
Automated Conversion of Table-based Websites to Structured

Stylesheets Using Table Recognition and Clone Detection

Andy Y. Mao James R. Cordy Thomas R. Dean

School of Computing
Queen’s University

Kingston, Ontario, Canada
{mao, cordy, dean}@cs.queensu.ca

Abstract

Web standards such as XHTML and CSS are
rapidly coming into practice and have many ad-
vantages, including compatibility, consistency
across browsers, and increased ease of main-
tenance. Unfortunately large numbers of ex-
isting websites still use the deprecated table-
based layout style in which page style is unique
to each page. Existing tools for automat-
ing the transition to stylesheets provide lit-
tle help, converting page-by-page using a flat-
tened structure and local inline styles rather
than a common CSS stylesheet. This approach
ignores hierarchical structure and defeats the
main purpose of moving to the new standard,
losing all of the advantages.

In this work we present an automated
method for converting table-based layout web-
sites to standards-compliant modern CSS
stylesheet-based websites using a two-step pro-
cess. Pages of the site are first converted page-
by-page using table recognition technology to
preserve hierarchical structure and layout se-
mantics in local styles. Software clone detec-
tion technology is then utilized to recognize
common layout styles in the pages and ex-
tract and minimize them to a common CSS

Copyright c© 2007 Andy Y. Mao, James R. Cordy
and Thomas R. Dean. Permission to copy is hereby
granted provided the original copyright notice is repro-
duced in copies made.

stylesheet for the site. The result is a main-
tainable, efficient modern standards-compliant
website with the same look and feel as the orig-
inal but with all the maintenance advantages of
a custom programmed new site.

1 Introduction

Long before the maturity of World Wide Web
standards, websites implemented standard lay-
outs and look-and-feel of pages using table-
based layouts that are copied from one page
to another, often because the original sites
were generated by early website editors such as
Claris Home Page. Many of these websites are
still alive and actively maintained, and indeed a
large number of popular websites still use tradi-
tional table-based layouts. Now that web stan-
dards designed for expressing and maintaining
common layout and style such as XHTML, DIV
layout and separate CSS stylesheets have ma-
tured, it is highly desirable to migrate existing
legacy websites to the new technology.

The use of a separate common CSS
stylesheet for a site is an example of the clear
advantages offered by such a conversion. Sup-
pose, for example, that we wished to change
an entire website from left-handed logo form to
right-handed, as shown in Figure 1. To make
this change to a traditional table-based layout
site, every single page of the site would have

Figure 1: Left- to Right-handed Logo Example

to be hand edited to move table elements be-
tween columns one by one using copy-paste.
The amount of work and level of tedium in im-
plementing even this simple change would al-
most certainly lead to errors and anomalies. By
contrast, implementing this change in a com-
mon CSS stylesheet version of the same site
would involve only change to one style in the
stylesheet file, leaving all pages untouched and
vastly reducing the effort and chances for error.

In addition to the clear advantage of a con-
sistent common style across a site, web stan-
dards also offer many other advantages, includ-
ing compatibility with modern website editing
and searching tools, greater browser indepen-
dence, and enhanced ease of maintenance. Ide-
ally every website should be redesigned to use
these new standards from scratch, but in prac-
tice the effort to do so for large websites with
substantial investment can be prohibitive.

Existing automation for migrating table-
based legacy websites to the new web standards
such as that offered by Adobe Dreamweaver [1]
is at best cursory, preserving layout of individ-
ual pages separately by absolute pixel place-
ment and localized inline DIV styles, thus los-
ing all hierarchical structure and commonality
of style. The result is a conversion equivalent to
per-page plotting of page elements (Figure 2),
yielding a website that is actually less main-
tainable than the original and defeating the
whole purpose of moving to the new standards.

In this paper we propose a more realistic and
ambitious automated conversion, leveraging ta-
ble analysis and source transformation technol-
ogy already proven in the document recogni-
tion and software reengineering domains. Our
conversion recognizes and preserves hierarchi-
cal structure and commonality of style across

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html> <head>

<title>Table test</title>

<style type="text/css">

div { border:1px red solid;}

</style>

</head>

<body>

<div id="Layer1" style="position:absolute;

left:15px; top:18px; width:244px; height:22px;

z-index:1; vertical-align:middle">content 1</div>

<div id="Layer2" style="position:absolute;

left:286px; top:18px; width:294px; height:46px;

z-index:2; vertical-align:middle">content 2</div>

<div id="Layer3" style="position:absolute;

left:610px; top:18px; width:161px; height:22px;

z-index:3; vertical-align:middle">content 3</div>

<div id="Layer4" style="position:absolute;

left:15px; top:42px; width:244px; height:22px;

z-index:4; vertical-align:middle">content 4</div>

. . .

</body>

</html>

Figure 2: Example Dreamweaver Conversion
Positions are absolute, style attributes are em-
bedded and all table hierarchy is lost.

the entire site. The result of this automated
conversion is a site that preserves the look and
feel of the pages of the original site while pre-
serving hierarchical layout structure. A com-
mon CSS style file which is essentially identical
to one that would be authored in a disciplined
hand-crafted migration is inferred from style
similarity (Figure 3).

