one master server connected to up to n
backup servers (with n 2 N>0).

The concept of optional capsules has two limitations. The
maximum number of backup servers n must be statically set
at design-time. In addition, there is no concept of optional
connectors in UML-RT. Instead, UML-RT has a feature for
modelling non-statically wired connectors, normally used for
modelling interfaces between applications and platforms [20].
It is based on two special ports, respectively named SAP and
SPP, which allow for automatically binding capsules at run-
time. In the context of the Failover system, this feature can be
used to support the dynamic load-balancing scenario.

Failover

slave: Server [0..n]slave: Server [0..n] master: Server [1]

pServer: P [1] pServer: ~P [n]

Notation: SPP port (conjugated) SAP port (base)

Fig. 3. UML-RT SAP / SPP communication

Fig. 3 shows how the previous model can be adapted by
using the SAP and SPP ports. SAP and SPP ports are denoted
using the boundary circle notation. No connector is explicitly
defined between them, as the connection is created at run-time.
To make a SAP / SPP connection work, two assertions must
hold: both ports must be typed with the same protocol, and
both must have the same name.

C. Behavioural Adaptations

SAS systems can also involve behavioural adaptations.
UML-RT relies on hierarchical state machines to model a
capsule’s behaviour. UML-RT state machines use a simplified
version of UML state machines [15]. In UML-RT, states can
be composite, containing substates. The hierarchical structure
of state machines is an important feature of UML-RT which
improves the modular development of SAS system behaviours.
In the context of the Failover system, hierarchical states can
be used to structure the behaviour of the server components,
whether they are master or backup servers (cf. Fig. 4). For
example, whenever a failure in the master server occurs, the
system should be able to designate another server to become
the new master.



Server State machine

RunAsServer

RunAsBackup

failure

Running Recovering

recover

Fig. 4. UML-RT Hierarchical State Machine

Another way of implementing behavioural adaptations at
design-time in UML-RT relies on the inheritance mechanism.
Widely used in code-based programming for improving modu-
larity, inheritance is also a key concept in modelling languages.
UML-RT supports inheritance for capsules, protocols, and
state machines. Capsule and protocol inheritance improves
modularity and increase reuse of the structure of the model.
State machine inheritance is used for extending a state ma-
chine or parts of a state machine (such as composite states).
To model the Failover system, inheritance can be used, for
example, for modelling master and backup server capsules as
extensions of an abstract server capsule.

While UML-RT provides reasonable support for static adap-
tation, it lacks any features for dynamic adaptation. Re-routing
of messages is essential whenever a structural adaptation is
triggered, or a component enters a specific state where some
messages are not expected to be received. Let us consider the
following scenario: after a failure is detected, a master server
enters a Failure state where no message from the clients is
expected. Variability introduced by the concurrent nature of
the system may imply that a message is sent by the client
at the precise time the master server enters the state. While
UML-RT can model this adaptation using concurrency control
mechanisms such as defer/recall, it does not provide any easy
and direct way to model the adaptation.

In response to changes in the system requirements or to face
an unexpected situation, reconfiguring the behaviour at run-
time is an interesting adaptation to address. For example, one
could want to reconfigure the behaviour of the RunAsServer
composite state dynamically. Programming languages with
dynamic typing, such as JavaScript or Python, support this
kind of adaptation. To our knowledge, the only application in
MDE environments is the work described in [11]. UML-RT
does not provide any high-level feature to ease this adaptation.

IV. TOOL SUPPORT

Modelling tools influence the ability to represent SAS sys-
tems with respect to the ease with which relevant information
about the run-time environment and state can be collected and
observed. In this section, we discuss the support for various
adaptations provided by Papyrus-RT [15], [17], an open-source
MDE environment for UML-RT, recently developed by the
PolarSys Eclipse Working Group [21]. It allows the generation
of complete, executable code from models and advances the

state-of-art with support for model representation with mixed
graphical/textual notations and an extensible code generator.
Papyrus-RT is based on the Papyrus platform [22], [23] and
was designed to be extensible, allowing users to add, with
relative ease, their own customizations or extensions. Its target
audience is industrial developers who want to build custom
solutions, researchers who want to prototype and evaluate
new techniques, and educators who want to teach students
the strengths and weaknesses of modelling and MDE.

We implemented two different use cases in Papyrus-RT,
respectively covering the scenarios of static replication and
dynamic replication with support for load-balancing1.

