

A Mutation / Injection-Based Automatic
Framework for

Evaluating Code Clone Detection Tools
Chanchal K. Roy and James R. Cordy

School of Computing, Queen’s University, Kingston, Ontario, Canada

Abstract
In this poster we present an automated method for empir-
ically evaluating clone detection tools. Our method lever-
ages mutation-based techniques to overcome existing lim-
itations of tool evaluation studies by automatically synthe-
sizing large numbers of known clones based on an edit-
ing theory of clone creation. Our framework is effective in
measuring recall and precision of clone detection tools for
various types of fine-grained clones in real systems without
manual intervention.

1 Introduction
•Copying a code fragment and reusing it by

pasting with or without minor modifications is
a common practice in software development.

•Consequently, software systems often have
duplicated code (between 7% and 23%) [2, 8].

•However, duplication is harmful for software
maintenance and evaluation (e.g., bug propa-
gation) [8].

• Thus, need to detect these “code clones”.

• Fortunately, a great many tools have been pro-
posed [7, 8].

Motivation:

• This huge number of tools calls for quantitative
evaluations and there have been several.

• But there is a lack of a validated clone bench-
mark.

• And huge manual effort is required to hand
check large numbers of candidate clones.

• Bellon et al. [3] is the most extensive one to-
date, but only 2% of clones were oracled and
many parameters may have influenced the re-
sults [2].

• Thus, we propose a controlled experiment, us-
ing the well known mutation analysis technique
[1] from the testing community.

2 Background
Code Fragment: A code fragment (CF) is any
sequence of code lines and is identified by its file
name and begin-end line numbers, denoted as a
triple (CF.FileName, CF.BeginLine, CF.EndLine).

Code Clone: A code fragment CF2 is a clone of
another code fragment CF1 if they are similar by
some given definition of similarity, that is, f(CF1)
= CF2 where f is the similarity function (see clone
types below).

Clone Pairs/Classes: Two fragments that are
similar to each other form a clone pair (e.g.,
(CF1,CF2)), and when many fragments are simi-
lar, they form a clone class or clone group.

In this example, five clone pairs, <F1(a), F2(a)>,
<F1(b), F2(b)>, <F2(b), F3(a)>, <F2(c), F3(b)>
and <F1(b), F3(a)>. But actually three clone
pairs, <F1(a + b), F2(a + b)>, <F2(b + c), F3(a
+ b)> and <F1(b), F3(a)>. One clone class is
<F1(b), F2(b), F3(a)>.

for (int i=1; i<n; i++) { for (int i=1; i<n; i++) {
 sum = sum + i; sum = sum + i;
} }

if (sum <0) { if (sum < 0) { if (result < 0) {
 sum = n - sum; sum = n - sum; result = m - result;
} } }

 while (sum < n) { while (result < m) {
 sum = n / sum ; result = m / result
 } }

 Fragment 1: Fragment 2: Fragment 3:

a a

b b

c

a

b

 …

 …

 …

 …

 … …

Clone Types: The definition of clone is inher-
ently vague in the literature [8]. However, the fol-
lowing four types can roughly be defined [3, 8].

Type 1: Identical code fragments except for vari-
ations in whitespace, layout and comments.

Type 2: Syntactically identical fragments except
for variations in identifiers, literals, types,
whitespace, layout and comments.

Type 3: Copied fragments with further modifica-
tions such as changed, added or removed
statements, in addition to variations in iden-
tifiers, literals, types, whitespace, layout and
comments.

Type 4: Two or more code fragments that per-
form the same computation but are imple-
mented by different syntactic variants.

3 Editing Taxonomy and Mu-
tation Operators for Cloning

• For any mutation-based analysis, availability of
a set of representative mutation operators is a
primary concern.

• For example, numerous mutation generators
are available for generating potential “bugs” in
various languages [1].

•However, mutation operators for code cloning
have to our knowledge NOT been studied so
far.

• Thus, we have designed an editing taxonomy
of different clone types [7] by studying the lit-
erature [8]. The taxonomy is also validated by
studying the copy/paste patterns of the func-
tion clones [5] in our empirical studies [10].