Our method utilizes a four step approach,
in which web pages are first converted from
HTML to XHTML using a source transforma-
tion based on robust parsing [8]. The table
structure of each page is then analyzed using
table recognition methods [22] to separate lay-

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html> <head>

<title>Table test</title>

</head>

<style>

#top_left {float:left; margin:auto; width:250px}

#top_left_container_1 {float:left; margin:0;

width:250px}

#top_left_content_1 {float:left; margin:auto;

width:250px; border:1px red solid;}

. . .

</style>

<body>

<div id="top_left">

<div id="top_left_container_1">

<div id="top_left_content_1">

content 1

</div>

<br clear="both"/>

</div>

<div id="top_left_container_1">

<div id="top_left_content_1">

content 4

</div>

<br clear="both"/>

</div>

</div>

. . .

</body>

</html>

Figure 3: Example Conversion by Our Process
Positions relative, style attributes in a separate
stylesheet and nesting hierarchy preserved.

out table structure from intentional data ta-
bles and to elucidate implicit hierarchy rep-
resented by row-spanning (ROWSPAN) and
column-spanning (COLSPAN) attributes as ex-
plicit nested tables. The augmented explicit ta-
ble layout structure is then page-by-page con-
verted to the web standard DIV-based layout
with a separate CSS style file for each page,
preserving the original look and feel. Finally,
software clone detection technology [14] is uti-
lized to recognize common styles and synthesize
a single minimized CSS stylesheet file for the
site, converting each page to use the common
stylesheet. The entire process architecture can
be visualized as shown in Figure 4.

The remainder of this paper is organized as
follows. Section 2 outlines the phases of our
process in detail and gives small examples of
each transformation on example HTML code.

Figure 4: Conceptual Process
Our process consists of two major steps. In
Step 1, table recognition is used to infer and
preserve hierarchical structure in a conversion
from tables to DIVs, separating style informa-
tion into a stylesheet for each page. In Step 2,
clone detection is used to unify and minimize
styles into a single consistent stylesheet file for
the entire site.

Section 3 demonstrates the entire process using
our experience in converting a real entire table-
based legacy website to modern XHTML / CSS
standards. Section 4 relates our work to that
of others, and Section 5 discusses limitations
and future extensions of our process. Finally,
Section 6 summarizes and concludes the paper.

2 Approach

The overall purpose of our approach is to pro-
vide an automated transformation system that
preserves the layout structure of the pages of a
web site specified by HTML table layout into
a nested hierarchical DIV structure while re-
taining the original look and feel, and to recog-
nize and extract DIV styles to a single unified,
minimized, maintainable CSS style file for the
site. The first part is achieved by converting
each page separately, creating a CSS stylesheet
for it independent of the others. The second
part uses clone detection techniques to recog-
nize and minimize common styles into a single
unified stylesheet used by all the pages. Figure
4 shows a conceptual view of our method.

All steps of our approach are implemented
as source transformations implemented in the
TXL source transformation language [6]. Each
phase consists of a number of source transfor-
mations, strung together to achieve the result
(Figure 5). In this section we outline the details
of these transformations, using small examples
to demonstrate the technique.

2.1 XHTML Conversion

In the first transformation, web pages are in-
dependently converted from HTML to XHTML
using a TXL grammar that utilizes robust pars-
ing [2] to correct for HTML exceptions to
XML form. Robust parsing is a method that
attempts to parse each page as an XHTML
document, adapting to exceptions where for
example closing tags are missing. The ex-
ceptions are isolated into special nonterminal
forms that are then targeted for correction by
TXL source transformation rules, resulting in
a valid XHTML page. Figure 6 shows an ex-
ample of this transformation.

2.2 Table Recognition

To preserve the original hierarchical layout se-
mantics of the original table layout pages into
nested DIV sections, we must first understand
what the intended structure is. In HTML ta-
ble layout, some of the intended structure is
encoded in the ROWSPAN and COLSPAN at-
tributes of table elements (Figure 7). Since
DIV sections have no such corresponding fea-
ture, we must first make this implicit substruc-
ture explicit by transforming the original pages
to eliminate ROWSPAN and COLSPAN while
retaining the layout semantics they imply.

In order to do this we have adapted ideas
from the table recognition literature in pattern
analysis and machine intelligence research [22].
The methods we have adapted are called pro-
jection and partitioning. The basic idea is that
a table cell that spans two or more other cells in
a row or column implies a projected or nested
structure on parallel rows or columns that em-
beds their corresponding cells in a sub-table.
Table recognition methods such as Handley [9]
and Hu et al. [11] use this idea in analysis of
higher level structure of tables in documents.

In our case we have implemented this idea
using a table partitioning and nesting transfor-
mation which forms a part of our conversion to
DIV structures. To assist in the analysis, we
compute an approximate layout for each page
by assigning position information to every table
cell using custom attributes. This information
is used in the analysis only - the final result
is constrained only by the page’s original style
attributes. The conversion proceeds by parti-
tioning ROWSPAN and COLSPAN structures
into nested tables, separating them from par-
allel unspanned rows or columns and reducing
all table structures to simple ones without any
spans. Nesting of tables retains the relation-
ship between the elements so that layout is not
lost. Figure 8 shows the result of table parti-
tioning the example of Figure 7.

