
Enhancing Security Using Legality Assertions

Lei Wang, James R. Cordy, Thomas R. Dean
School of Computing

Queen's University, Kingston, ON, Canada
{wanglei, cordy, dean} @cs.queensu.ca

Abstract

Buffer overflows have been the most common form of
security vulnerability in the past decade. A number of
techniques have been proposed to address such attacks.
Some are limited to protecting the return address on the
stack; others are more general, but have undesirable
properties such as large overhead and false warnings.
The approach described in this paper uses legality as-
sertions, source code assertions inserted before each
subscript and pointer dereference that explicitly check
that the referencing expression actually specifies a loca-
tion within the array or object pointed at run time. A
transformation system is developed to analyze a pro-
gram and annotate it with appropriate assertions auto-
matically. This approach detects buffer vulnerabilities
in both stack and heap memory as well as potential
buffer overflows in library functions. Runtime checking
through using automatically inferred assertions consid-
erably enhances the accuracy and efficiency of buffer
overflow detection. A number of example buffer over-
flow-exploiting C programs are used to demonstrate the
effectiveness of this approach.

1. Introduction

 With the combined nature of both high-level and
assembly languages, C is a popular programming lan-
guage widely used for software development, especially
systems programming. While it provides programmers
with the potential to accomplish tasks with flexibility
and efficiency, the absence of run-time error checking
poses some difficulty in programming and calls for care
and responsibility on the part of programmers. One of
the run-time error checks that C does not perform is
bounds checking, which has led to the notorious buffer
overflow problem.
 Buffer overflows have been the most common form
of security vulnerability in the past decade [1]. A com-
mon example is the remote network penetration vulner-
ability [15] where an anonymous Internet user exploits
buffer overflows to gain partial or total control of a host.

Since buffer overflows provide an easy way for attack-
ers to inject and execute malicious code, buffer over-
flow attacks constitute a substantial portion of all secu-
rity attacks. For instance, 9 of 13 CERT advisories from
1998 involved buffer overflows [1] and in 1999, they
accounted for at least 50% of advisories issued by
CERT [2]. Several papers presenting reverse engineer-
ing and transformations that relate to security have been
presented at recent WCRE conferences [22,24,25,26,27].
 Considerable research has been conducted to investi-
gate the buffer overflows and seek solutions to detect
and prevent them [3,4,5,6,7,8,9,10,11,12,22,30]. How-
ever, these solutions attack the problem from different
perspectives and are usually effective only against cer-
tain kinds of attacks and vulnerabilities. Some ap-
proaches also suffer from significant performance pen-
alties or imprecision.
 In this paper, we propose to use legality assertions
[13] to enhance the security of C programs. Legality
assertions implement dynamic checking of restrictions
on legal programs written in a certain language. They
are most suited in cases where some conditions are dif-
ficult to check statically. Legality assertions were origi-
nally used by the Euclid compiler to check if source
programs obey the semantic restrictions of the Euclid
language [13]. In our approach, they are used as anno-
tations on the source program to check if array indices
and pointers are in the legitimate range.
 We have developed a transformation system using
TXL [14] to automatically insert legality assertions in
the source program where array elements are accessed
or pointers are dereferenced. Valid ranges of buffers are
dynamically maintained in additional integer variables.
In each assertion, an array subscript or pointer derefer-
ence is checked against its valid range at the particular
point in the program execution. This approach has sev-
eral advantages: (1) Legality assertions are annotated in
the source program automatically. (2) It does not change
the original representation of arrays and pointers and
also detects the potential buffer overflows in library
functions without any modification to their representa-
tion. (3) It provides protection against a wide range of

attacks, including both stack and heap smashing exploits.
(4) Since the assertions check buffer range at run time,
checking is more accurate and there are no false warn-
ings.
 The remainder of this paper is organized as follows.
Section 2 gives some background and introduces related
research. Section 3 presents our legality assertions for
buffers in C programs. Section 4 describes our trans-
formation process using simple examples. Section 5
describes our early experiments with the transformation
system. Finally, Sections 6 and 7 discuss future work
and conclusions.

2. Background and Related Research

 This section introduces the notion of legality asser-
tions, and the source transformation tool TXL that we
use in our research. We examine the nature of buffer
overflows in C and review related research in buffer
overflow security.

2.1 Legality Assertions

 A legality assertion, by definition, is “a Boolean ex-
pression that has the value true if a specific restriction
is met when the assertion is executed” [13]. Legality
assertions implement dynamic checking of language
restrictions in legal programs and is used in cases where
some conditions are difficult or impossible to check
statically. Legality assertions, originally generated by
the Euclid compiler, are based on the semantic restric-
tions of the language and are used to check language
restrictions on values of non-manifest (run-time) con-
stants, integer subranges, overflow in arithmetic expres-
sions, boolean expressions, expressions in non-
statement contexts (e.g. conditional expressions in if
statement), assignment statements, array and collection
(pointer) indices and parameter values. In our approach,
we use assertions to check the legality of array indices
and pointer dereferences. For example, Figure 1 shows
the legality assertion for an array index in a C program.