A. Static Replication (w/o Load-balancing)
The first use case is a simulator illustrating how clients

and servers communicate via a Failover system that handles
possible failures of the servers and triggers static adaptations.
The top-level capsule is shown in Fig. 5. It consists of a
simulator capsule containing two servers and five clients. The
ENV capsule simulates the environment and keeps track of
the configuration information, such as the replication mode
(active or passive replication) and the list of master servers.
In addition, this capsule is responsible for monitoring possible
failures of the servers and providing to any other capsule the
current running state of the system.

Static replication is represented by the number of clients
connected to the two servers. The multiplicity of the ports
of the different capsules have been set to match the number
of capsule parts connected to them. Communication with the
ENV capsule is implemented using SAP/SPP to dynamically
bind the different ports.

Fig. 6 illustrates how inheritance can be used to define
both the client and the server capsule by inheriting from the
Host capsule. It shows a classical UML class diagram, as
inheritance is not graphically supported by capsule diagrams.
Unfortunately it is not possible to model the state machines
of the Server and Client using inheritance from the Host,

Simulator

server1:Server

server2:Server

Backup

Backup

Server1Communication

client:Client[5]

Server2Communication

ConfigCommunication[7]

ENV

[5]

[5]

Fig. 5. Simulator Capsule

1The two use cases are available here: https://bitbucket.org/kahani/
umlrt-self-adaptation-usecases



Fig. 6. Host Class Diagram

since Papyrus-RT does not yet support behavioural inheritance
(although that support is planned for future versions).

Fig. 7 shows the behaviour of the server capsule. It consists
of two main states, where the server can run as either a master
or a backup server. A failure state simulates the failure of the
master server and is reached after a certain time is randomly
computed. When the server recovers from a failure, it may
restart as either a master or a backup server, depending on the
replication mode and other parameters. The tasks of a master
server and a backup server are different. The master server is
required to update its state by sending two kinds of messages:
IAmAlive (sent to the backup servers), and IAmMaster (sent to
the environment capsule). If it fails in sending these messages,
its execution is considered to have failed and a new server
must be ranked up. It is also responsible for receiving and
processing client requests. The backup server is largely idle,
waiting to be ranked up whenever the master server fails. All
timeouts are randomly calculated to introduce variability in
the execution of the system.

To model the behaviour, we used advanced features of
UML-RT that are supported by Papyrus-RT. For example,
composite states can be used to ease the modelling of the
different behaviours a server may have depending on whether
it is a master or a backup server. For modularity purposes, a
recent feature of Papyrus-RT creates a state machine diagram
per composite state in order to describe its internal structure2.

Standby timeout/...
Request/...
timeout/...

TryBeMaster

Failure

RunAsMaster

RunAsBackup

KeepAliveMsg

PurgeOtherMsgs

Initial

Initial

ReturntoBackup

ReturntoBackup

Backup

NoKeepAlive

CheckConfiguration

ReturnToMaster RecoveryActiveMode

ExitPoint

EntryPoint

PassiveMode

ServerFailureBeMaster

BeMaster

CheckNoMaster

MasterRecoverd

BeBackup

Fig. 7. Server State Machine Diagram

2For the sake of simplicity, Fig. 7 shows sub-vertices of the Backup
composite state directly embedded in the state machine diagram.

Fig. 8. Adapative Server Capsule Diagram

Papyrus-RT supports the defer/recall concurrency control
mechanism, and Fig. 7 also shows another workaround that
has been used to model message deferring. The Failure state
owns a self-transition to catch all the messages coming from
a specified port in order to execute an exception routine.

B. Dynamic Replication (with Load-Balancing)
The second use case demonstrates the suitability of Papyrus-

RT for modelling run-time adaptations. It simulates a Failover
system allocating servers dynamically in order to load-balance
a changing workload. Fig. 8 shows its structure. It consists of
an AdaptiveServer capsule responsible for adding or removing
servers at run-time in response to workload change. A second
capsule3 simulates the generation of a workload that may
change over time. The internal structure of the adaptive server
consists a list of servers whose the maximum number of
allowed replications has been set to 50. The server capsule
part is optional, meaning that incarnation and destruction of
its instances are delegated to its containing capsule at run-time.

