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Abstract

Concurrent programming poses a unique set of problems for quality assurance.
These difficulties include the complexities of deadlock, livelock and divergence,
which can be extremely difficult to detect and debug. A variety of tools have
been developed to assist designers and developers of concurrent applications. Some
of these tools, such as VeriSoft, are specific to particular implementation languages,
such as C++.

The Java Remote Method Invocation (Java RMI) package facilitates the imple-
mentation of concurrent applications, including those where processes reside on
different hosts and communicate over networks. Unfortunately, it does not relieve
the developer from the potential pitfalls of controlling concurrent access to remote
objects, and may, in fact, make concurrency problems even more difficult to find.

This paper presents an approach that allows the VeriSoft state exploration sys-
tem to be used to analyze Java RMI programs for deadlock, livelock, divergence,
and assertion violations. The system works by transforming Java RMI programs
into C++ programs where Java syntax, structure, concurrency and memory man-
agement are replaced by C++ equivalents and Java RMI communication has been
transformed to VeriSoft C++ inter-process communication. We present the de-
tails of this transformation and discuss preliminary results for a number of small
examples.
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1 Introduction

Development of concurrent programs poses a unique set of problems for quality
assurance. These difficulties include the complexities of deadlock, livelock and
divergence, which can be extremely difficult to detect and debug. As a result,
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a variety of static and dynamic analysis tools have been developed to assist
designers and developers of concurrent applications. In particular, VeriSoft
[9] provides a system for concurrency analysis of inter-process communication
in C++ programs.

The Java Remote Method Invocation (Java RMI) package [21] facilitates
the implementation of concurrent applications designed for networked envi-
ronments, for example client-server systems, and is widely used for produc-
tion applications in e-commerce and other distributed environments. Java
RMI provides a higher level of abstraction by hiding low-level concurrency
implementation details. However, it does not relieve the developer from the
potential pitfalls of controlling concurrent access to remote objects, and in
fact may make concurrency problems even more difficult to find.

While a number of tools have been developed to assist in the design and
development of correct concurrent applications in Java, none of these have yet
addressed Java RMI. This is in part because Java RMI’s concurrency opera-
tions are hidden in an external library implemented using native methods, and
in part because its concurrency semantics are at a higher level of abstraction,
implicit in the methods of its library rather than directly represented using
Java concurrency primitives.

Rather than retargeting existing analysis tools to understand Java RMI
directly, which poses a number of difficult new analysis questions and would
be at best an expensive and time-consuming process, in this paper we present
an experiment in providing concurrency analysis of Java RMI programs using
a different kind of solution: a semantics-preserving source to source transfor-
mation from Java programs using Java RMI to C++ programs using VeriSoft
inter-process communication.

2 Motivation

Concurrent programming must deal with difficulties that are not present in
sequential programs. Three of these problems are deadlock, livelock and diver-
gence. A deadlock is a situation where two or more processes are each blocked
awaiting resources or results from the others such that none of them can pro-
ceed. A livelock occurs when two processes/threads are able to change their
state (i.e. they are not blocked) but are unable make any useful progress. And
divergence occurs whenever no communication occurs between two threads or
processes after a given period of time. Any message protocol that uses syn-
chronization can be vulnerable to deadlock. More commonly, these protocols
are vulnerable to divergences. In multi-user environments, divergences can
make an application completely unusable as the number of users increases.
Thus it becomes important to prevent both divergences and deadlocks.

A variety of tools have been developed to assist in the design and develop-
ment of correct concurrent applications [4,13,18]. Some of these are based on
abstract models from which code can be generated (in whole or in part), others
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public class PeerA extends UnicastRemoteObject
    implements PeerAInterface, Serializable {    

    synchronized public void callBack () {
        //never make it into here    
    }    

    synchronized public void run () {
        try {
            String name = "PeerB";
            PeerBInterface peerB = 
              (PeerBInterface)Naming.lookup(name);        
            peerB.executeTask();
        }
        catch (Exception exception_){        
            exception_.printStackTrace();
        }
    }

    public static void main(String args[]) {
        try {
            String name = "PeerA";        
            PeerAInterface peerA = new PeerA();        
            Naming.rebind(name, peerA);        
            peerA.run();
        }
        catch (Exception exception_){
            exception_.printStackTrace();
        }
    }
}

public class PeerB extends UnicastRemoteObject
    implements PeerBInterface, Serializable  {

    public void executeTask(){
        try {
            String name = "PeerA";
            PeerAInterface peerA =
              (PeerAInterface)Naming.lookup(name);
            peerA.callBack();
        }
        catch (Exception exception_){
            exception_.printStackTrace();
        }
    }

    public static void main(String[] args) {
        String name = "PeerB";
        try {
            PeerB peerB = new PeerB();
            Naming.rebind(name, peerB);
        }
        catch (Exception exception_) {
            exception_.printStackTrace();
        }
    }
} 