In some table layout sites, there could of
course be a conflict between rowspans as shown
in Figure 9. Just as such cases cause problems
for table recognition algorithms, it leads to an
ambiguity for our method and our prototype
conversion system requires hand intervention
to handle such (relatively rare) cases.

2.3 Table Identification

While the same HTML ”TABLE” feature is
used, not every table in a web page represents
layout information - some tables are intended
to actually be data tables. As part of our con-
version, we must identify which tables should
be converted to DIV structures and which not.
In our prototype, this decision is made on a
very simple criterion - if the HTML table struc-
ture has a table header (THEADER) or table
footer (TFOOTER) tag (i.e., if it has labeled
columns or rows), then the table is assumed to
represent a real data table and is not converted.

The identification of tables to be converted
is done using another TXL source transforma-
tion that marks layout tables to be converted
to DIV using a custom XML tag that also gives
each table a unique name for use in attaching
CSS styles to it later. Figure 10 shows part of
the result of table identification on an example
page.

Figure 5: Implementation Architecture

2.4 Conversion to DIVs with Lo-
cal Styles

Following table partitioning and identification,
identified layout tables in pages are converted
from table structures to DIV partitions for each
table element, each with its own individual lo-
cal inline style preserving the style attributes
of the original table cell. Figure 11 shows part
of the result of the DIV conversion of an ex-
ample page. Relative positioning implied by
table rows is maintained in the result using the
FLOAT=”LEFT” style attribute.

Like all of our stages, the conversion to DIV
is done using TXL source transformation rules.
Figure 12 shows the main transformation rule
replaceTableByDIV for identified tables. In the
usual TXL style, this one rule automatically
searches to match and convert every identified
table in the input. As part of the transfor-
mation, it uses the transformation subrule re-

placeTrByDIV to convert each row of the table,
and so on. The generated DIVs are uniquely
identified by the table id generated in the table
identification step. These ids will attach each
DIV to its corresponding style in the next step.

A web-based human interface allows the op-
erator of the conversion process to choose more
meaningful names for the generated DIVs at
this stage (Figure 13). As the operator enters
new names, the interface automatically changes
the XHTML source of the generated DIVs to
correspond. Figure 14 shows the converted
DIV example of Figure 11 after renaming.

2.5 Separation of CSS Style Files

Following the conversion to DIV form with in-
line local styles, another transformation gath-
ers and converts all styles in each page into an
individual CSS style file for the page, using the
table ids of the previous step. This is done

<html>
<body>
 <table width=100% align=left>
 <tr>
 <td width=250>
 <p>
 Content 1 has two paragraphs.
 <p>
 This is the second one.
 </td>
 <td rowspan=2 width=300>
 Content 2 is a row-spanning entry.
 </td>
 <td>
 <p>
 But Content 3 has one.
 </td>
 </tr>
 <tr>
 <td width=250>
 Content 4 also has two paragraphs.
 <p>
 This is the second.
 </td>
 <td width=150>
 Content 5.
 </td>
 </tr>
 <tr>
 <td>
 Content 6.
 </td>
 <td colspan=2>
 Content 7 is a column-spanning entry.
 </td>
 </tr>
 </table>
</html>

<html>
<body>
 <table width=”100%” align=”left”>
 <tr>
 <td width=”250”>
 <p>
 Content 1 has two paragraphs.
 </p>
 <p>
 This is the second one.
 </p>
 </td>
 <td rowspan=”2” width=”300”>
 Content 2 is a row-spanning entry.
 </td>
 <td>
 <p>
 But Content 3 has one.
 </p>
 </td>
 </tr>
 <tr>
 <td width=”250”>
 Content 4 also has two paragraphs.
 <p>
 This is the second.
 </p>
 </td>
 <td width=”150”>
 Content 5.
 </td>
 </tr>
 <tr>
 <td>
 Content 6.
 </td>
 <td colspan=”2”>
 Content 7 is a column-spanning entry.
 </td>
 </tr>
 </table>
</body>
</html>

Figure 6: Conversion to XHTML

Figure 7: Row- and Column-spans in Table Layout
The layout specified by the table in Figure 6. (Borders shown to make the layout visible.)

using a TXL transformation that extracts the
local style parameters such as font and align-
ment from each DIV and creates a CSS style
for it, named using the DIV’s unique table id.
As part of this transformation, the order of pa-
rameters in each generated style is normalized
by sorting into alphabetical order in order to
allow so that similar styles are more easily de-
tected in the next phase.

Figure 15 shows a portion of the correspond-
ing extracted CSS style file for the example of
Figure 11. Following this step all pages of the
site have been converted to DIV layout, each
page with its own individual CSS style file.

2.6 Clone Detection on Styles

While the DIV conversion results in a com-
pletely migrated XHTML, DIV and CSS-based
web standard website, it still has the undesir-
able property that each page has its own CSS
style file. The remaining problem is the in-
tegration of these styles to a single uniform
stylesheet for the entire website. To achieve
this result we employ clone detection tech-
nology [14] borrowed from our previous soft-
ware re-engineering work [7] to recognize simi-
lar styles across pages and integrate them into
a single global CSS stylesheet file.

