
NICAD: Accurate Detection of Near-Miss Intentional Clones
Using Flexible Pretty-Printing and Code Normalization

Chanchal K. Roy and James R. Cordy
School of Computing, Queen’s University

Kingston, ON, Canada K7L 3N6
{croy, cordy}@cs.queensu.ca

Abstract

This paper examines the effectiveness of a new language-
specific parser-based but lightweight clone detection ap-
proach. Exploiting a novel application of a source trans-
formation system, the method accurately finds near-miss
clones using an efficient text line comparison technique.
The transformation system assists the method in three ways.
First, using agile parsing it provides user-specified flexi-
ble pretty- printing to remove noise, standardize formatting
and break program statements into parts such that poten-
tial changes can be detected as simple linewise text differ-
ences. Second, it provides efficient flexible extraction of po-
tential clones to be compared using island grammars and
agile parsing to select granularities and enumerate poten-
tial clones. Third, using transformation rules it provides
flexible code normalization to allow for local editing differ-
ences between similar code segments and filtering out of un-
interesting parts of potential clones. In this paper we intro-
duce the theory and practice of the framework and demon-
strate its use in finding function clones in C code. Early
experiments indicate that the method is capable of finding
near-miss clones with high precision and recall, and with
reasonable performance.

1. Introduction
Copying a code fragment and reusing it by pasting with

or without minor modifications is a common practice in
software development environments. As a result software
systems often have sections of code that are similar, called
software clones or code clones. Previous research shows
that a significant amount of code (between 7% to 23%) of
a software system is cloned code [3, 5, 22, 26]. While pro-
grammers often practise cloning with clear intent [23] and
it is beneficial in certain situations [21], one of the major
difficulties with such duplicated fragments is that if a bug is
detected in a code fragment, all the fragments similar to it
should be investigated to check for same bug [25]. More-

over, when enhancing or adapting a piece of code, dupli-
cated fragments can multiply the work to be done [19].

From a program comprehension point of view, clones
carry important domain knowledge and thus studying the
clones in a system can assist in understanding it [19]. More-
over, by refactoring the clones detected, one can potentially
improve understandability, maintainability and extensibil-
ity, and reduce the complexity of the system [15].

Fortunately, several (semi-)automated techniques for de-
tecting code clones have been proposed (c.f., Section 11).
Several studies show that lightweight text-based techniques
can find clones with high accuracy and confidence, but de-
tected clones often do not correspond to appropriate syntac-
tic units [7, 30]. Parser-based syntactic (AST-based) tech-
niques, on the other hand, find syntactically meaningful
clones but tend to be more heavyweight, requiring a full
parser and subtree comparison method. Moreover, neither
text-based nor parser-based techniques have been found to
be effective in detecting near-miss clones [7].

In this paper, we propose a multi-pass approach
which is parser-based and language-specific but reasonably
lightweight, using simple text line rather than subtree com-
parison to achieve good time and space complexity. We ex-
ploit the benefits of TXL [9] to efficiently identify and ex-
tract potential syntactic clones with pretty-printing to elim-
inate formatting differences and noise. TXL’s agile parsing
[11] allows us to flexibly select granularity, and to tune the
pretty-printing of potential clones to introduce additional
line breaks such that potential variances within statements
and other structures can be accurately reflected using a sim-
ple text line comparison. TXL’s transformation rules allow
us to add flexible code normalization and filtering of unin-
teresting or irrelevant sections in the potential clones, yield-
ing accurate minimal differences that are easily traced back
to original source using source coordinates.

Our approach is lightweight in the sense that, like other
text-based techniques (e.g., Duploc [13]), we work directly
on program source text. Although pretty-printing, code
normalization and filtering all use TXL’s agile parsing and



transformation rules, they can be done on a source file-by-
file basis and are scalably independent of the program’s
overall structure. The method can be applied to any lan-
guage for which we have an approximate (pretty-printing)
TXL grammar and (optionally) examples of the desired
variances and code normalizations for the language. It is
language-specific in that sense.

Although straightforward in TXL (for example, see [8]),
in this work we are not aiming at detecting renamed or con-
sistently renamed clones, where identifiers and literals may
be changed in a copied fragment. We assume that in the case
of intentional clones the user normally does not arbitrarily
perform renaming operations on the reused code unless oth-
erwise necessary. (However, Li et al. [25] have reported
that there may actually be a significant number of renamed
clones, and certainly we will attack this problem in future
work.) There are also well established techniques to de-
tect such parameterized clones (e.g., Dup [3]) and renamed
clones (e.g., CCFinder [20]). Thus we are primarily aim-
ing at near-miss clones resulting from intentionally copied
fragments that may have undergone editing to adapt to the
new context (see [29] for a range of examples).