• This taxonomy has been used to design muta-
tion operators for cloning.

void sumTimes(int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + i; //C2
 product = product * i;
 fun(sum, product); }} //C3

void sumTimes (int n) {
float sum=0.0; //C0
double product =1.0; // C1’
for (int i=1; i<=n; i++) {
 sum=sum + i; //C2’’
 product = product * i;
 fun(product, sum); } }

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product); }} //C3

Arbitrary Renaming

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product, n); }} //C3

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum) ; }} //C3

Delete one or more lines

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++)
 if (i % 2==0) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product, n); }} //C3

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {

 if (i % 2==0) sum += (i * i) ;
 product = product * (i * i);

 fun(sum, product, n); }} //C3

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++)
 if (i % 2==0) {
 fun(sum, product, n); //C3
 product = product * (i * i);
 sum=sum + (i * i) ; }} //C2

void sumTimes (int n) {
double product =1.0; // C1
float sum=0.0;
for (int i=1; i<=n; i++)
 if (i % 2==0) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product, n); }} //C3

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
int i=0;
while (i <= n)
 if (i % 2==0) {
 sum=sum + (i * i) ; //C2
 product = product * (i * i);
 fun(sum, product, n); //C3
 i = i +1; } }

Systematic renaming Expressions for parameters

void calculate(int m) {
int s = 0;
int p =1; // C1
for (int j=1; j<=m; j++){
 s = s + j; //C2
 p = p * j;
 foo(s, p); } } //C3

void calculate(int m) {
int s=0;
int p =1; //C1
for (int j=1; j<=m; j++)
 { s=s+j; //C2
 p= p*j;
 foo(s, p); //C3
 } }

void calculate(int m) {
int s = 0;
int p =1; // C1_mod
for (int j=1; j<=m; j++)
 { s = s + j; //C2_mod
 p = p * j; //C_new
 foo(s, p); //C3
 } }

Reordering of statements
AND control replacements

Control replacements Reordering of other statements Reordering of declaration statements

Insert one or more lines Modify one or more lines

Further editing of whole lines Small deletion within a line Small insertion within a line

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {
 sum=sum + (i * i) ; //C2
 //line deleted
 fun(sum, product , n); }}//3

 b c

 d f e

 g h

 j

 i k

 l m n

 a

Comments and whitespace change Formatting change Reuse by copy & paste

In the following table we list the different mutation
operators.

Name Random Editing Activities Ref** Type
mCW Changes in whitespace and a => b Type 1
mCC Changes in comments
mCF Changes in formating a => c
mSRI Systematic renaming of identifiers* c => d
mARI Arbitrary renaming of identifiers* c => e Type 2
mRPE Replacement of identifiers with expres-

sions
d => f

mSIL Small insertions within a line f => g
mSDL Small deletions within a line f => h
mILs Insertions of one or more lines g => i Type 3
mDLs Deletions of one or more lines g => j
mMLs Modifications of whole line(s) g => k
mRDS Reordering of declarations i => l
mROS Reordering of other statements+ i => m Type 4
mCR Replacing one type of control by another i => n
**Refers to the clone taxonomy above
*Function names, variables, data types and literal values
+Data-dependent or independent statements

• Each mutation operator performs single level
editing as of the table above.

•Combination of the mutation operators has
been used to perform multiple level editing,
e.g. (Original Fragment (a) => Formatting
change (c) => systematic renaming of identi-
fiers (d) => expressions for parameters (f) =>
small insertion within a line (g) => insertion
of new lines (i) => control replacement (n)) by
following the solid (red) lines on the example
taxonomy.

• The source transformation language TXL [4] is
used to implement the mutation operators.

4 The Framework
The framework has two main phases as follows:

Generation Phase: Randomly mutated clone
fragments are generated from the original code
base and randomly injected into the code base
to get mutated code bases.