Fig. 1. Simple example of a Java RMI program that will always deadlock.

are based on analyzing the source code. One of the latest tools is the VeriSoft
state space exploration system [9]. VeriSoft provides a set of libraries and an
execution engine that explores the state space of a concurrent program imple-
mented in C++ using inter-process communication. In addition to deadlock,
livelock and divergence, the developer can specify invariant assertions that
must hold throughout the execution of the program.

Java remote method invocation (Java RMI) is commonly used for the de-
velopment of modern distributed networked systems such as e-commerce appli-
cations. The appeal of Java RMI is that it frees the developer from having to
worry about the details of network communication such as opening, connect-
ing and closing sockets. Unfortunately, Java RMI provides little help when it
comes to getting the intricate details of concurrency control right. This prob-
lem is exacerbated when the number of concurrent elements increases, because
the developer may easily overlook the introduction of a circular dependency
between remote objects that could result in deadlock. Consider, for example,
the Java RMI code in Figure 1, which will always result in deadlock.

In Figure 1, PeerB is started first. Once it has bound itself to the RMI
registry (using the Naming.rebind method), PeerA can be started. PeerA

binds to the RMI registry (also using the Naming.rebind method) and then
enters its run method, locates PeerB using the RMI registry, and invokes
PeerB’s executeTask method. PeerB then tries to invoke PeerA’s callBack

method, but is blocked since PeerA’s run method is still waiting for a return
from PeerB’s executeTask method, resulting in deadlock.

VeriSoft is explicitly designed to analyze C++ programs using inter-process
communication, and cannot be used with other languages and concurrency
methods directly. The VeriSoft website describes one possible way of analyzing
Java, which is to call the virtual machine from a C++ program. However, such
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a method treats the Java program as simply a black box, and severely limits
the analysis that can be done on the Java program itself. In particular, it does
not address the problem of representing the concurrency of Java RMI using
VeriSoft inter-process communication, and thus does not allow for concurrency
analysis of Java RMI. Moreover, Java RMI systems are by nature distributed,
typically including several independent communicating Java programs, not
just one.

As an experiment in bridging this gap, we have developed a different
method for allowing Java RMI programs to be analyzed by VeriSoft: a set
of formal source transformations from Java to C++ that preserves Java RMI
concurrency behaviour using VeriSoft inter-process communication libraries.
The resulting C++ program can be analyzed for deadlocks, divergences and
livelocks using VeriSoft, and analysis results can be easily associated with the
original Java source using method names. We use automated source transfor-
mation because it is less error prone than manual transformation, because it
is (at least in theory) amenable to formal verification, and because it is easily
scalable to handling practical size programs. For example, java.util.Hashtable
and its dependent classes, which are composed of over 14,000 lines of Java
code, are transformed into C++ code by our system in under 10 seconds on
a 2.20 GHz Pentium PC with no possibility of clerical errors.

The main reason we have chosen to work with VeriSoft in this experiment
is that it works directly with source code. Being able to perform the analysis
directly on the source code has two advantages. First, the possibility of spuri-
ous analysis results due to modelling inaccuracies is reduced because no model
needs to be constructed. Second, it is simpler to relate analysis output such as
error traces or counterexamples back to the C++ source code, and by method
name back to the Java source from which it was transformed. A third advan-
tage of VeriSoft is the fact that it is stateless, that is, it performs its analysis
without an explicit representation of the values of program variables. Stateless
analyses are particularly well suited to the analysis of software systems with
large amounts of complicated data such as e-commerce applications.

A final benefit of VeriSoft over other analysis tools is its use of partial
order reduction. The basic premise behind partial order reduction is that
not all interleavings of concurrent events have to be examined. That is, the
interleavings that correspond to the same concurrent execution in the state
space need not be explored individually [9]. It is for this reason that partial
order reduction has been shown to be an effective means to keep the state
explosion problem in check.