Papyrus-RT provides a fine-grained control of the incarna-
tion and the destruction of optional capsules in the model
through the use of the Frame protocol. It is a specific service
provided by the RTS library, which manages the execution of
the system. It provides two system methods: incarnate in
order to manipulate the creation and binding of an optional
capsule and destroy for its destruction. To be used, a
frame service port has to be instantiated into the containing
capsule. In addition, the Papyrus-RT RTS library implements
an abstract protocol called UMLRTBaseCommProtocol, from
which all user-defined protocols implicitly inherit. It consists
of two messages, respectively rtBound and rtUnbound,
sent whenever a connector between two capsule parts is
created or destroyed. These messages can be used to instantiate
and destroy servers.

V. DISCUSSION

Table II summarises the suitability of UML-RT and
Papyrus-RT for modeling SAS systems. Both the language and
the tool provide reasonable support for modeling behavioural
and structural adaptations of SAS systems at design-time and
run-time. However, there are some limitations that still need
to be addressed. The following summarises them.

3Not represented in Fig. 8.



TABLE II
SUMMARY OF ADAPTATIONS SUPPORTED BY UML-RT AND PAPYRUS-RT

Adaptation UML-RT Structure Papyrus-RT Support

Structural

Static Component Replication Supported by the Run-Time Service (RTS) libraryConnector

Dynamic Component Optional capsule Frame service port
Connector SAP / SPP Communication SAP / SPP service ports

Behavioural

Static Component Hierarchical state machines ; State machine inheritance Graphical notation ; Partial support of inheritance
Connector Protocol inheritance Partial support

Dynamic Component No support No support
Connector No support ; some workarounds exist Defer/recall mechanisms

Although the process of adding and removing new/existing
capsules and their connectors is pretty straightforward, it
suffers from some drawbacks. Connectors alone cannot be
updated in order to re-configure the system at run-time. This
scenario is encountered when the master server fails, requiring
another server to replace it. Messages from the client have
therefore to be re-routed to the new master server. In our first
use case, we statically connected the client capsule to each
server and the environment capsule provided the current con-
figuration to the client. A feature could support to dynamically
connect components satisfying certain properties. In addition,
the Frame service is limited to the incarnation and destruction
of optional capsule parts and could not be used for e.g., adding
parts or attributes that were not conceived at design-time.

A related issue is the lack of message routing support.
The RTS library does not provide a service to block ports.
Therefore, other capsules can send messages to ports that
remain opened. For example, in our first use case, ports of
the slave server should be closed for preventing clients from
sending messages to them. In this case, the server is not able to
process and respond to the requests, which leads to discarding
the messages. This scenario is not acceptable in many of real-
time systems such as communication systems. A workaround
has been shown, but their is no automatic support to do it.

While the present work focuses on adaptations that can be
done during the Executing phase, it is worth mentionning that
Papyrus-RT lacks support for implementing the other phases.
For example, the possibility of extracting valuable information
of the capsule running state during the Monitoring phase
(e.g., the message queue load factor) is missing. It required
us to manually implement an adaptivity layer responsible for
triggering the different adaptations. This layer was designed
based on run-time information collected from the different
capsules to make adaptation decisions possible.

VI. RELATED WORK

The evaluation of several aspects of modelling languages,
such as MechatronicUML [24], for modelling of SAS systems
has been studied over the years. We are the first, to the best of
our knowledge, to study the effectiveness of different UML-
RT features in modelling of SAS systems. In this section, we
discuss the most relevant related work.

The MechatronicUML modelling language, which adopts
concepts of the UML, has been used in several publica-
tions [25], [26]. MechatronicUML supports the development
of structural and behavioural aspects of mechatronic software.
It adapts a component-based approach to software structure
and changes, and uses real-time statecharts, which are a
combination of UML state machines and timed automata, for
the specification of the components’ behaviour [24]. Mecha-
tronicUML uses graph transformation rules represented by
story patterns to formally describe behavioural adaptations. It
provides features, such as continuous ports and dynamic port
addition/removal not supported by UML-RT.