Figure 1. An example C program with assertion

2.2 Source Transformation using TXL

 TXL [14] is a programming language designed to
support software transformation tasks. It combines fea-
tures of both functional and rule-based programming,
and supports unification, implied iteration and deep

pattern match. A TXL program consists of two parts: a
context-free, possibly ambiguous grammar describing
the syntactic structure of the artifacts to be transformed,
and a set of by-example formal transformation rules that
use pattern-replacement pairs to describe the desired
transformations. TXL has been used in a range of ap-
plications from design recovery to artificial intelligence,
in both academic and industrial contexts [14].
 In our project, source transformations in TXL are
used to implement a static analysis of arrays and point-
ers in the C source code and to generate the augmenta-
tion of the source code with appropriate legality asser-
tions.

2.3 Buffer overflows

 A buffer is a contiguous allocated region of memory,
such as an array in C. Since C provides the programmer
with direct low-level memory access and pointer arith-
metic without automatic bounds checking, a user can
potentially write beyond the allocated memory for the
buffer, which may result in unexpected behavior. Figure
2 depicts the general arrangement of the stack when a C
function is called. In general, the stack grows downward
(towards lower memory addresses) from right to left.

 ← Stack growth
 Locals FP RA Parameters

Data growth →
Figure 2. Stack frame for a C function call

 In the case of a buffer overflow, when a fixed-sized
memory allocation is used to store a variable-sized data
entry in a local variable, the space allocated for the
saved frame pointer (FP, the base address for local stor-
age) and the return address (RA, the code address for
the function to return to) can possibly be overwritten,
which in turn can alter the program’s execution path to
execute malicious code input to the buffer [16]. A simi-
lar (but more complex) situation can occur on the heap,
which may corrupt data on the heap to point to mali-
cious code from a saved exception handler or function
address [17].
 In addition, the standard C library itself provides
many unsafe functions that can write an unbounded
amount of user input into a fixed-size buffer without
any bounds checking. Examples of such functions in-
clude strcpy, strcat, read, write, fgets and gets.

2.4 Buffer Overflow Defenses

 A number of techniques have been proposed to ad-
dress buffer overflow vulnerabilities. Static analysis
tools such as FlawFinder [3], RATS [4] and ITS4 [5]
attempt to locate potential buffer overflows based on a
lexical analysis of the program. These tools provide a

int main(){
 int x = 3;
 char A[5] = {'1','2','3','4','5'};
 assert ((x+2)>=0 && (x+2)<5);
 A[x+2] = 'j';
}

fast and simple means for programmers to write more
secure code. However, since they only operate on the
lexical level of the program, the information they can
provide is limited and imprecise. The LCLint Extension
[6] and the integer analysis tool developed by Wagner et.
al. [7], offer more advanced functionality. However,
they have been found to generate a large number of
false positives and the LCLint Extension requires pro-
grammers to manually add annotations to the source
programs.
 A more general technique to attack the buffer over-
flow problem is to add bounds checking in C programs
[8, 9, 10, 11, 30]. At run time, extra information is
maintained for every pointer: the address and size of the
object to which it points. Every pointer dereference is
instrumented to use the information to check whether
the current value of the pointer is in bounds; if not, an
error is reported. However, this approach has some
serious drawbacks: It requires a change of data repre-
sentation, which can be unacceptable in many applica-
tions, particularly systems programs and it adds high
runtime overheads.
 StackGuard [12] adds code to a compiled program to
detect attacks on the return address. The advantages of
this approach are that it requires no changes to the
source code and introduces very little overhead; how-
ever, it does not address attacks on other vulnerable
locations such as the heap.
 Gemini [22], a tool presented by Chris Dahn and
Spiros Mancoridis of Drexel University at WCRE 2003,
uses TXL to secure C programs against the run-time
stack buffer overflows by transforming stack allocated
arrays into heap allocated arrays automatically at com-
pile time. This approach eliminates the problem of
stack buffer overflows by repositioning the buffers on
the heap. However, this leaves the program vulnerable
to heap exploits [28].

3. Legality Assertions for Buffers in C

 In this section, we introduce our legality assertions
for arrays and pointers in C. While Euclid was designed
for expressing legality assertions, in C it is a much more
challenging matter. For arrays, legality assertions are
used to check the legal range of array indices. C array
indices are zero-based, i.e. the index of the first element
is 0. Therefore, the legal range for an array index is 0
through size-1. The general form of the legality asser-
tion for an array index is
 assert (index >= a.lowerBound &&

 index < a.upperBound)
The lower bound of an array index in C is always 0 and
the upper bound of an array index is the maximum
number of elements the array can hold.
 A pointer is a variable that holds the memory address

of another object, which we can refer to as the pointee,
which can be referenced through the pointer using
pointer dereferencing. When a pointer is initialized to
the address of a pointee, it is usually assigned the lowest
(starting) memory address of the pointee. Thus, the
legal range for dereferencing through the pointer is be-
tween the lowest and highest memory address of the
pointee. The general form of the legality assertion for a
pointer dereference will therefore be:

assert ((int)p >= p.lowerBound &&
(int)p < p.upperBound)

Since a pointer is simply the numerical value of the ad-
dress of a memory area, to simplify the comparison, we
cast pointers into their corresponding integer values.
Both lower and upper bounds are also integers. Unlike
array boundaries, both the lower and upper bounds need
to be calculated from the pointee. As pointers are most
dangerous when the values they point to are accessed,
legality assertions will be inserted where pointers are
dereferenced usually using the “*” operation.
 Many library functions in C take pointers as parame-
ters and can be dangerous without bounds checking.
Legality assertions can be used to check the state of
buffers to ensure that no overflow will occur while the
function is executed. Since each function takes differ-
ent types and numbers of parameters, it is difficult to
generalize a common assertion which applies to all
functions. In the following, we introduce assertions for
several library functions as a demonstration.