2.1 Outline of Paper

The remainder of this paper is devoted to explaining how we transform Java
code that makes use of RMI into C++ code that is analyzable by VeriSoft.
Section 3 introduces the various tools and libraries used in our work. Section 4
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details the transformation process and the advantages of using our tool. Java
uses a garbage collection algorithm that automatically frees memory that is
no longer being used. To mimic this behaviour a simple garbage collection
algorithm is developed for C++ and detailed in Section 5. An example of the
final results of our transform is explained in Section 6. Section 7 gives a short
overview of some of the other experiments we have performed. Finally, related
work is described in Section 8, followed by our conclusions and future work in
Section 9.

3 Background

3.1 VeriSoft

VeriSoft [9] is a tool that can be used to analyze concurrent C++ programs.
It does this by traversing the state space of a program up to an arbitrary
depth as set by the developer until it finds a deadlock, divergence, livelock or
until some user defined assertion fails. The depth of any state space traversal
is dictated by the presence of visible operations. Visible operations are any
functions from the VeriSoft library, which include, but are not limited to,
message passing operations and non-deterministic choice points.

VeriSoft is a practical verification tool that has been used in industry to
analyze concurrent applications such as the Lucent Technologies CDMA call-
processing library [3] and to assist in the debugging and testing of mission-
critical systems such as the 4ESS Heart-Beat Monitor [10].

3.2 Source Transformation

There are a wide variety of transformation systems that can be used to trans-
form one language into another. TXL [7] was developed over ten years ago
to be used as a tool for exploring programming language dialects. Since that
time, it has been used for a variety of source transformation applications rang-
ing from simple syntactic replacements to sophisticated software engineering
transformations [8].

TXL is a pure functional programming language specifically designed to
support structural source transformation. The structure of the source to be
transformed is described using an unrestricted ambiguous context free gram-
mar from which a parser is automatically derived. The transformations are
described by example, using a set of context-sensitive formal transformation
rules from which an application strategy is automatically inferred.

The transformation we use here is a source migration, a translation of the
program from one language to another language at essentially the same level
of abstraction [17]. In this instance, the change is from Java source code
using Java remote method invocation to C++ source code using VeriSoft
inter-process communication.

The source transformation for this migration is particularly challenging for
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Any Method Invocation�

return value�

returns ServerStub�

request remote object�
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return value (marshalled)�

Fig. 2. The sequence diagram for a Remote Method Invocation in Java RMI.

a number of reasons. Firstly, the memory, concurrency and communication
models of the two languages are quite different, posing interesting problems for
preserving semantics. Secondly, the transformation of concurrency behaviour
we need is not simply a language translation, but rather an interpretation of
the semantics of a concurrency library at a high level of abstraction (Java
RMI), and its representation using a different semantic model and level of ab-
straction (VeriSoft inter-process communication). Finally, the transformation
involves both of the recently identified “hard problems” of source transforma-
tion: local-to-global rules [5] and coupled transformations [14].

3.3 Java RMI

The basis of Java Remote Method Invocation is very simple. The idea is
that a remote object should “register” itself with the RMI registry by pro-
viding a network-wide unique name. In a sense, the registry acts like an
internet-accessible hashtable for remote services. Following registration, any
Java object can query the registry for a reference to the remote object, using
the unique name by which the remote object registered itself.

When an object queries the registry, it gets back a reference to a stub class
object which has the same interface as the remote object but is in the local
context. The methods of the stub class contain socket-based requests to the
remote object (with parameters “marshalled”) and blocking code that awaits
the receipt of the return object (from the corresponding remote method). If
the remote method has a void return type, the local object simply blocks
until it receives an acknowledgment that the remote method has completed.
Figure 2 illustrates the process.
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4 Our Solution: Bridging the Gap

Figure 3 shows the overall structure of our transformation from Java RMI to
C++ with VeriSoft. There are three basic steps. The first is an automated
language transformation from Java to C++ using TXL. The resulting C++
code can then be compiled and executed once all of the Java libraries that the
original Java code depended on have also been transformed.

The second step requires the generation of a class that models the func-
tionality of both Java Naming and the RMI registry, including the generation
of the stub class (which acts as a proxy for the remote object) and the Uni-
castRemoteObject class. This step uses TXL in a component generator role
generating the required artifacts using source transformation.

The third step involves compiling, linking and executing the resulting C++
code in VeriSoft, which can then be used to analyze the resulting model.

4.1 The Source Transformations

4.1.1 Step 1: Language Migration from Java to C++

The first step of Figure 3, while large and complicated, is relatively straight-
forward. It consists of a semantics-preserving transformation from Java source
code to C++ source code. In some systems there may also be Java class meth-
ods that are declared native and thus have been written in a language other
than Java (typically C or C++). In such instances these methods may have to
be handled manually since the C or C++ source code is not always available.