The rest of the paper is organized as follows. Following
a short introduction to TXL, agile parsing and island gram-
mars in Section 2, we provide an overall summary of our
approach in Section 3. In Section 4 we describe our flexible
multi-granular method for extraction of potential clones us-
ing TXL. In Section 5 we discuss adapting pretty-printing to
eliminate noise, standardize formatting and isolate variance
to lines using agile parsing, and in Sections 6 and 7 we add
TXL rules to allow for flexible code abstraction and filtering
of potential clones respectively. In Section 8 we discuss op-
timizing the finding of near-miss clones using simple text-
line comparison of potential clones, and generating output
in Section 9. Section 10 reports our first empirical results
in using the framework to detect known function clones in
two C programs. Finally, Section 11 discusses the relation
of our work with previous techniques, and Section 12 con-
cludes the paper with our next steps.

2. Background

Our approach is based on lightweight agile parsing tech-
niques supported by the TXL source transformation sys-
tem. TXL [9] is a special-purpose programming language
designed to provide rule-based source transformation using
functional specification and interpretation. TXL programs
have two main parts: a context-free grammar that describes
the syntactic structure of inputs to be transformed, and a
set of context-sensitive, example-like transformation rules
organized in functional programming style.

TXL operates in three phases: parse, transform, and un-
parse. The parsing phase creates an internal representation
of the input as a parse tree under control of a context-free

grammar like the one for C if- then-else statement below.
TXL grammars specify not only input forms for parsing, but
also output pretty-printing for unparsing using the special
markers [IN] (indent), [EX] (exdent) and [NL] (newline).

define if_statement
’if ( [expr] ) [IN][NL]

[statement] [EX]
[opt else_statement]

end define

define else_statement
’else [IN][NL]

[statement] [EX]
end define

The transformation phase transforms the parse trees cre-
ated by the parser under control of a set of example-like
transformation rules that easily express normalization and
abstraction for clone detection, for example to anonymize
if conditions or normalize identifiers. Finally, the TXL un-
parsing phase unparses the transformed parse tree to text
output with standard spacing and pretty-printing under con-
trol of the grammar, and ignoring all input formatting.
Commenting and spacing in the input are ignored by default
(although it can be preserved if desired).

TXL supports agile parsing [11], which allows nonter-
minal definitions to be modified by grammar overrides, al-
lowing programs to easily specify different interpretations
of syntax and different pretty-printing in different programs
based on the same grammar. For example, we override a
program using the C grammar with the if-then-else defini-
tion above to modify the pretty-printing to eliminate indent-
ing and newlines in the output:

redefine if_statement
’if ( [expr] ) [statement] [opt else_statement]

end redefine

redefine else_statement
’else [statement]

end redefine

Island grammars [12] are a grammar-based method for
separating interesting parts of a program (features we are in-
terested in) from uninteresting parts (other features, which
need not be precisely parsed). In our context, island gram-
mars provide a simple mechanism to identify the interest-
ing elements to be compared as potential clones. Island
grammars also provide robustness [27] by allowing us to
use semi-parisng for the language (or dialect) of interest.
Island grammars can be coded in TXL either directly in the
language grammar or using grammar overrides to specify a
dialect of the language in which the islands are embedded.

3. Proposed Approach

This work is an adaptation and significant extension of
our previous work on detecting near-miss clones in HTML
documents [10], which made use of a robust island grammar
to identify and isolate syntactic constructs such as HTML



tables and forms as potential clones. The grammar sepa-
rated constructs interesting as potential clones (the islands)
from the unparsed rest of the HTML code (the water), ex-
tracting the islands as a directory of potential clone files to
be compared as text lines using the Unix diff utility.

In this work, we further explore and extend the basic idea
of the approach in the context of clone detection for sys-
tems written in C. It differs from our previous work in a
general framework using flexible pretty-printing, code nor-
malization and filtering, with fundamental improvements in
the comparison algorithm, clustering of potential clones and
output generation.

Figure 1 represents a conceptual diagram of our new
clone detection process. We call our prototype NICAD, a
loose acronym for Accurate Detection of Near-miss Inten-
tional Clones. The main distinguishing characteristics of
our method are the identification and extraction of the set
of potential clones, the flexible pretty-printing, normaliza-
tion and filtering of the potential clone set, the clustering
of potential clones to minimize comparison cost, and the
reporting of results in terms of original source. In the fol-
lowing sections we provide a detailed description of each
component of this new process.

4. Extraction of Potential Clones

Every clone extraction tool designates – sometimes im-
plicitly – the notion of a “minimal clone”, the smallest piece
of code that the tool considers to be worthwhile to examine
on its own. This step is important for two reasons: it re-
duces the amount of work the clone detector has to do, and
makes the results more usable and relevant. The amount of
work is cut because the tool does not spend time looking for
clones of program entities that are too small, and the results
are improved because they are not polluted with informa-
tion about the “cloning” of single tokens or (small groups
of) statements.

As in our previous approach, the clone extractor is re-
sponsible for enforcing these minimal clone restrictions. Its
task is to extract potential structural clones from the source
code for further study, and it is responsible for extracting
features no smaller than our designated minimal clone.

The definition of a minimal clone can vary from lan-
guage to language and application to application. In the
case of C systems, we often choose individual structured
blocks that are at least 6 lines of source code as minimal
clones. However, one could choose any level of structural
granularity. For example, we could choose only the whole
functions of a system, or the structured statements, or begin-
end blocks of a certain minimum size.