The process of CSS style clone detection is

Figure 8: Table Partitioning to Eliminate Row and Column Spanning
Table partitioning converts COLSPAN and ROWSPAN attributes to equivalent nested table

structures, reducing all layout tables to simple ones. (Borders shown to make the layout visible.)

Figure 9: Conflictual Rowspan Example
Our prototype is not yet able to automatically handle row partitioning for this example,

and hand assistance is required. (Borders shown to make the layout visible.)

<tag id="table1">

<table float="left">

<tag id="table1_tr1">

<tr>

<tag id="table1_tr1_td1">

<td width="250" widthi="266">

content 1

</td>

</tag>

</tr>

</tag>

<tag id="table1_tr2">

<tr>

<tag id="table1_tr2_td1">

<td width="250" widthi="266">

content 4

</td>

</tag>

</tr>

</tag>

</table>

</tag>

Figure 10: Table Identification Example
XML custom tags (“<tag>”) mark and
uniquely name each component of tables iden-
tified as layout tables.

achieved by two linked source transformations,
one which works on the pages’ CSS files to de-
tect and unify style clones and another that

<div id="table1" float="left">

<div id="table1_tr1">

<div id="table1_tr1_td1" width="250"

widthi="266">

content 1

</div>

<br clear="both"/>

</div>

<div id="table1_tr2">

<div id="table1_tr2_td1" width="250"

widthi="266">

content 4

</div>

<br clear="both"/>

</div>

</div>

<div id="table2" float="left">

<div id="table2_tr1">

<div id="table2_tr1_td1" width="300"

widthi="266">

content 2

</div>

<br clear="both"/>

</div>

</div>

Figure 11: DIV Conversion Example
Style attributes such as WIDTH remain inline
at this stage. The WIDTHI style attribute is
an artifact of the layout stage of our process
and will be removed later.

rule replaceTableByDIV
 replace [html_interesting_element]

 <tag 'id=TableIDParam [stringlit]>
 <table RptTableParams
 [repeat html_any_tag_parameter]>
 RptTableContents
 [repeat html_table_content]
 </table>
 </tag>

 construct TrtoDIV [repeat div_tag]
 _ [replaceTrByDIV each RptTableContents]

 by
 <div 'id=TableIDParam RptTableParams>
 TrtoDIV
 </div>
end rule

Figure 12: Main TXL Transformation Rule for
DIV Conversion

Figure 13: Interface for Hand Renaming

works on the pages themselves to update the
style references in DIV sections to refer to the
new unified style names.

The first transformation, all of the CSS files
for individual pages are concatenated into one
merged file. A simple TXL pattern-matching
rule searches the merged file for exact clones of
each CSS style. Subsequent clones are marked
with the name of the original style and a table
of equivalences is output as a list to a clone ta-
ble file (Figure 16). Once the clone table file
has been output, the merged CSS file is opti-
mized by removing all marked clones to yield a
minimal CSS style file for the entire website.

<div id="top_left" float="left">

<div id="top_left_container_1">

<div id="top_left_content_1" width="250"

widthi="266">

content 1

</div>

<br clear="both"/>

</div>

<div id="top_left_container_2">

<div id="top_left_content_2" width="250"

widthi="266">

content 4

</div>

<br clear="both"/>

</div>

</div>

<div id="top_middle" float="left">

<div id="top_middle_container">

<div id="top_middle_content" width="300"

widthi="266">

content 2

</div>

<br clear="both"/>

</div>

</div>

Figure 14: DIV Conversion Example After Re-
naming

The second transformation is then run on ev-
ery page of the site, updating style references
of each DIV according to the clone table. Each
style reference is looked up in the clone table
and changed to the name of the style of which
it is a clone. The final result is a website with
a single merged, optimized CSS file used by all
pages of the site, as if the site had been hand
crafted to the modern web standard.

2.7 Hand Tuning

The final step in the process is the hand tuning
of the generated CSS styles to exactly match
minor details of the original look and feel. Typ-
ically this involves adding a bit of extra margin
space to the styles for some DIV blocks and
removing an occasional redundant attribute.
This step usually requires only a few minutes
of web programmer time to complete.

3 Experience

Our method has been tested on a number of
example websites with varying levels of table
layout complexity ranging from simple layout

#top_left {

float: left;

margin: auto;

}

#top_left_container_1 {

float: left;

margin: auto;

}

#top_left_container_2 {

float: left;

margin: auto;

}

#top_left_content_1 {

float: left;

margin: auto;

width: 250;

widthi: 266;

}

#top_left_content_2 {

float: left;

margin: auto;

width: 250;

widthi: 266;

}

#top_middle {

float: left;

margin: auto;

}

#top_middle_container {

float: left;

margin: auto;

}

#top_middle_content {

float: left;

margin: auto;

width: 300;

widthi: 266;

}

Figure 15: Example Extracted CSS Style File
As style attributes are extracted to a CSS style
file for each DIV converted page, they are re-
moved from the DIVs in the page so that all
style information appears only in the style file.

to complex ROWSPAN and COLSPAN struc-
tures in order to validate our table recognition
algorithms and the ability of our method to
preserve look and feel. In addition, two real en-
tire table-based legacy websites, one with sim-
ple table layout and one with complex, one
originally generated using Claris Home Page
and one with MS Front Page, have been con-
verted to test our clone detection and CSS gen-
eration methods. This section outlines our ex-
periences with some of these examples, first
with two simple layout sites and then two com-
plex.