A simple example of the kind of transformation being done at this stage is
the transformation of arrays. Although arrays are a simple construct, Java’s
arrays actually extend java.lang.Object, so the following is valid Java code:

1 int [] arrayOfInts;
2 Object javaObject = arrayOfInts;
3 int [] newArrayOfInts = (int []) javaObject;

Thus there is a requirement that the transformed java.lang.Object class and
arrays (in C++) support this kind of assignment. To support this, a class was
written which essentially acts as a wrapper class (a class that provides access to
the services of another class through its own methods) around C++’s standard
vector class which also extends the transformed java.lang.Object class. The
name of this new class is StdVector. In order to maintain Java semantics,
the transformation must recognize and transform all Java arrays into objects
of type StdVector in C++.

One of the transformation rules for converting Java arrays to C++ StdVector

class objects is illustrated in Figure 4. Using it, the Java array assignment
example above is automatically transformed into this C++ code:

7



Cassidy, Cordy, Dean, Dingel

Java�
Client� Naming� Stub (Proxy)�

RMI�
Registry�

Remote�
Object�

C++�
Client�

Remote�
Object�

C++ Using�
   Verisoft   Libraries�

Naming and RMI Registry�
Stub (Proxy)�

G
�e�n

�e�r
�a�t

�e�

N
�a�m

�i�n
�g�/

�R
�e�g

�i�s
�t�r

�y� G�e�n�e�r�a�t�e� �P�r�o�x�y�

    Verisoft  Runtime�

J�a�v�a� �t�o�
C

�+
�+

�

J�a�v�a� �t�o�
C

�+
�+

�

Client� Naming and RMI Registry�
Remote�
Object�

Stub (Proxy)�

RMI�
Compile�

User�
Defined�
Class�

User Defined�
Class� Implicit Class (provided by�

the compiler vendor)�

Transformation�Source Transformation�

No Transformation�

LEGEND�

Implicit Source Transformation�
(done by compiler vendor)�

Implicit�
Transformation�

Implicit�
Class�

Step 1�

Step 2�

Step 3�

UnicastRemote�
Object�

UnicastRemote�
Object�

G�e�n�e�r�a�t�e� �U�n�i�c�a�s�t�R�e�m�o�t�e�O�b�j�e�c�t�

UnicastRemote�
Object�

Fig. 3. The sequence of transformations and subsequent execution of the model.
Implicit aspects of Java RMI must be generated as part of the transformation to
C++.

1 StdVector <int >:: type arrayOfInts;
2 SmtObjectPtr javaObject = arrayOfInts;
3 StdVector <int >:: type newArrayOfInts = javaObject.

Dynamic_cast ((StdVector <int >:: type) 0);

4.1.2 Step 2: Generation of the Remote Object Registry in C++

The first part of the second step involves the generation of the Naming class,
which implements a model of the Java RMI registry. This is required because
C++ does not support any functionality similar to Java’s reflection library,
which provides (among other things) the ability to instantiate a class whose
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rule arrayDeclarationAndArrayDefinitionTransformation  
    replace [variable_declaration]
        Mods [repeat modifier] TypeName [type_name] '[ OptExpression [opt expression] ']
                VarName [variable_name] = 
                        'new AssignedTypeName [type_name] '[ SizeOfArray [opt expression] ‘] ;
    by
        Mods 'StdVector < TypeName > :: 'type VarName (SizeOfArray ) ;  
end rule 

Fig. 4. A TXL rule to transform Java arrays to C++ objects of type StdVector

name is not known until run-time. In this case, we need the ability to instan-
tiate a class using a string name.

To model this behaviour in C++ a lookup method is generated in the
Naming class, which returns a remote class’s stub based on its string name
passed as argument. Here is an example of a generated lookup method in the
Naming class generated for the example program of Figure 1:

1 static SmtRemotePtr lookup (SmtStringPtr name_)
2 {
3 Object object = m_hashtable -> get (name_);
4 if (object != NULL) {
5 if (instanceOf (object , PeerBInterface)) {
6 return SmtPeerB_StubPtr (new PeerB_Stub);
7 }
8 }
9 return NULL;

10 }

The above code attempts to find an object that is associated with the
name parameter. If it manages to find an object that is associated with the
name parameter it returns an instance of an object of that class with the same
name with “ Stub” appended to it. If no such object exists in the hashtable,
then NULL is returned.