(1) strcpy (char *s1, const char *s2)
 assert((s1.ubound-s1.lbound)>=

 (s2.ubound-s2.lbound));
(2) strcat (char *s1, const char *s2)
 assert((s1.ubound-s1.lbound)>

 strlen(s2)+ strlen(s1));
(3) read/write (int fd, void * buf, unsigned count)
 assert (count <= buf.ubound-buf.lbound);
(4) fgets(char *str, int num, FILE * stream)
 assert((str.ubound-str.lbound)>=num);

4. The Legality Transformation Process

 Our legality assertion transformation process is com-
posed of six phases: Preprocess, Mark up library,
Unique rename, Add assertions, Remove markups and
Unname (shown in Figure 3). GCC is used to preproc-
ess the source code in the first phase. When invoked
with the ‘-E’ flag, GCC resolves preprocessor state-
ments without validating the input as C source code.
The other five phases are all implemented using TXL
[14].

4.1 Preprocess

 C allows programmers to include various instruc-
tions to the compilers in the source code through pre-

processors, such as macros, file inclusion and condi-
tional compilation directives, which will be resolved at
compile time. The use of preprocessors expands the
scope of the C programming environment and enhances
flexibility of the language. However, it also adds com-
plication to source code analysis and transformation in
that precise information may not be obtained unless the
source code is preprocessed. Therefore, source code
normally needs to be preprocessed by the C compiler
before it is analyzed or transformed.
 This is the case for our process also, and we use the
GCC preprocessor as the first step in our process.
However, unlike many analysis and transformation ap-
plications, automated legality assertions must be regen-
erated whenever the program is changed. Thus they are
only of interest to the compiler, and preprocessing be-
fore analysis does not in any way limit or inconvenience
the programmer using our system.

4.2 Markup Library Files

 Because in general we do not have access to internal
system library source, our transformation is mainly in-
terested in programmer-written source code. While
preprocessed code includes both standard files from the
C library and user defined files, the included library
files are separated from other code using markups and
ignored during the transformation. A markup strategy,
similar to that used to specify source code hot spots for
the year 2000 problem [18], was adopted to mark and
ignore the library contents.
 Figure 4 shows an excerpt of preprocessed code.
The code following “# 1 "/usr/include

/bits/sys_errlist.h" 1 3” is included from the
standard library files and the code following “# 2
"exer1.c" 2” is written by the programmer. Any
code following preprocessor statements that contains
“/usr/include” is marked with the XML tag <lib>
</lib>. The markup process begins by finding all the
library preprocessors includes and marking them with
tags, after which the contents between a library preproc-
essor include and the next non-library statement is lo-
cated and marked up.

4.3 Unique Naming C Variables

 Based on C’s namespace and scope rules, identifiers
in different scopes and namespaces may have the same

name. Compilers usually use a scope stack to keep
track of the variables in different scopes and variables
with same names will not be confused with each other.
However, these variables may create ambiguity in static
analysis. For example, it is possible that all of the fol-
lowing components in a C program could use the same
name: structure tags, member variables in different
structures, global variables, local variables, function
parameters.

Figure 4. Example of output of markup phase

 A simple legal C program is shown in Figure 5. In
this program there are seven entities with the same
name a. Item 1 is a global variable. Item 2 is a struc-
ture tag. Items 3 and 4 are members of different struc-
tures. Item 5 is a local variable in main() that will
mask the global variable a. Item 6 is a local variable in
the if statement that will mask Item 5 in the scope of
the if statement. Item 7 is a function parameter and
will also mask the global variable a inside function f().
 To distinguish between these entities, a scope-based
unique naming transformation [19] is used to give each
variable identifier a unique name. Each unique name
consists of the variable name and the name of the scope
where the variable is visible. The scope name is pre-
pended to the original variable name, separated with
“S$”, which is rarely used in C variable names. For

<lib> # 1 "/usr/include/bits/sys_errlist.h" 1 3
</lib>
<lib> # 27 "/usr/include/bits/sys_errlist.h" 3
</lib>
<lib> extern int sys_nerr;
</lib>
<lib> extern __const char* __const sys_errlist[];
</lib>
…
<lib> # 686 "/usr/lib/gcc-lib/i586-mandrake-
linux-gnu/3.2.2/include/stdio.h" 3
</lib>
2 "exer1.c" 2
int main () {
 …
}

int a; //1. global variable
struct a { //2. structure tag
 int aS$a; //3. member in structure a
};
struct b {
 int bS$a; //4. member in structure b
};
int main () {
 int mainS$a =0; //5. local variable
 if (mainS$a < 0){

int main2S$a = 3; //6. local variable
 }
}
void f (int fS$a) { //7. function parameter
}

Figure 5. Example of renaming variables

Source
Code

Annotated
Source
Code Unique

rename
Remove
markup

Prepro-
cess

Markup
library

Insert
assertion

Unname

Figure 3. Transformation process

example, after unique naming, the function parameter a,
Item 7 in Figure 5, becomes fS$a. No scope names are
added to global variables since they are unambiguous
once all other items are uniquely named. To clearly
present the remaining examples, we show the original
names (i.e. not unique names).