"top_left" -> "top_left_container_1"

"top_left" -> "top_left_container_2"

"top_left" -> "top_middle"

"top_left" -> "top_middle_container"

"top_left" -> "top_right"

"top_left" -> "top_right_container_1"

"top_left" -> "top_right_container_2"

"top_left" -> "a_top_left"

"top_left" -> "a_top_left_container_1"

"top_left" -> "a_top_left_container_2"

"top_left" -> "a_top_middle"

"top_left" -> "a_top_middle_container"

"top_left" -> "a_top_right"

"top_left" -> "a_top_right_container_1"

"top_left" -> "a_top_right_container_2"

"top_left" -> "b_top_left"

"top_left" -> "b_top_left_container_1"

"top_left" -> "b_top_left_container_2"

"top_left" -> "b_top_middle"

"top_left" -> "b_top_middle_container"

"top_left" -> "b_top_right"

"top_left" -> "b_top_right_container_1"

"top_left" -> "b_top_right_container_2"

"top_left_content_1" -> "top_left_content_2"

"top_left_content_1" -> "a_top_left_content_1"

"top_left_content_1" -> "a_top_left_content_2"

"top_left_content_1" -> "b_top_left_content_1"

"top_left_content_1" -> "b_top_left_content_2"

"top_middle_content" -> "a_top_middle_content"

"top_middle_content" -> "b_top_middle_content"

Figure 16: Partial Example Clone Table
As well as an integrated CSS style file, clone
detection generates a clone equivalence table

for use by the clone resolution transformation.

3.1 Queen’s School of Computing
Home Page

The home page of the School of Computing’s
website was authored and is maintained by
hand in HTML using table layout, but with
pre-existing CSS styles that must be retained
in the result, making it an interesting differ-
ent kind of challenge for our method. The lay-
out is relatively simple, involving no ROWS-
PANs in the tables. Figure 17 shows the result
of converting the front page of this site using
our method, preserving existing style references
(such as ”class=wong”) while introducing our
own for the newly generated DIVs. New styles
generated by our process are concatenated to
the existing CSS style file for the site, yielding
an identical look and feel (Figure 18).

Figure 18: School of Computing Home Page Before and After Conversion

<div id="topcontainer">

<!--H1 -->

<div id="sep1">

<div id="topcontainercontent">

. . .

</div>

</div>

<div id="sep1">

<div id="leftsep1" class="wong">

<!-- -->

</div>

<div id="rightsep1">

. . .

</div>

<br clear="both"/>

</div>

<div id="sep1">

<div id="sep2bg">

<!-- -->

</div>

</div>

</div>

Figure 17: School of Computing Home Page
Following Conversion

3.2 IEEE Kingston Website

The IEEE Kingston Section website is small,
consisting of only seven HTML pages and 2,781
lines of code. It is a simple layout site, with no
ROWSPANs in its table structures, but uses a
highly complex hierarchical set of nested table
structures to layout its components. Due to
this complexity, conversion of the site initially
generated seven CSS files totally 5,598 lines of
style specifications, posing a challenge for our
clone detection and style minimization steps.
Clone detection found 769 cloned styles that
could be minimized and removed (see example
Figure 19), reducing the final CSS style file for

#topnavitem1 {
 float: left;
 margin: auto;
 widthi: 57;
 }
#topnavitem2 {
 float: left;
 margin: auto;
 widthi: 57;
 }
#topnavitem3 {
 float: left;
 margin: auto;
 widthi: 57;
 }
#topnavitem4 {
 float: left;
 margin: auto;
 widthi: 57;
 }
#topnavitem5 {
 float: left;
 margin: auto;
 widthi: 57;
 }
#topnavitem6 {
 float: left;
 margin: auto;
 widthi: 57;
 }
#topnavitem7 {
 float: left;
 margin: auto;
 widthi: 57;
 }

. . .

#topnavitem1 {
 float: left;
 margin: auto;
 widthi: 57;
 }

Figure 19: A Portion of the CSS Style File for
the IEEE Kingston Website Before and After
Clone Detection

the site to only 323 lines. Due to the large
number of similar generated styles, the renam-
ing stage for this site used a significant amount
of human interaction time. This points to a po-
tential limitation of our method that may need
to be addressed in future work.

3.3 James Cordy’s Home Page

The home page of the second author’s web-
site uses one ROWSPAN in the table layout

<table cellspacing="0" cellpadding="0" width="100%">

<tr>

<td rowspan="4" width="190">

. . .

</td>

<td nowrap>

. . .

</td>

<td>

. . .

</td>

</tr>

<tr>

<td>

. . .

</td>

<td>

. . .

</td>

</tr>

<tr>

<td colspan="2">

. . .

</td>

</tr>

<tr>

<td colspan="2">

. . .

</td>

</tr>

. . .