Each stub class (proxy for a remote object) is generated such that it con-
tains methods with the same signature (return type, name and parameters)
but its contents actually send messages to the true remote object and wait for
an acknowledgment (i.e. the methods are blocking). This requires replacing
all network communication in Java RMI with VeriSoft methods that make use
of inter-process communication.

The generation of stub classes is implemented as a source transformation
of a copy of the transformed C++ version of the original Java RMI remote
object class (Figure 5). For example, the following stub method is generated
as part of the stub class for remote class PeerB of the example program of
Figure 1:

1 virtual void executeTask ()
2 {
3 char * message = new char [100];
4 sprintf (message , GLOBAL_executeTask_VAR);
5 send_to_queue (m_remoteObjectMsgQueueID , QSZ , message);
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rule defineFunctions 
    % make stub versions of all the methods in the class
    replace $ [member]
        % begin with the C++ version of an original method
        OptAccessSpecColon [opt access_specifier_colon] 
        DeclSpecifiers [decl_specifiers] PointerOperators [repeat pointer_operator] 
        FunctionNameID [id] DeclaratorExtensions [repeat declarator_extension+] 
            OptCtorInit [opt ctor_initializer]  
            OptExceptionSpec [opt exception_specification] 
        FunctionBody [function_body]
    % make sure the method is not one of our generated ones
    deconstruct not FunctionNameID 
        'AddRef
    deconstruct not FunctionNameID 
        'Release
    % construct the global macro name
    construct MacroIDFromFunctionNameID [id]
        FunctionNameID [createMacroIDFromID]
    % now replace the original with a stub version communicating
    %     with the real thing using interprocess communication
    by
        OptAccessSpecColon DeclSpecifiers PointerOperators 
        FunctionNameID DeclaratorExtensions 
        {
            ‘char * message = new char ‘[100 ‘];
            sprintf (message, MacroIDFromFunctionNameID);
            send_to_queue (m_remoteObjectMsgQueueID, QSZ, message); 
            ‘delete ‘[ ‘] message;
            message = (char *) rcv_from_queue (m_msgQueueID, QSZ);
            ‘if (strcmp (message, MacroIDFromFunctionNameID) == 0) {
                '// Received the ack I was waiting for - remote method completed
                ‘return;
            }
            ‘throw SmtRemoteExceptionPtr (“problem in transmission of message”);
        }
end rule

Fig. 5. A TXL rule to transform every method of a C++ transformed Java RMI
class into a stub method that communicates with the corresponding method of the
remote object using VeriSoft inter-process communication

6 delete [] message;
7 message = (char *) rcv_from_queue (m_msgQueueID , QSZ);
8 if (strcmp ( message , GLOBAL_executeTask_VAR) == 0) {
9 // Received the ack I was waiting for - remote method

completed
10 return;
11 }
12 throw SmtRemoteExceptionPtr ("problem in transmission of

message");
13 }

This stub method begins by putting the string of characters represented in
the macro GLOBAL executeTask VAR into the message character array. Then
it sends those characters to the VeriSoft messaging queue variable named
m remoteObjectMsgQueueID. The messaging queue object is a Verisoft specific
class used to send messages between processes. Once those characters have
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been sent to the queue, the space for the characters is deleted locally. The code
then blocks until it receives a message from the queue. If the message is what
it expects (i.e. the same message it sent to the queue) it will return without
exception. Otherwise the smart-pointer version of a RemoteException object
will be thrown.

All remote objects in the Java RMI framework must extend the class Uni-
castRemoteObject. The generation of UnicastRemoteObject is necessary in
order to accept the incoming messages from the stub class, invoke the appro-
priate method, and then send a message back to the stub class indicating the
method has completed.

Like the stub classes, UnicastRemoteObject class is generated as a source
transformation based on a copy of the transformed C++ code for the original
Java RMI remote classes. The TXL function implementing the generation of
the run method part of this process is shown in Figure 6. Here is the run

method generated by this function as part of the UnicastRemoteObject for
the program of Figure 1:

1 void run ()
2 {
3 char * message;
4 while (1) {
5 message = (char *) rcv_from_queue (m_msgQueueID , QSZ);
6 if (strcmp (message , GLOBAL_executeTask_VAR) == 0) {
7 this -> executeTask () ;
8 send_to_queue (m_remoteObjectMsgQueueID ,QSZ ,message);
9 }

10 }
11 }

In some Java RMI applications, parameters are sent to the remote object
and an object is returned from the remote object’s method. In order for this to
occur, objects must be marshalled and unmarshalled. Marshalling an object is
the process of creating a byte array to represent the object so that it can be sent
over a network, and unmarshalling is the process of reconstructing the object
from the byte array received at the other end. Marshalling and unmarshalling
of objects is supported by our current implementation only for simple integers
and strings. However, the implementation can relatively easily be extended
to handle any serializable object as a VeriSoft string message parameter.