4.4 Annotate Program with Legality Assertions

 Now we are ready to do the real work. In this phase,
information about arrays and pointers is collected
through program analysis and for each array or pointer
in the input program, two new limit variables (4 bytes
each on 32 bit machines) are created to store boundary
information. The boundary values are represented as
integers and will be updated whenever the array or
pointer is changed. Legality assertions are inserted in
all places where buffers are accessed. In the assertions,
the corresponding limit variables are used for boundary
checking.

4.4.1 Annotation for Arrays. Adding assertions to
array indices uses several steps:
 (1) Add missing array sizes. The limit for an array
index is between 0 and the size of the array. The size of
an array can usually be obtained from the array declara-
tion, where the size is given in square brackets ([]).
However, C allows the size of an initialized array to be
calculated from the number of initializers. Therefore, a
normalization transformation is required to change the
implicitly sized arrays into arrays with an explicit size
by inserting the size in the square brackets ([]). If it is
a character array, the size is the length of the string plus
one more character for the null byte at the end of the

string. Figure 6 shows a transformation rule to add
missing array size in declarations as well as the input
and output of this transformation rule.
 (2) Add limit variable declarations to arrays. For
each array, two new integer variables are created to
store the lower and upper bound of the array. The lower
bound is initialized to 0 and the upper bound to the size
of the array as given in the declaration. The new vari-
able names take the form of “arrayName$lower” and
“arrayName$upper”, so as to be distinguished from
other variables. For external array variables, the bound-
ary variables are declared as external without initializa-
tion. Values will be set in the file where they are defined
and initialized.
 (3) Add limit variable declarations to arrays in
structures. The transformation in this step addresses
arrays inside structure declarations. Similarly to the
transformation in the previous step, boundary variables
are added immediately after the array declaration in the
structure. However, they will not be initialized until an
instance of the structure is declared, since no initializa-
tion is allowed inside the structure declaration. Figure 7
shows transformation steps (2) and (3).

Figure 7. Add limit variables to arrays

 (4) Create temporary variables to store array
subscripts. Legality assertions for arrays are added in
places where an array is indexed. An array index can be
a constant, such as A[2], an expression, such as
A[x+1], A[x++], or even a function call A[f(x)]. If
the whole subscript expression is used in the assertion,
for example, “assert ((x++)>=0 &&

(x++)<A$upper));”, the value of x will be incre-
mented two times. The same thing happens if a function
call f(x) used as index has some side-effects. There-
fore, to preserve the semantics of the input program, a
new variable is created for each array subscript to hold
the value of the subscript expression and the index is
replaced by the new variable. The names of generated
index variables are all in the form of “i$N”, where N is
a unique number.
 The assignment statement to set the index variable is
inserted just before the statement where the index ap-
pears. Due to the complexity of statement types, differ-
ent rules have been composed to match the different
patterns of if, for, while, do-while and switch
statements. A simple optimization is performed at this
step. If a subscript is a constant and is in the valid range,
no new variable will be created for it and no legality

int A [5] = {1, 2, 3, 4, 5};
int A$lower = 0; int A$upper = 5;
struct S {
 int C [5];
 int C$lower; int C$upper;
};

Transformation rule:
rule addSubscripts
 skipping [markup]
 replace [init_declarator]
 RP [repeat ptr_operator] var [id]
 DE [declarator_extension]

rest [repeat declarator_extension]
 IN [opt initialization]
 deconstruct DE
 '[']
 deconstruct * [list

designated_initializer] IN
 L [list designated_initializer]
 construct N [number]
 _ [length L]
 construct newDE [declarator_extension]
 '[N ']
 by RP var newDE rest IN
end rule

Input: int A[] = {1,2,3,4,5};

Output: int A[5] = {1,2,3,4,5};

Figure 6. Add missing array size in declaration

assertions will be generated in the end.
 (5) Create declarations for temporary index vari-
ables. Since new variables are introduced to hold index
values, declarations for these new variables need to be
added to the program. This transformation step finds all
the new index variables in each scope, creates declara-
tions and places them at the beginning of the scope,
before the original declarations.
 (6) Add assertions to array indices. Finally we are
ready to generate the legality assertions themselves. In
this step, the transformation system finds each array
index in program statements and generates and inserts
the actual assertions in the appropriate places. For ex-
ample, assertions appear immediately before each sim-
ple statement that contains array indices (see Figure 8).
For if and switch statements, the transformation must
ensure that the assertions for array indices appearing in
the conditional expressions are placed before the entire
statements. However, in for and while statements, the
assertions to arrays in conditional expressions must be
placed before the statement and repeated inside the loop
so that the indices will be checked in each cycle of the
loop. In a do statement, the assertions for conditional
expression are only needed inside the loop. Figure 8
shows the entire transformation output for arrays of an
example program.

Figure 8. Assertions to array indices

4.4.2 Annotation for Pointers. In the legality assertion
for a pointer dereference, the pointer expression is
checked against its valid boundaries. As before, code

for maintaining runtime boundaries is generated through
static analysis. Similarly to array bounds, two limit
variables are created for each pointer to store the valid
pointer range. The limit variable names are the pointer
name suffixed with “$lower” and “$upper”. The limit
variables are initialized according to the initial value of
the pointer and updated whenever the value of the
pointer changes.
 Assertions for pointers are inserted in places where a
pointer is dereferenced. In the assertion, the integer
value of the pointer is checked against its limit variables,
which provides the latest valid range for this particular
pointer. Since pointers are widely used, the transforma-
tion process is much more complicated than for arrays.
Steps for transforming pointers are as follows.
 (1) Create limit variables for each pointer. Limit
variables are created for each pointer. If the pointer is
initialized, the limit variables are initialized accordingly.
For pointers in structures, only the limit variable decla-
rations are inserted. The following examples show
some cases of pointer initialization, for which the limit
variables are initialized in different ways.