Random
Fragment
Selection

Mutator 1

Mutator 2

Mutator N

Injected Mutant
Source Coordinate

Database

Random
Fragment
Injection

Random
Fragments

Original
Code Base

Randomly Mutated
Fragments

R
andom

ly Injected M
utant C

ode B
ases

Evaluation Phase: The mutated code bases are
used to evaluate and compare clone detection
tools. The random mutation and injection steps
allow for thousands of randomly placed clones to
be generated.

Injected Mutant
Source Coordinate

Database

Injected
Mutant 1

Code Base

Injected
Mutant M
Code Base

Injected
Mutant 2

Code Base

Tool 1

 Tool 2

Tool K

Tool 1
Mutant 1
Report

Tool 2
Mutant 1
Report

Tool K
Mutant 1
Report

Mutant 1
Tool Eval

Mutant 2
Tool Eval

Mutant M
Tool Eval

Evaluation
Database

Statistical
Analysis &
Reporting

5 Measurement of Recall
Recall definition is the usual one in IR research,
that is, the number of items detected divided by
the total number of detectable items.

If the mutant clone moCF of original code frag-
ment oCF injected into mutant code base mioCB
of code base oCB is “killed” (i.e., (oCF, moCF) is
detected as a clone pair) by the detector, then its
recall for that clone is 1, otherwise it is 0. We can
denote this decision by:

R
(oCF,moCF)
T =

{
1, if (oCF, moCF) is detected by T in mioCB;
0, otherwise.

The same mutated code fragment, moCF can
be randomly injected to the original code base,
oCB any number of times, producing n different
mutated / injected versions of oCB, say mioCB1,
mioCB2 ... mioCBn.

The random fragment selector chooses m code
fragments (say oCF1, oCF2 ... oCFm) from
the code base, and each of them will be mu-
tated by each mutation operator dmOP produc-
ing mutated code fragments moCF1, moCF2 ...
moCFm.

Thus, the recall for mutation operator dmOP for
tool T is given by:

RdmOP
T =

∑n∗m
i=1 R

(oCFi,moCFi)
T

m ∗ n

Similarly, recall of tool T for Type 1 clones (three
mutation operators and their combinations) can
be defined as:

R
Typ1
T =

∑n∗m∗(3+4)
i=1 R

(oCFi,moCFi)
T

m ∗ n ∗ (3 + 4)

The overall recall for tool T is the summary of
recall for the l clone mutation operators and c
combinations applied n times to m selected code
fragments, given by:

Roverall
T =

∑n∗m∗(l+c)
i=1 R

(oCFi,moCFi)
T

m ∗ n ∗ (l + c)

6 Measurement of Precision
Using the notation of the previous subsection, let
us say that for a mutated code fragment moCF
created by mutation operator dmOP, a tool T re-
ports k clone pairs, (moCF, CF1), (moCF, CF2)
... (moCF, CFk) in mutant code base mioCB.

If automatic validation reports that v of these are
valid, then the unit precision of the tool T for the
single injection of moCF for clone type/mutation
operator dmOP is as follows:

P
dmOP w.r.t. single injection of moCF
T =

v

k

Similarly to the previous section, the precision for
mutation operator dmOP, for Type 1 and for a tool
T (overall precision) is given by:

P dmOP
T =

∑n∗m
i=1 vi∑n∗m
i=1 ki

P
Typ1
T =

∑n∗m∗(3+4)
i=1 vi

∑n∗m∗(3+4)
i=1 ki

P overall
T =

∑n∗m∗(l+c)
i=1 vi

∑n∗m∗(l+c)
i=1 ki

7 Mapping of Code Fragments
We say that a code fragment CF1 is contained
by another fragment CF2 if both are in the same
file, and and the range of line numbers of CF1
is within the range of line numbers of CF2. In
algorithmic form,
boolean isContained(CF CF1, CF CF2) {

return ((CF1.FileName == CF2.FileName)
AND (CF1.BeginLine >= CF2.BeginLine)
AND (CF1.EndLine <= CF2.EndLine))