4.1.3 Step 3: Compile, link and execute in VeriSoft

The last step simply involves compiling and linking the transformed and gen-
erated C++ files and executing the result using VeriSoft. Before executing,
a VeriSoft system file.VS file must be configured appropriately for the pro-
gram. Factors such as the number of processes that will execute, the analysis
depth (i.e. how deep in the state space VeriSoft should explore before it stops
executing), whether to ignore deadlocks, and so on must be specified in order
to use VeriSoft.
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function createRunMethod  Members [repeat member] 
    % generate the main run method given all the stub members 
    replace [repeat member]
        % (generating, so nothing to begin with) 
    % make selector if statements for each of the remote methods
    construct SelectionStatements [repeat statement]
        _ [createConditionals Members] 
    construct FirstStatementAsRepeat [repeat statement]
        ‘message = (char *) rcv_from_queue (m_msgQueueID, QSZ); 
    by
        ‘public:
            ‘void run ( )
            {
                ‘char * message;
                ‘while (1) {
                    FirstStatementAsRepeat [. SelectionStatements]
                }
            }
end function

Fig. 6. A TXL function to generate the run method of the UnicastRemoteObject
class for a transformed Java RMI program given as parameter the C++ transformed
remote methods of the program

VeriSoft can then be used in one of three modes (manual, guided, or auto-
matic simulation mode) to analyze the resulting model. Manual mode allows
the user to manually step through the execution of the code. Guided mode
is used if the user wants to specify when a particular process will execute its
next visible operation or which number is chosen at a toss point (a point in
the code where a range of numbers can be selected to be returned from a
function). Automatic mode allows VeriSoft to run automatically and return
at what point (if any) in the state space of the program execution that it
found a deadlock, divergence or livelock.

5 Memory Management

Memory management is a particular challenge for our implementation because
of Java’s built-in automatic heap recovery. This is implemented in Java vir-
tual machines by a garbage collector that runs in the background as a separate
thread while the Java program executes. C++, however, has no such built-
in garbage collection and by default uses explicit new() and delete() calls to
manage the heap. While garbage collection libraries exist for C++ [2,20],
they place rules on the allocation and use of memory which may not exactly
match the Java model or may be too complex for VeriSoft analysis. In order
to address this issue, we decided to use a simple garbage collection algorithm
that involves smart pointers and reference counting in order to keep the trans-
formation simple and the VeriSoft state space small. However, our approach
can easily be changed to use other memory management libraries.
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Our memory solution introduces two new Java classes. The first is a smart
pointer class that makes use of templates. This class is used in place of regular
C++ pointers. It allows dynamically created C++ objects the advantage of
staying on the stack (like automatic objects). As these pointers are copied
and assigned, they adjust the reference count of the objects that they point
to. Smart pointers have deconstructors to make sure that reference counts are
adjusted appropriately when a pointer variable goes out of scope.

As an example, consider the following declaration and initialization:

1 TrainCar trainCar = new TrainCar (42);

Our transformation to C++ introduces a new smart pointer type for the
pointer, then uses the type to declare the variable and initialize it:

1 typedef SmartPtr <TrainCar > SmartTrainCarPtr;
2 SmartTrainCarPtr trainCar(new TrainCar (42));

In order to facilitate the tracking of references that are made to an object,
we designed another class (named JTCUVobject) that all other translated
classes extend. This class plays the role of Java’s java.lang.Object class in our
generated C++ code. Thus our transformation builds for the generated C++
code the same inheritance hierarchy as the original Java program. All Java
classes extend java.lang.Object directly or indirectly, so the generated C++
parent class for transformed Java classes that do not specify a parent is our
JTCUVobject class.

6 The Final Result

The final result of the entire transformation of the example Java RMI class
of Figure 1 is shown in figure 7. The AddRef and Release methods added
by the transformation are artifacts of our simple reference-counting memory
management strategy discussed in the previous section.

Our system increases the set of languages that VeriSoft can analyze by
automating the transformation of Java RMI code to C++ with VeriSoft li-
braries. In addition, our system is also able to achieve a small reduction in
the number of states in a Java RMI program, by extracting only the critical
high level details of the message passing. Low level networking aspects of
Java RMI, such as sockets and ports, are also not critical to our concurrency
analysis and thus are abstracted away by our transformation. Our resulting
model is therefore able to run on a single machine, making use of inter-process
communication, rather than requiring a networked client-server environment.