</table>

Figure 20: Portion of Original Table Layout of
James Cordy’s Home Page

structures and controls layout using WIDTH
specifications with both absolute and percent
sizes as well as NOWRAP attributes, which
are not available in CSS styles (Figure 20).
This is typical of many legacy sites and makes
a good example for our method. Following
transformation, table partitioning has sepa-
rated the ROWSPAN cells and maintained rel-
ative position using the FLOAT:LEFT style
in the resulting CSS and DIV structure. Al-
though there is no style corresponding to
the NOWRAP attribute in the web standard,
our transformation introduces a special NOBR
DIV class, which is supported by the major
browsers, to maintain the NOWRAP behaviour
in the result (Figure 21).

3.4 TXL.ca Website

The TXL website was originally created using
the early website authoring tool Claris Home

<div id="topleft">

<div id="topleftbody">

<div id="topleftcontent">

. . .

</div>

</div>

</div>

<div id="topright">

<div id="toprightbody1">

<div id="toprightboycontent">

<div class="nobr">

. . .

</div >

</div>

<div id="toprightboycontent">

. . .

</div>

</div>

<div id="toprightbody1">

<div id="toprightboycontent">

. . .

</div>

<div id="toprightboycontent">

. . .

</div>

</div>

<div id="toprightbody1">

<div id="toprightbody3content">

. . .

</div>

</div>

<div id="toprightbody1">

<div id="toprightbody3content">

. . .

</div>

</div>

</div>

<br clear="both"/>

Figure 21: Corresponding Portion of Gener-
ated DIV Layout of James Cordy’s Home Page

Page, which predates modern web standards
and uses table layout and complex inline style
attributes to achieve a pleasing result. Since
the HTML code was originally automatically
generated but is now hand maintained, this
site is a prime candidate for our conversion.
The site contains 38 HTML pages comprising
approximately 4,996 lines along with two CGI
scripts with dynamic page generation. Like
many legacy retail sites, it includes pages with
dynamic order forms and responses and makes
a challenging realistic example.

The TXL site has a very complex table-based
layout including multiple ROWSPANs at the
same level. These pose a particular difficulty
for table partitioning in that there is no unique

solution. Our conversion resolves such ambi-
guities by choosing the ROWSPAN with the
largest span to begin the partitioning, and then
recursively repartitioning the next largest un-
til all ROWSPANs have been resolved, giving
a top-down implicit hierarchy.

The realistic size of this production web-
site provided an interesting challenge for our
clone detection and style minimization algo-
rithms as well. The site has two different kinds
of pages which use two quite different look-and-
feel styles. Before the clone detection and re-
moval process, the page-by-page conversion to
DIV yielded 38 CSS files with 19,028 lines of
style code. However, after consolidation, detec-
tion and removal of 2,850 style clones, the final
sitewide CSS file was reduced to only 647 lines,
a maintainable and reasonably sized stylesheet
for such a complicated website (Figure 22).

The result of the conversion was a clearly
maintainable web standards-compliant new
website which is virtually indistinguishable
from the original in look and feel (Figure
23) and has all the advantages of a hand
crafted modern standard website in compati-
bility, maintainability and efficiency.

3.5 Other Examples

Several other websites have been used as ex-
amples for our process, including the IEEE IC-
CBSS conference website, which poses the new
problem of multiple ROWSPANs at multiple si-
multaneous levels. At present our system can-
not automatically partition such sites (which
are relatively unusual), but it can still be ap-
plied, using a few minutes of hand partitioning
for the pages with this problem. The conver-
sion of this site yielded a home page which is lit-
erally indistinguishable from the original, while
being completely migrated to the XHTML,
DIV and CSS web standards.

3.6 Performance

Our process is very fast, requiring for exam-
ple only two or three minutes of transformation
time for the entire TXL website conversion on
a standard PC. The two human intervention
steps, tag renaming and final style tuning, re-
quire a skilled web programmer to be done effi-

#topcontainer {

padding: 0;

height: auto;

margin: auto;

width: 798px;

text-align: center;

}

#sep1 {

float: left;

margin: auto;

}

#topcontainercontent {

text-align: left;

width: 798px;

float: left;

margin: auto;

}

#leftsep1 {

text-align: left;

float: left;

height: 24px;

margin: auto;

width: 675px;

}

#rightsep1 {

text-align: right;

background-color: #ffcc00;

float: left;

height: 24px;

margin: auto;

vertical-align: top;

width: 123px;

}

#sep2bg {

text-align: left;

background-color: #ffffff;

float: left;

height: 1px;

margin: auto;

width: 798px;

}

Figure 22: Part of Generated CSS Stylesheet
for the TXL.ca Website

ciently. Even so, each of these steps took only
ten to 15 minutes of programmer time in the
TXL website conversion, for a total of less than
30 minutes elapsed time to convert the 38 page
table-based legacy site to a maintainable mod-
ern web standards compliant result.

4 Related Work

Some commercial tools offer a rudimentary
form of automated web standards conversion.
For example, Adobe Dreamweaver [1] has
a conversion that can automatically convert

Figure 23: TXL.ca Website Main Page Before and After Conversion
(Rendered in different browser window sizes.)

pages from table layout to DIV-based layout.
However, these tools use only local CSS styles
on a per page basis and do not recognize com-
monality, with the result that the converted
page is no more maintainable than the origi-
nal. In the case of Dreamweaver, the situation
is even worse since in order to maintain an iden-
tical look the tool resorts to converting to ab-
solute positions and sizes for all page elements,
losing all structure and making it impossible to
recognize style clones even by hand.