}

The following algorithm implements our defini-
tion of detection for a mutant pair (MP) consisting
of clone mutant moCF of original fragment oCF
and a tool T ’s clone candidate set (CSet) of de-
tected clone pairs C:

boolean isDetected(MP (oCF, moCF), CSet C) {
for each clone pair (CF1, CF2) in C {

if ((isContained(oCF, CF1)
AND isContained(moCF, CF2))

OR (isContained(moCF, CF1)
AND isContained(oCF, CF2)))

return True;
}
return False;

}

To measure precision, we need to find all pairs
in C for which one of the fragments is the mutant
clone moCF :
CSet validateUs(CF moCF, CSet C){

CSet ValidateMe = {};
for each clone pair (CF1, CF2) in C {

if (isContained(moCF, CF1)
OR isContained(moCF, CF2))

ValidateMe = ValidateMe + (CF1, CF2);
}
return ValidateMe;

}

8 Validation of Clone Pairs
•Recall measurement is completely automatic

and no validation of clone pairs is required.
• But, to accurately measure precision we need

to validate those few clone pairs that are asso-
ciated with the mutant code fragment.
•We develop a clone validator based on our

NICAD [6, 10] tool.
• The validator is well aware of the mutation

operators applied and changes made on the
cloned fragment, and thus can accurately
measure their real similarity.

9 Adapting Tools to the
Framework

• The tool should be run from the command line
(most tools usually do)
• It should provide a textual report of the de-

tected clones, the usual column-oriented tex-
tual format of full file name and begin/end line
numbers of the code fragments of the candi-
date clone pairs.

10 Conclusion
• Existing studies for empirically evaluating

clone detection tools have had several limita-
tions.
•We have designed a new approach for evaluat-

ing clone detection tools in a controlled way by
borrowing an established technique from the
testing community – mutation-based analysis.
• An experiment was successfully conducted

with three different variants of our NICAD tool.
• The framework can run subject tools with vary-

ing tunable parameters suitable for identifying
different types of clones.
• The framework is language-specific, and cur-

rently supports only C, Java and C#. How-
ever, since the majority of the framework is
language-independent, it is not difficult to add
new languages.
•Detailed description of the framework can be

found at [11] and an earlier outline at [9].

References
[1] J. H. Andrews, L. C. Briand and Y. Labiche. Is Mutation

an Appropriate Tool for Testing Experiments? In ICSE,
pp. 402-411, 2005.

[2] B.S. Baker. Finding Clones with Dup: Analysis of an
Experiment. IEEE TSE, Vol. 33(9):608-621, 2007.

[3] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E.
Merlo. Comparison and Evaluation of Clone Detection
Tools. IEEE TSE, Vol. 33(9): 577-591, 2007.

[4] J.R. Cordy. The TXL source transformation language.
Science of Computer Programming, 61(3):190-210,
2006.

[5] C.K. Roy and J.R. Cordy. WCRE’08 Clone Re-
sults: http://www.cs.queensu.ca/home/stl/
download/NICADOutput/.

[6] C.K. Roy and J.R. Cordy. NICAD: Accurate Detection
of Near-Miss Intentional Clones Using Flexible Pretty-
Printing and Code Normalization. In ICPC, pp. 172-
181, 2008.

[7] C.K. Roy and J.R. Cordy. Scenario-Based Comparison
of Clone Detection Techniques. In ICPC, pp. 153-162,
2008.

[8] C.K. Roy and J.R. Cordy. A Survey on Software Clone
Detection Research. Queen’s School of Computing TR
2007-541, 115 pp., 2007.

[9] C.K. Roy and J.R. Cordy. Towards a Mutation-Based
Automatic Framework for Evaluating Clone Detection-
Tools. In C3S2E, Student Poster, pp. 137-140, 2008.

[10] C.K. Roy and J.R. Cordy. An Empirical Study of Func-
tion Clones in Open Source Software. In WCRE, pp.
81-90, 2008.

[11] C.K. Roy and J.R. Cordy. A Mutation / Injection-based
Automatic Framework for Evaluating Code Clone De-
tection Tools. Submitted to ICSE, 11 pp., 2009.