Matlab/Simulink and Stateflow are other modelling lan-
guages that have been used to address the modelling of SAS
systems. A Simulink model is a hierarchical representation
of the system design using a set of blocks interconnected
by lines. Simulink blocks allow specification of continu-
ous behaviour [27], which is not supported by Papyrus-
RT. However, message-pools or buffers are not supported
in Stateflow [24]. Trapp [28] has used Matlab/Simulink to
model behavioral adaptation of automotive systems. Based on
architecture, adaptation, and functional models, they generate
an integrated Simulink model including the functionality and
the adaptation behaviour. In another work, Bartosinski [29]
uses Matlab/Simulink for modelling, visualization, and debug-
ging of a self-adaptive computing networked entity (SANE).
Mars (Methodologies and Architectures for Runtime Adaptive
Systems) is another domain-specific modelling language [28]
that can be employed to model adaptation behaviour (e.g.,
used by the approaches such as [28], [30]). For example,
Schaefer [30] proposes an integration framework for behav-
ioral adaptation as a semantics-based backend for MARS for
model-based verification of adaptive embedded systems. Other
approaches, such as HyROOM/HyCharts [31], Masaccio [32],
and Charon [33], can also model complex systems using
statecharts. A survey of these approaches used for developing
software-intensive systems can be found in [27].

Other implementations of UML-RT exist: IBM Rational
Software Architect RealTime Edition (RSA-RTE) [16] and
IBM Rational RoseRT [34] can both be used to model
SAS systems. Both tools support different features, such
as behavioural inheritance. Other modelling tools, such as



AutoFOCUS [35] and Modelica [36] can be used to specify
and model SAS systems. For example, Autofocus mechanisms,
such as system structure diagrams can be used to model system
structure, and state transition diagrams to model the behaviour
of system components.

VII. CONCLUSION

This paper is an evaluation of UML-RT for modelling SAS
systems. It proposes a classification of the different structural
and behavioural adaptations that are relevant at design- and
run-time for modelling real-time systems. For each adaptation,
different UML-RT concepts and their support in Papyrus-
RT were reviewed in order to assess their suitability for
modelling the adaptation. The evaluation showed that UML-
RT provides a reasonable set of features for addressing most
of the adaptations, while some limitations of UML-RT and
its supporting tools still exist, specially for modelling of
behavioural adaptations.

The two use cases we implemented also showed that the
Papyrus-RT RTS library lacks support for implementing the
different phases of the control loop usually implemented for
monitoring and triggering the different adaptations of SAS
systems. Future work we are investigating includes formalising
and implementing such control loops in Papyrus-RT.

ACKNOWLEDGMENTS

This work is supported by Ericsson Canada, EfficiOS, and
the Natural Sciences and Engineering Research Council of
Canada (NSERC).

REFERENCES

[1] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems (TAAS), vol. 4, no. 2, p. 14, 2009.

[2] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Ander-
sson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. D. M. Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,
H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. A.
Muller, D. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle,
“software engineering for self-adaptive systems: A research roadmap,”
(Eds.): Self-Adaptive Systemsed, pp. 1–26, 2009.

[3] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[4] Ö. Babaoglu, M. Jelasity, A. Montresor, C. Fetzer, S. Leonardi,
P. Moorsel, and V. M. Steen, “Self-star properties in complex informa-
tion systems: Conceptual and practical foundations,” in Lecture Notes
in Computer Science, 2005.

[5] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in 2007 Future of Software Engineering.
IEEE Computer Society, 2007, pp. 37–54.

[6] N. Kahani and J. R. Cordy, “Comparison and evaluation of model
transformation tools,” in Technical Report 2015-627, 2015, pp. 1–42.

[7] IBM, “An architectural blueprint for autonomic computing,” in White
paper, 2006.

[8] C. Hofmeister, “Dynamic reconfiguration,” Ph.D. dissertation, Univ. of
Maryland, College Park, 1993.

[9] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger, “A survey
of self-management in dynamic software architecture specifications,”
in Proceedings of the 1st ACM SIGSOFT workshop on Self-managed
systems, 2004, pp. 28–33.

[10] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of computer programming, vol. 8, no. 3, pp. 231–274, 1987.

[11] V. Abdelzad and T. C. Lethbridge, “Promoting traits into model-driven
development,” Software & Systems Modeling, pp. 1–21, 2015.

[12] B. Selic, “Using UML for modeling complex real-time systems,” in
Workshop on Languages, Compilers, and Tools for Embedded Systems
(LCTES’98), 1998, pp. 250–260.

[13] E. Posse and J. Dingel, “An Executable Formal Semantics for
UML-RT,” Software & Systems Modeling, vol. 15, no. 1, pp. 179–217,
2016. [Online]. Available: http://dx.doi.org/10.1007/s10270-014-0399-z

[14] B. Selic, G. Gullekson, and P. T. Ward, Real-time object-oriented
modeling. John Wiley & Sons New York, 1994, vol. 2.