1) A pointer declared with no initialization. The
limit variables declarations are created with no
initialization.

e.g. int * p;
 int p$lower;
 int p$upper;

2) A pointer initialized to null. The limit variables
are initialized to zero.

e.g. int * p = null;
 int p$lower = 0;
 int p$upper = 0;

3) A pointer initialized to an array or a structure.
The limit variables are initialized to the start and
end of the construct respectively.

e.g. int a[3]; int * p = a;
 int p$lower = (int)&a;
 int p$upper = (int)&a+sizeof(a);

4) A pointer initialized to another pointer.
e.g. int * p;
 int * q = p;
 int q$lower = p$lower;
 int q$upper = p$upper;

5) A pointer initialized to a string
e.g. char * s = “hello”;
 int s$lower = (int)&s;
 int s$upper = (int)&s + 5 + 1;

6) A pointer array declaration. Two arrays are cre-
ated to hold the limit values for each pointer in
the array.

e.g. int * a [10];
 int a$lowerArry [10];
 int a$upperArry [10];

#include <assert.h>
int main () {
 long int i$1;
 long int i$2;
 long int i$3;
 int D [5] = {2, 4, 6, 8, 10};
 int D$lower = 0;
 int D$upper = 5;
 char str [6] = "hello";
 int str$lower = 0;
 int str$upper = 6;
 int n, m = 0;
 i$1 = m ++;
 assert (i$1 >= 0 && i$1 < D$upper);
 n = D [i$1];
 i$2 = n + 1;
 assert (i$2 >= 0 && i$2 < D$upper);
 if (D [i$2] > 0) {
 long int i$4;
 i$4 = i$2;
 assert (i$4 >= 0 && i$4 < D$upper);
 D [i$4] = D [1];}
 i$3 = m + 1;
 assert (i$3 >= 0 && i$3 < D$upper);
 while (D [i$3] < 0) {
 m ++;
 assert (i$3 >= 0 && i$3 < D$upper);
 }
}

7) A pointer initialized by malloc().
e.g int * p = (int*) malloc(100);
 int p$lower = (int) p;
 int p$upper = (int) p + 100;

8) A pointer initialized by calloc().
e.g. int * p = (int*) calloc(2, 100);
 int p$lower = (int) p;
 int p$upper = (int) p + 2*100;

9) A pointer initialized by realloc().
e.g. int * p = (int*) realloc(p, 100);
 int p$lower = (int)p;
 int p$upper = (int)p + 100;

10) A pointer initialized by a user defined function.
The limit variables will be inserted before pointer
declaration and passed to the function, which ini-
tializes the limit variables inside the function.

e.g. int p$lower;
 int p$upper;
 int * p = f(&p$lower, &p$upper);

 (2) Update limit variables in statements. A pro-
gram, can change the object a pointer points to; when
this happens, its limit variables must be updated accord-
ingly. The assignment of a value to a pointer is essen-
tially the same as in pointer initialization (but without
the type name). Hence, this step includes almost the
same cases as listed in the previous step. Limit vari-
ables are also updated in the same way. In general, for
each pointer assignment, update statements are inserted
following the assignment of the pointer. However, there
are two special situations that must be treated separately.
They are pointer reassignments in the conditions of if
and for statements. For an if statement, the assign-
ment of a pointer in the conditional expression is ex-
tracted and moved before the if statement as a separate
statement and then pointer limits are updated as for
other pointer assignments. For pointer assignments in
for statement, update statements are inserted inside the
subscopes.
 (3) Add limit variables to pointer arguments in
user defined functions. For pointers passed as argu-
ments in user defined functions, the corresponding limit
variables need to be passed to the function as well, as
they may be used for pointer boundary checking inside
the function. In this step, the transformation process
checks all the arguments in user defined functions and
adds the corresponding limit variables after each pointer
argument. In order to keep the consistency and seman-
tics of the program, transformation must be done consis-
tently to arguments in function declarations, function
definitions and function calls (a “coupled” transforma-
tion). An example is shown in Figure 9.
 (4) Create new variables for each pointer re-
turned in user defined functions. In the array trans-
formation, new variables were created to store array
subscripts to avoid side-effects, when the subscripts are

arithmetic expressions or function calls. This same
technique is used for pointers to be returned in user de-
fined functions, since the pointer to be returned in a
function may be a function call or an expression instead
of a simple pointer variable. The new variable created
for the returned pointer takes the form of “ret$Var”.
The new variable declaration is added to the beginning
of the function definition. Before each return state-
ment, the new variable is assigned to the returning
pointer expression. The limits of this new pointer vari-
able are computed as described in Step (2).

Figure 9. Add limit variables for pointer arguments

 (5) Add limit arguments in functions returning
pointers. For functions that return a pointer, two addi-
tional integer pointer parameters, int * ret$lower,
int * ret$upper, are appended to the end of the
parameter list. In the call to these functions, the addi-
tional formal parameters will be replaced by the ad-
dresses of the limit variables of the pointer that will be
assigned the returned value. In this way, the limit vari-
ables can be updated from the value assigned inside the
function. Figure 10 illustrates this transformation step.