Many other researchers have worked in the
broader area of web technology migrations, in-
cluding several that have exploited the same
source transformation engine, TXL, that un-
derlies our work. Hassan et al. [10] have used
TXL transformations to migrate web applica-
tions from ASP to the NSP web framework
while preserving the original code structure and
commenting. Xu et al. [20] have used TXL to
modernize embedded Java code in JSP pages
to custom-tag based JSP applications.

In other work, Jiang et al. [13] have used pat-
tern matching techniques to automatically ana-
lyze server generated pages to aid in migrating
web applications to web services. Ping et al.
[15] have described an approach to migrating
web applications from IBM Net.Data to JSP
while separating database aspects from presen-
tation logic. Ricca et al. [16] have used clus-
tering techniques to identify static pages that
can be transformed to dynamic pages.

Our method for clone detection is based on
our previous work with Synytskyy [7] which
addressed the problem of identifying near-miss
clones in static and dynamic web pages. Our

method adopts only exact clone detection from
that work, but could be extended to parame-
terized styles using near-miss clone detection.
Many other clone detection techniques could
be used as well, for example Baxter’s method
based on abstract syntax trees [3] which also
handles near-miss clones.

Our simple table partitioning strategy is only
roughly based on the wide range of literature in
table recognition [22], and relates most closely
to methods such as Handley’s [9] which address
the higher-level logical structure of tables. Full
table recognition is a much more ambitious task
which includes table detection, functional and
structural analysis, and finally table interpre-
tation [12]. One piece of work that relates well
to ours because it applies similarity-based rea-
soning to detect cells in tables is that of Chen
et al. [4], which has been used to detect and
analyze tables in airline information web pages.
Yoshida et al. [21] have described a method to
integrate HTML tables based on the category
of object in the table. However, in these cases
the focus has been on the contents of true ta-
bles rather than on table-based layout.

Finally, we have used the TXL transforma-
tion language [6] in implementing our source
transformations. Any other modern source
transformation system, for example ASF+SDF
[18] or Stratego [19] could serve as well. Advan-
tages of TXL over XSLT [5] in our application
include its ability to handle malformed input
using robust parsing [2], its ability to express
complex nonstructural patterns [8], and previ-
ous experience in applying it to table recogni-
tion and clone detection tasks [23, 7].

5 Summary & Future Work

We have presented an automated process for
migrating legacy websites using table-based
layout to modern, maintainable XHTML, DIV
and CSS web standards-based websites with
all the advantages of a hand-crafted modern
replacement. Our process uses table recogni-
tion and software clone detection technology
with multi-pass source transformation to yield
a high quality result that preserves hierarchical
and layout structure of web pages while synthe-
sizing a minimized common stylesheet for the
entire site. The look and feel of converted web-
sites is virtually identical to the original.

Our method has a number of limitations that
bear further work. As noted in Section 3.2,
websites with large numbers of small similar
elements can make the renaming task an is-
sue. This could be addressed with better name
inference for generated DIVs, or better clues
to the programmer indicating which styles are
likely to be eliminated as clones. Multiple
ROWSPANs at multiple simultaneous levels
pose problems that must be assisted by hand.
While this limitation can largely be overcome
with better table analysis, to some extent it
derives from the limited expressiveness of the
DIV feature itself, and may always need some
hand tuning. At present our system does not
handle web applications written in server side
languages such as ASP and JSP. This can po-
tentially be addressed by adopting the multilin-
gual parsing methods of Synytskyy et al. [17]
to separate page factors using robust parsing.
And of course the method needs to be validated
on a larger number of legacy websites (of which
there is no lack of examples).

Acknowledgements

This work is supported by the Natural Sciences
and Engineering Research Council of Canada.

About the Authors

Andy Mao is an IT specialist in the global busi-
ness services division of the IBM Pacific devel-
opment center in Vancouver, BC. Prior to join-
ing IBM, Andy was a web developer at Blast

Radius Inc. from 2003-05. He holds a B.A. in
Information Technology from York University
and recently completed his Master’s in Com-
puting at Queen’s University under the super-
vision of James Cordy and Thomas Dean. His
research interests include source transforma-
tion, software re-engineering and e-commerce
web applications.

James Cordy is a Professor and recent for-
mer Director of the School of Computing at
Queen’s University. From 1995 to 2000 he
was Vice President and Chief Research Scien-
tist at Legasys Corporation, a software tech-
nology company specializing in legacy software
system analysis and renovation. Dr. Cordy
is a founding member of the Software Tech-
nology Laboratory at Queen’s and winner of
the 1994 ITRC Innovation Excellence award
and the 1995 ITRC Chair’s Award for En-
trepreneurship in Technology Innovation. He
is a member of the ACM, a senior member of
the IEEE and an IBM CAS Faculty Fellow.