[15] E. Posse, “PapyrusRT: modelling and code generation,” in Workshop on
Open Source for Model Driven Engineering (OSS4MDE’15), 2015.

[16] IBM, “IBM Rational Software Architect RealTime Edition, v9.5.0
Product Documentation,” 2015.

[17] “Papyrus for real time (Papyrus-RT),” https://www.eclipse.org/
papyrus-rt, accessed: 2016-03-10.

[18] R. Guerraoui and A. Schiper, “Software-based replication for fault
tolerance,” IEEE, vol. 30, no. 4, pp. 68–74, 1997.

[19] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale, C. Gill, and D. C.
Schmidt, “Adaptive failover for real-time middleware with passive
replication,” in Real-Time and Embedded Technology and Applications
Symposium, 2009, pp. 118–127.

[20] B. Selic, “Accounting for platform effects in the design of real-time
software using model-based methods,” IBM Systems Journal, vol. 47,
no. 2, pp. 309–320, 2008.

[21] “PolarSys Working Group Homepage,” https://www.polarsys.org/, ac-
cessed: 2017-01-20.

[22] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha, S. Gerard, P. Tessier,
R. Schnekenburger, H. Dubois, and F. Terrier, “Papyrus UML: an open
source toolset for MDA,” in Fifth European Conference on Model-
Driven Architecture Foundations and Applications (ECMDA-FA’09),
2009, pp. 1–4.

[23] F. Bordeleau and E. Fiallos, “Model-based engineering: A new era based
on papyrus and open source tooling,” in OSS4MDE@ MoDELS, 2014,
pp. 2–8.

[24] S. Becker, S. Dziwok, C. Gerking, C. Heinzemann, S. Thiele,
W. Schäfer, M. Meyer, U. Pohlmann, C. Priesterjahn, and M. Tichy, “The
MechatronicUML design method-process and language for platform-
independent modeling,” in Technical Repeport tr-ri-14-337, 2014.

[25] C. Heinzemann, J. Rieke, and W. Schäfer, “Simulating self-adaptive
component-based systems using matlab/simulink,” in SASO, 2013, pp.
71–80.

[26] S. Becker, S. Dziwok, C. Gerking, C. Heinzemann, W. Schfer, M. Meyer,
and U. Pohlmann, “The MechatronicUML method: model-driven soft-
ware engineering of self-adaptive mechatronic systems,” in In Com-
panion Proceedings of the 36th International Conference on Software
Engineering, May 2014, pp. 614–615.

[27] H. Giese and S. Henkler, “A survey of approaches for the visual model-
driven development of next generation software-intensive systems,”
Journal of Visual Languages and Computing, vol. 17, no. 6, pp. 528–
550, 2006.

[28] M. Trapp, R. Adler, M. Förster, and J. Junger, “Runtime adaptation in
safety-critical automotive systems,” in Software Engineering, 2007, pp.
1–8.

[29] R. Bartosinski, M. Danek, P. Honzk, and J. Kadlec, “Modelling self-
adaptive networked entities in matlab/simulink,” in Technical Computing
Prague, 2007, pp. 1–8.

[30] I. Schaefer and A. Poetzsch-Heffter, “Compositional reasoning in model-
based verification of adaptive embedded systems,” in IEEE International
Conference on Software Engineering and Formal Methods, 2008, pp.
95–104.

[31] T. Stauner, A. Pretschner, and I. Péter, “Approaching a discrete-
continuous uml: tool support and formalization,” in Proceedings of the
UML2001 Workshop on Practical UML-Based Rigorous Development
MethodsCountering or Integrating the eXtremists, 2001, pp. 242–257.

[32] T. Henzinger, “Masaccio: a formal model for embedded components,” in
Proceedings of the First IFIP International Conference on Theoretical
Computer Science (TCS), 2000, pp. 549–563.

[33] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar,
I. Lee, P. Mishra, G. Pappas, and O. Sokolsky, “Hierarchical hybrid
modeling of embedded systems,” in First Workshop on Embedded
Software, 2001.

[34] “IBM Rational RoseRT,” http://www-01.ibm.com/support/docview.wss?
uid=swg24016586, accessed: 2017-01-20.

[35] “AutoFOCUS,” http://af3.fortiss.org, accessed: 2017-01-20.
[36] “Modelica,” https://www.modelica.org, accessed: 2017-01-20.