There is no reason why the strategies and methods we have demonstrated
in our transformation system for Java RMI could not be used for other lan-
guages and concurrency paradigms as well, increasing the range of applications
that can be analyzed using VeriSoft even further.
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#ifndef PeerA_H
#define PeerA_H

class PeerA;
typedef SmartPtr <PeerA> SmtPeerAPtr;
class PeerA : public UnicastRemoteObject, 
              public PeerAInterface, 
              public Serializable {

  public:
    virtual void AddRef () {
        UnicastRemoteObject::AddRef();
    }

  public:
    virtual void Release () {
        UnicastRemoteObject::Release();
    }

  public:
    virtual void callBack () {
        Synchronized dataGuard(*this);
        //never make it into here
    }

  public:
    virtual void run () {
        Synchronized dataGuard(*this);
        try {
            SmtStringPtr name = "PeerB";
            SmtPeerBInterfacePtr peerB = 
              (Naming->lookup(name)).Dynamic_cast
                ((SmtPeerBInterfacePtr *) 0);
            peerB->executeTask();
        }
        catch (SmtExceptionPtr exception_) {
            exception_->printStackTrace();
        }
    }

  public:
    static void main 
      (StdVector<SmtStringPtr>::type args) {
        try {
            SmtStringPtr name = "PeerA";
            SmtPeerAPtr peerA 
                (SmtPeerAPtr (new PeerA ()));
            Naming->rebind(name, peerA);
            peerA->run();
        }

        catch (SmtExceptionPtr exception_) {
            exception_->printStackTrace();
        }
    }
};

#endif

#ifndef PeerB_H
#define PeerB_H

class PeerB;
typedef SmartPtr <PeerB> SmtPeerBPtr;
class PeerB : public UnicastRemoteObject, 
              public PeerBInterface, 
              public Serializable {

  public:
    virtual void AddRef () {
        UnicastRemoteObject::AddRef();
    }

  public:
    virtual void Release () {
        UnicastRemoteObject::Release();
    }

  public:
    virtual void executeTask () {
        try {
            SmtStringPtr name = "PeerA";
            SmtPeerAInterfacePtr peerA = 
              (Naming->lookup(name)).Dynamic_cast
                ((SmtPeerAInterfacePtr *) 0);
            peerA->callBack();
        }
        catch (SmtExceptionPtr exception_) {
            exception_->printStackTrace();
        }
    }
};

int main (int argc, char * args []) {
    SmtStringPtr name = "PeerB";
    try {
        SmtPeerBInterfacePtr peerB 
            (SmtPeerBPtr (new PeerB ()));
        Naming->rebind(name, engine);
    }
    catch (SmtExceptionPtr exception_) {
        exception_->printStackTrace();
    }
}

#endif

Fig. 7. Simple example Java RMI program of Figure 1 transformed to C++.

7 Experiments/Results

Thus far we have only used our transformations on a small set of Java RMI
examples with intentionally added concurrency errors for the purposes of anal-
ysis. The transformation of java.util.Hashtable and its dependent classes (from
Section 2) was tested using one hundred different C++ test functions to ensure
the behaviour matched that of the original Java.

Although as yet untuned, our system is already reasonably efficient. In the
example provided in Figure 1 the transformation of the non-implicit classes
(i.e. PeerA and PeerB) was completed within 5 seconds on a small PC. The
analysis by VeriSoft (in which the deadlock was found) also completed within
5 seconds on the same machine.

Another of our examples is a simplified version of a networked financial
transaction system. Clients in the system all share the same account, deposit-
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ing money into the account and getting the balance. This example made use
of 10 separate clients making remote method invocations on a shared remote
object. In one execution a divergence was successfully found at a depth of
eight visible operations. The transformation in this case also took under five
seconds, and the analysis by VeriSoft took about 10 seconds.

8 Related Work

Many transformations done by other tools actually miss the underlying se-
mantics of the language [12,6]. An example of this is the transformation
done by Bandera [6] in transforming Java to Promela. In this transforma-
tion important dynamic I/O functionality (sockets, files, etc.) are impossible
to transform, though it is possible to model the behaviour of these services
(reading or writing from files, sending messages over ports, etc.) by indicating
whether methods are blocking or non-blocking, dependency relationships, etc.

However, because C++ is a language that (at least in theory) is capable
of any I/O activity that Java is capable of, it should be possible to exactly
emulate the dynamic I/O behaviour of Java in the subsequent C++ program
that uses VeriSoft libraries.