Thomas Dean is an Associate Professor in
the Department of Electrical and Computer
Engineering at Queen’s University and an Ad-
junct Associate Professor at the Royal Military
College of Kingston. His background includes
research in air traffic control systems, language
formalization and five and a half years as a
Sr. Research Scientist at Legasys Corporation
where he worked on advanced software trans-
formation and evolution techniques in an in-
dustrial setting. His current research interests
are software transformation, web site evolution
and the security of network applications.

References

[1] Adobe. Dreamweaver CS3. http://
www.adobe.com/products/dreamweaver/.

[2] D.T. Barnard and R.C. Holt. Hierarchic
Syntax Error Repair for LR Grammars.
Int. J. Computing and Information Sci-
ences, 11(4):231–258, 1982.

[3] I.D. Baxter, A. Yahin, L. Moura,
M. Sant’Anna, and L. Bier. Clone Detec-
tion using Abstract Syntax Trees. In IEEE
14th Int. Conf. on Software Maintenance,
pages 368–377, 1998.

[4] H. Chen, S. Tsai, and J. Tsai. Mining
Tables from Large Scale HTML Texts. In
18th Conf. on Computational Linguistics,
pages 166–172, 2000.

[5] J. Clark. XSL Transformations (XSLT)
v1.0. http://www.w3.org/TR/xslt, 1999.

[6] J.R. Cordy. The TXL Source Transfor-
mation Language. Science of Computer
Programming, 61(3):190–210, 2006.

[7] J.R. Cordy, T.R. Dean, and N. Synyt-
skyy. Practical Language-independent De-
tection of Near-miss Clones. In CASCON
’04: 2004 Conf. of the Center for Ad-
vanced Studies on Collaborative Research,
pages 1–12, 2004.

[8] T.R. Dean, J.R. Cordy, A.J. Malton,
and K.A. Schneider. Agile parsing in
TXL. J. Automated Software Engineering,
10(4):311–336, 2003.

[9] J. Handley. Table Analysis for Multi-line
Cell Identification. In Document Recog-
nition and Retrieval VIII, volume 4307,
pages 34–43, 2001.

[10] A.E. Hassan and R.C. Holt. Migrating
Web frameworks using Water Transforma-
tions. In IEEE 27th Int. Conf. on Com-
puter Software and Applications, pages
296–303, 2003.

[11] J. Hu, R. Kashi, D. Lopresti, and G. Wil-
fong. Table Structure Recognition and its
Evaluation. In Doc. Recog. and Retrieval
VIII, volume 4307, pages 44–55, 2001.

[12] M. Hurst. Layout and Language: Chal-
lenges for Table Understanding on the
Web. In 1st Int. Workshop on Web Doc-
ument Analysis, pages 27–30, 2001.

[13] Y. Jiang and E. Stroulia. Towards
Reengineering Web Sites to Web-services
Providers. In 8th European Conf. on
Software Maintenance and Reengineering,
pages 296–308, 2004.

[14] R. Koschke. A Survey of Research on Soft-
ware Clones. In Duplication, Redundancy,
and Similarity in Software, number 06301
in Dagstuhl Seminar Proceedings, 2007.

[15] Y. Ping, J. Lu, T.C. Lau, K. Kontogiannis,
T. Tong, and B. Yi. Migration of Legacy
Web Applications to Enterprise Java En-
vironments net.data to JSP Transforma-
tion. In CASCON ’03: 2003 Conf. of the
Center for Advanced Studies on Collabo-
rative Research, pages 223–237, 2003.

[16] F. Ricca and P. Tonella. Using Cluster-
ing to Support the Migration from Static
to Dynamic Web Pages. In 11th IEEE
Int. Workshop on Program Comprehen-
sion, pages 207–216, 2003.

[17] N. Synytskyy, J.R. Cordy, and T.R. Dean.
Robust Multilingual Parsing using Island
Grammars. In CASCON ’03: 2003 Conf.
of the Center for Advanced Studies on Col-
laborative Research, pages 266–278, 2003.

[18] M. G. J. van den Brand, J. Heering,
P. Klint, and P. A. Olivier. Compil-
ing Language Definitions: the ASF+SDF
Compiler. ACM Trans. on Prog. Lan-
guages and Systems, 24(4):334–368, 2002.

[19] E. Visser. Program Transformation with
Stratego/XT: Rules, Strategies, Tools,
and Systems in Stratego/XT 0.9. In
Domain-Specific Program Generation, vol-
ume 3016 of LNCS, pages 216–238, 2004.

[20] S. Xu and T.R. Dean. Transforming Em-
bedded Java to Custom Tags. In IEEE 5th
Int. Workshop on Source Code Analysis
and Manipulation, pages 173–182, 2005.

[21] M. Yoshida, K. Torisawa, and J. Tsujii.
A method to integrate tables of the world
wide web. In 1st int. Workshop on Web
Document Analysis, pages 31–34, 2001.

[22] R. Zanibbi, D. Blostein, and J.R. Cordy.
A Survey of Table Recognition: Models:
Observations, Transformations, and Infer-
ences. Int. J. Document Analysis and
Recognition, 7(1):1–16, 2004.

[23] R. Zanibbi, D. Blostein, and J.R. Cordy.
The Recognition Strategy Language. In
ICDAR ’05: 8th Int. Conf. on Document
Analysis and Recognition, pages 565–569
Vol. 2, 2005.