Figure 10. Add limits to functions returning pointers

 (6) Add annotations to pointers. Finally, the actual
legality assertions for pointer expressions are generated
and inserted before the statements which contain the
pointer dereferences. The general form of a pointer
assertion is “assert ((int) ptr>= ptr$lower &&
(int) ptr < ptr$upper”, where the current integer

int i = 5;
int * p = & i;
int p$lower = (int) & i;
int p$upper = (int) & i + sizeof (i);
void foo (int *, int, int); //declaration
void foo (int * p, int p$lower, int p$upper) {
} //function definition
int main () {
 foo (p, p$lower, p$upper); //function call
}

int * foo (int i, int * ret$lower, int *
 ret$upper) {

 int * ret$Var;
 int retVarlower; int retVarupper;
 int * p = (int *) malloc (i);
 int p$lower = (int) p;
 int p$upper = i + (int) p;
 ret$Var = p;
 retVarlower = p$lower;
 retVarupper = p$upper;
 {
 * ret$lower = ret$Var$lower;
 * ret$upper = ret$Var$upper;
 return ret$Var;
 }}
int main () {
 int p$lower; int p$upper;
 int * p = foo (10, & p$lower, & p$upper);}

value of the pointer is checked against its valid bounda-
ries. Similarly to assertions for array buffers, the trans-
formation inserts the assertions in the appropriate place
for each different type of statement. Special attention
has been given to pointer deferencing combined with
pointer increment and decrement, e.g. *(++p) and *(-
-p). In these cases, the pointer must be incremented or
decremented before it is dereferenced. The assertion
that goes before it must therefore check its validity after
the change. Figure 11 shows a simple example of
pointer transformation and bounds checking.

Figure 11. Example of pointer bounds checking

4.4.3 Library functions. Since the implementation of
library functions is inaccessible, no change can be made
to the function prototypes. Instead, buffer checking
assertions are added as preconditions to library function
calls. The following table summarizes the assertions
created for some specific functions.

Table 1: Assertions to some library functions

Library Functions Assertions

strcpy (d,s) assert ((d$upper - d$lower)
>= (s$upper - s$lower));

strcat (d,s) assert ((d$upper - d$lower)
>= (strlen(d) +
strlen(s)));

read/write
(f,b,c)

assert (c <= (b$upper –
b$lower));

fgets (s,n,fd) assert (n <= (s$upper –
s$lower));

4.5 Remove Markup and Unname

 After annotating legality assertions for all the buffers
in the program, unique names in the program are re-
verted to their original names by a simple TXL program
which removes the scope names that have been added to
each variable. Finally, markup tags are removed from
the included library files, yielding a compilable result.

5. Case Studies

 To demonstrate the effectiveness of using legality
assertions to detect buffer overflow in C, the transfor-
mation system has first been applied to example C pro-
grams from the security community with a variety of
known stack and heap exploits.

5.1 CESG Vulnerability Code

 The first example is a set of small security vulnerab-
lility programs used as demonstration code by U.K.
Government, Communications-Electronics Security
Group (CESG), Network Defence Team [20]. The dem-
onstration code from CESG consists of three small vul-
nerable programs, which present three different types of
buffer overflow problems.
 The first program reads a message from the first ar-
gument, copies it to a character array with a fixed size
of 128 bytes through the library function strcpy() and
then prints the message to the standard output. A stack
buffer overflow will occur when the argument is larger
than the character array. The transformation program
inserts the legality assertion which checks the sizes of
the message and the buffer. When the message is big-
ger than the buffer, the program aborts with an error
message as shown as follows.

 Program 2 is a reimplementation of the first program
with programmer’s own bounded copy instead of using
the library function. However, there is an off-by-one
error in the programmer’s bounds checking. The legal-
ity assertion checks the array index between 0 and 127
and the following error message is produced when the
index is beyond its valid range.

 Program 3 takes two arguments and uses heap mem-
ory, which is allocated by malloc(), to store the argu-
ments. The transformation program adds the boundary
variables in the appropriate places and records the

#include <assert.h>
int main () {
 int a [3] = {1, 2, 3};
 int a$lower = 0;
 int a$upper = 3;
 int * p = a;
 int p$lower = (int) & a;
 int p$upper = (int) & a + sizeof (a);
 assert ((int) p >= p$lower && (int) p <
p$upper);
 * p = 4;
}

a.out: ex1.c:17: echo: Assertion `((int)
buf$upper - (int) buf$lower) >= ((int)
msg$upper - (int) msg$lower)' failed.
Aborted

a.out: ex2.c:22: echo: Assertion `i$1 >= 0
&& i$1 < buf$upper' failed.
Aborted

Error message for buffer 1 overflow:
a.out: ex3.c:52: main: Assertion `((int)
buf1$upper - (int) buf1$lower) >= ((int)
argv$upperArry [i$1] - (int) argv$lowerArry
[i$1])' failed.
Aborted
Error message for buffer 2 overflow:
a.out: ex3.c:58: main: Assertion `((int)
buf2$upper - (int) buf2$lower) >= ((int)
argv$upperArry [i$7] - (int) argv$lowerArry
[i$7])' failed.
Hello Aborted

boundary value based on the pointer initialization. Le-
gality assertions are inserted before the strcpy() func-
tions. The assertions successfully detect the buffer
overflow problem in either copying the first argument or
the second argument

5.2 Server Example

 The second example is a vulnerable server program,
designed by Dr. Thomas Dean for his Operating System
course offered at Department of Electrical and Comput-
ing Engineering, Queen’s University. It contains a stack
buffer overflow problem which may occur when an
fgets() function attempts to write 129 bytes to a 100-
byte buffer. The transformed program successfully de-
tected the problem and produced the following error
message.