Although both can model Java programs, neither Bandera nor Java PathFinder
are capable of transforming/translating Java RMI into a modelling language
[19,16]. The main problem lies in the abundance of native methods in the Java
RMI framework. By automatically transforming to C++ at a higher level of
abstraction our work avoids this problem.

Bandera’s greatest advantage over VeriSoft, and hence our work, is its
ability to use Linear Temporal Logic or Computation Tree Logic to create
the requirements specifications for a program. Basically, this means Bandera
allows a much richer specification of what properties should or should not ever
occur in a program. Similarly, Java PathFinder is able to transform the Java
code into Promela [12] which supports Linear Temporal Logic.

These analysis tools are well suited to examining aspects of programs sim-
ilar to those we address, but using modelling languages that are more limited
in their I/O capabilities than Java. The behaviour of I/O libraries must be
modelled by determining the essential properties (blocking, non-blocking, de-
pendency relationships, etc.) of the I/O functionality and encoding them in
the modelling language.

However, there is a significant reduction in the state space of a program if
the behaviour is modelled in this way. Although these tools must model any
dynamic I/O libraries by hand, it results in significant savings in the state
space and thus a reduction in the time to determine properties of interest (such
as deadlock, divergence, livelock, etc.). Thus although tools like Bandera and
Java Pathfinder suffer from the requirement to manually build models of most
low level Java I/O libraries, they make up for the effort in that the subsequent
state space in their programs is significantly reduced.
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Our system is not the only one to utilize source transformation to assist
in analysis of concurrent programs. A different kind of source transformation-
based approach has been explored at Microsoft Research [15]. In the KISS
(“Keep It Simple and Sequential”) project, the idea is to transform concurrent
programs to pure sequential programs augmented with instrumentation code
to simulate execution of a large subset of the program’s concurrent behaviour.
In this way sequential program model checkers such as SLAM [1] can be uti-
lized to analyze some aspects of concurrent behaviour, such as race conditions
in device drivers. While this work does not cross language boundaries or free
the user from the modelling task, it is similar to ours in two ways: it uses
source transformation to extend the capabilities of an existing model checker,
and it transforms a higher level abstraction of concurrency to a lower level
representation with a different semantic model.

9 Conclusions and Future Work

Concurrency in any program can be a significant source of quality assurance
problems. Tools like VeriSoft [9], Bandera [11] and Java PathFinder [12] are
useful in detecting these problems. However, it is difficult and sometimes sim-
ply intractable to attempt the hand transformation from a real programming
language to a modelling language. In this work we provide the user with an
alternative approach to solving these problems. We have developed a three
step automated transformation from Java RMI to C++ using VeriSoft. It is a
promising first step towards leveraging the benefits of VeriSoft and TXL source
transformation for concurrency analysis of other languages and systems.

Since the message passing model that VeriSoft uses is inter-process com-
munication, any message passing in the original Java across the network is
reduced to inter-process communication by our transformation. Thus net-
working problems or bugs in message passing itself cannot be found using our
transformation. Another disadvantage is that VeriSoft does not support dy-
namic process creation, thus the tester must know the number of processes
to be created at compile-time in order to do the analysis. This allows us to
model and analyze Java RMI applications with any given number of clients,
but it limits some of the options for the analyst. For bounded numbers of
dynamic processes, this problem can be partially addressed by modifying the
transformation to handle dynamic process creation automatically by mapping
to a pre-allocated fixed number of static processes.

The most obvious need in this work is for continued testing on larger ex-
amples and production systems. The scalability of our solution faces three
challenges: the sheer number of Java library classes on which a Java RMI pro-
gram may depend, the ability of the TXL transformation to handle such large
sources, and the ability of VeriSoft to analyze the large size of the resulting
transformed C++ programs. Since both TXL and VeriSoft have already been
proven to handle very large production programs in practice, it is actually the
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first of these that is the biggest threat to our technique.

Because we are limited to handling programs for which all used libraries
have been transformed, every class on which a Java RMI program depends,
directly or indirectly, must be transformed. It is the nature of Java that such
sets can be surprisingly large; even relatively small programs may depend on
scores of Java library classes, and thus the total size of the transformed C++
code may be large, potentially taxing the limits of the VeriSoft analyzer. A
possible solution to this may be using VeriSoft’s ability to use the Java Native
Interface (JNI) to avoid transforming Java library classes that are not directly
involved with Java RMI concurrency.
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