6. Future Work

 Besides the examples discussed in Section 5, we are
applying this method to a much more complicated ap-
plication system Ospfd in Zebra, an advanced routing
software package that provides TCP/IP based routing
protocols, which has been found to have heap overflow
problems [23]. Up till now, the transformation has been
conducted on 24 files in Ospfd and 32 files in the Zebra
library. The total number of lines of code to be trans-
formed is over 500,000 lines after preprocessing.
 Our current system has transformed all of the pro-
grams necessary to get a successful compile of the pro-
gram, indicating that the approach will scale to large
programs. However, these programs are significantly
more complex than the example programs, exercising
many of the ways in which C can manipulate memory.
Our system has grown, but we do not yet cover every
feature of the C language. Transformations are needed
to handle the different forms of pointers including those
made by typedefs, and the various forms of structure
initialization.
 While as our system matures, we are confident that
these forms can be handled, this situation highlights are
potential weakness in our method – it must accurately
recognize all variants of deferencing and indexing in C
programs, and C is notoriously inconsistent in its
pointer handling syntax.

 The particular C grammar specification we use for
transformation also suffers from some ambiguities that
we have not resolved. A clearer grammar definition
will make the transformation process simpler and more
efficient.
 The Euclid compiler is able to remove many of the
legality assertions using static analysis and a logic sim-
plification algorithm. As a result, the runtime overhead
of legality assertions in Euclid programs was less than
10%. Our current transformation system inserts legality
assertions at every buffer access, such as array index
and pointer dereference. Some of these generated asser-
tions are clearly redundant. Our current examples are
too small to obtain a good measure of the overhead and
we do not yet eliminate unnecessary assertions. We in-
tend to continue this work by adapting the Euclid ap-
proach along with more recent research in static analysis.
Once we can eliminate the redundant assertions, we can
then characterize the overhead of our approach in time
and space.
 A similar approach is explored by Beyer et al. [29].
They use model checking to improve on the approach
taken by CCured [30]. CCured uses fat pointers and
dynamic checking to implement pointer safety in C.
Static analysis is used by CCured to determine which
pointer variables must use fat pointers and if some dy-
namic checks can be removed.

7. Conclusion

 Buffer overflows have ranked high among security
vulnerabilities in the past decade. The most common
attacks use an unchecked string copy to cause a buffer
overrun, thereby overwriting the return address. When
the function returns, control is likely transferred to the
attacker’s code. A number of techniques have been pro-
posed to address such attacks. Some are limited to pro-
tecting the return address on the stack only; others are
more general, but have undesirable properties such as
large overhead, false positives or negatives.
 Adding legality assertions to code does not remove
the need for testing, and can be used in conjunction with
testing. Penetration testing can be used to evaluate the
effectiveness of the transformations, and the legality
assertions can also be used to help with penetration test-
ing. For example a test case that overflows a large
buffer, but not sufficiently to cause an observable error
will be flagged by the legality assertion associated with
the buffer use.
 The approach described in this paper uses legality
assertions to check buffer overflows at run time. A
transformation system has been developed to analyze
the input program and annotate it with appropriate as-
sertions automatically. It saves programmer effort in
adding assertions manually and provides a fast and con-

$./server 1234567 2345
Student Number 1234567
Port Number 2345
Stack = bfffed6c
server waiting
socket = 4
1234567
server: getline.c:11: GetLine: Assertion
`130 <= buffer$upper - buffer$lower' failed.
Aborted

venient way to help check the correctness of the pro-
gram with respect to buffer vulnerabilities. The pro-
posed approach has been proven to be able to detect
examples of known buffer vulnerabilities in both the
stack and heap memory. It has also demonstrated its
ability to detect potential buffer overflows in library
functions without any modification to their representa-
tion. Runtime checking through legality assertions also
considerably enhances the accuracy and efficiency of
buffer overflow detection. When an error is detected,
the program terminates immediately, which prevents it
from being exploited by attackers.

References

[1] Schneider, F. B., S. M. Bellovin, M. Branstad, J. R. Catoe,

S. D. Crocker, C. Kaufman, S. T. Kent, J. C. Knight, S.
McGeady, R. R. Nelson, A. M. Schiffman, G. A. Spix,
and D. Tygar, Trust in Cyberspace. National Academy
Press, 1999, Committee on Information Systems Trust-
worthiness, National Research Council.

[2] S. Bellovin, “Buffer Overflows and Remote Root Ex-
ploits”, Personal Communications, October, 1999.

[3] D. Wheeler. FlawFinder.
http://www.dwheeler.com/flawfinder/.

[4] SecureSoftware. RATS.
http://www.securesoft.com/rats.php.

[5] J. Viega, J. T. Bloch, T. Kohno, and G. McGraw, “ITS4: A
Static Vulnerability Scanner for C and C++ Code”, 16th
Annual Computer Security Applications Conference, New
Orleans, Louisiana, December, 2000, pp.257-268.

[6] D. Larochelle, and D. Evans, “Statically Detecting Likely
Buffer Overflow Vulnerabilities”, In USENIX Security
Symposium, Washington D. C., 2001.

[7] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken, “A
First Step Towards Automated Detection of Buffer Over-
run Vulnerabilities”, Network and Distributed System Se-
curity Symposium, February 2000.

[8] S.C. Kendall, “Bcc: Run-time Checking for C programs”,
USENIX Toronto 1983 Summer Conference Proceedings,
USENIX Association, El. Cerito, California, USA, 1983.

[9] J. L. Steffen, “Adding Run-time Checking to the Portable
C Compiler”, Software – Practice and Experence, 22(4),
1992, pp.305-316.

[10] R. W. M. Jones, and P. H. J.Kelly. “Backwards-
compatible Bounds Checking for Arrays and Pointers in
C Programs”, Automated and Algorithmic Debugging,
1997, pp.13-26.

[11] R. Hastings, and B. Joyce, “Purify: Fast Detection of
Memory Leaks and Access Errors”, Proceedings of the
Winter USENIX Conference, 1992, pp.125-136.

[12] C. Cowan, C. Pu, D. Maier, H. Hinton, P. Bakke, S.
Beattie, A. Grier, P. Wagle, and Q. Zhang. “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-
overflow Attacks”, 7th USENIX Security Conference, San
Antonio, TX, January, 1998, pp.63-77.

[13] D. B. Wortman, “On Legality Assertions in Euclid”,
IEEE Transactions on Software Engineering, Vol.4, July
1979, pp.359-367.

[14] J.R. Cordy, “TXL - A Language for Programming Lan-
guage Tools and Applications”, Proc. LDTA 2004, ACM
4th International Workshop on Language Descriptions,
Tools and Applications, Electronic Notes in Theorectical
Computer Science 110, December 2004, pp. 3-31.

[15] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole,
“Buffer Overflows: Attacks and Defenses for the Vulner-
ability of the Decade”, Invited talk at System Administra-
tion and Network Security (SANS) 2000.

[16] A. One, “Smashing Stack for Fun and Profit”.
www.insecure.org/stf/smashstack.txt.

[17] J. Pincus, and B. Baker, “Beyond Stack Smashing: Re-
cent Advances in Exploiting Buffer Overruns”, IEEE Se-
curity & Privacy, Vol. 2, No. 4, 2004, pp.20-27.

[18] J.R. Cordy, K.A. Schneider, T.R. Dean, and A.J. Malton,
“HSML: Design Directed Source Code Hot Spots”, Proc.
IWPC 2001 - IEEE 9th International Workshop on Pro-
gram Comprehension, Toronto, May 2001, pp. 145-154.

[19] J.R.Cordy, T. Dean, A. Malton, and K. Schneider,
“Source Transformation in Software Engineering Using
the TXL Transformation System”, Special Issue on
Source code Analysis and Manipulation. Journal of In-
formation and Software Technology, 44(13), pp.827-837.

[20] U.K. Government, Communications-Electronics Security
Group, Network Defence Team, 2004

[21] T.R. Dean, J.R. Cordy, A.J. Malton, and K.A. Schneider,
“Agile Parsing in TXL”, Journal of Automated Software
Engineering 10, 4, October 2003, pp.311-336.

[22] C. Dahn and S. Mancoridis, “Using Program Transforma-
tion to Secure C Programs Against Buffer Overflows”,
The 10th Working Conference on Reverse Engineering,
British Columbia, Canada, November, 2003, pp.323-332.

[23] O. Tal, S. Knight, and T. R. Dean, “Syntax-based Vulner-
ability Testing of Frame-based Network Protocols”, Proc.
2nd Annual Conference on Privacy, Security and Trust,
Fredericton, Canada, October 2004, pp.155-160.

[24] A. Lakhotia, and M. Mohhammed, “Imposing Order on
Program Statements and its implication to AV Scanners”,
The 11th Working Conference on Reverse Engineering,
Delft, Netherlands, November, 2004, pp.161-170.

[25] A. Lakhotia, and P. Pathak, “Virus Analysis: Techniques,
Tools, and Research Issues Tutorial”, The 11th Working
Conference on Reverse Engineering, Delft, Netherlands,
November, 2004, pp.2.

[26] P. Thiran, G.-J. Houben, J.-L. Hainaut, and D. Bensli-
mane, “Updating Legacy Databases Through Wrappers:
Data Consistency Management”, The 11th Working Con-
ference on Reverse Engineering, Delft, Netherlands, No-
vember, 2004, pp.58-67.

[27] M. Marin, A. van Deursen, and L. Moonen, "Identifying
Aspects Using Fan-in Analysis”, The 11th Working Con-
ference on Reverse Engineering, Delft, Netherlands, No-
vember, 2004, pp.132- 141.

[28] http://lists.virus.org/dailydave-0311/msg00020.html.
[29] D. Beyer, T. H. Henzinger, R. Jhala, and R. Majumdar,

“Checking Memory Safety with Blast”, Proc Fundamen-
tal Approaches to Software Engineering, LNCS 3442,
Edinburgh, Scotland, April, 2005, pp. 2-18.

[30] G. C. Necula, S. McPeak, and W. Weimer, “CCured:
Type-safe Retrofitting of Legacy Code”, Proc Principles
of Program. Lang., Portland, January, 2002, pp. 49-61.