In our system, we exploit agile parsing and the TXL ex-
tract function to enumerate our potential clones. The ex-
tract function, denoted [ˆ ] in TXL, automatically extracts
a set of all embedded instances of one grammatical type

(e.g., statement), given an instance of another (e.g., func-
tion definition). Using grammar overrides, we modify the
grammar to capture our minimal clones in special nonter-
minals which can be extracted using a single invocation of
the extract function. Each potential clone is extracted only
once, but if the potential clone we are interested in is nested,
the inner candidate is listed twice: once inside its parent and
once on its own. All extracted potential clones are stored as
text files, annotated with the original source file names and
beginning and ending source line numbers of their origin.

During extraction, potential clone files are also auto-
matically stripped of formatting and comments and pretty-
printed by TXL according to the grammar’s formatting
cues. Pretty-printing ensures consistent layout and spac-
ing of code for later comparisons. When code is cloned, it
is often changed – whitespace and comments are inserted or
removed, block markers are moved around to suit the devel-
oper’s taste, and so on. Whitespace and comment removal
might address these changes to some degree, but does not
necessarily eliminate them. Standard pretty-printing guar-
antees that all code has uniform layout and line breaks,
yielding an improvement in comparison accuracy.

5. Flexible Pretty-Printing
In addition to removing the formatting and layout dif-

ferences between code segments using standard pretty-
printing, we can also exploit TXL’s agile parsing to in-
troduce flexible pretty-printing specific to clone detection.
This special pretty-printing helps us to break different parts
of a statement into several lines so that local changes
to the parts of a statement can be isolated using a sim-
ple line-comparison. Unlike token-based techniques (e.g.,
CCFinder) where each token is an item of the token-
sequence, we allow different parts of a statement to be com-
pared at different granularities, appropriate to the partic-
ular language structure. An item to be compared in our
method may contain one token, or several tokens, accord-
ing to the particular pretty-printing rules we choose. Be-
cause we use a fast text-line-based technique for comparing
potential clones to each other, pretty-printing to spread the
code over more lines increases the granularity and allows
us to choose the appropriate granularity for each particular
language and context.

To see the effectiveness of such feature-specific pretty-
printing, let us consider three code fragments, each only
with only a single fragment (a for loop header).

Segment 1: for (i=0; i<10; i++)
Segment 2: for (i=1; i<10; i++)
Segment 3: for (j=2; j<100; j++)

With a typical line-based technique (e.g.,Duploc [13])
with no normalization/transformation option selected, all
the three segments are different. With a classical token-
based technique (e.g., CCFinder [20]) with identifier nor-
malizations, all the segments will be similar and returned



 

Code 
Base 

 
Potential 

Clone 
extractor and 

standard 
pretty-printer 

Pretty-printed 
Potential 
Clones 

Flexible 
Pretty-Printer 

Flexible Code 
Normalizer 

Flexible Code 
Filter 

Clustering of 
Pre-processed 

Potential 
Clones 

Comparing 
cluster n 

Comparing 
cluster 1 

Clone 
Data 

Mapped back 

Report 
Generator

Textual 
Report 

Interactive Report 

Figure 1. Proposed Clone Detection Process

Table 1. Pretty-printing and Comparing

Line Segment1 Segment2 Segment3 Comparison
No. S1&S2 S1&S3 S2&S3
1 for ( for ( for ( 1 1 1
2 i = 0; i = 1; j = 2; 0 0 0
3 i < 10; i < 10; j < 100; 1 0 0
4 i++) i++) j++) 1 0 0

Total Matches 3 1 1
Total Mismatches 1 3 3

as clones. With a classical AST-based technique (e.g.,
CloneDR [5]) where a hashing is used to ignore the leaves
of the trees, these three segments will be still similar and
will be returned as clones. In fact, using the general defini-
tion of clones where only syntactic similarity is considered
(e.g., the Type II clones of [7]), these are indeed clones and
form a clone class.

In this study, we are primarily interested in accurately
finding copied fragments edited following pasting. We an-
ticipate that if a code fragment is intentionally copied for
reuse (if the purpose is not plagiarism), then the chances of
consistent renaming, or renaming only identifiers and liter-
als, are low (although of course it is also interesting to find
such clones [25] and we plan to do so in our future work).
Thus, in our study, while segment 1 and segment 2 form a
clone pair (only the initialization value of i changes), seg-
ment 3 probably does not form any clone pairs with segment
1 or segment 2, because there are several changes, including
the variable name.

With a careful pretty-printing (and an appropriate simi-
larity threshold) for the code segments, we can more clearly
see that while segment 1 and segment 2 are clones, segment
3 is not. Table 1 shows a comparison where our pretty-
printing has been used to break all for headers into into four
separate lines. Using a naive line-by-line text comparison of
the segments and a reasonable similarity threshold, we can
accurately determine the similarity between the segments.
If we now consider a size-sensitive similarity threshold (see
Section 8) of 70%, we can see that only segment 1 and seg-
ment 2 (with similarity 75%) form a clone pair. Both seg-

ment 1 and segment 3, and segment 2 and segment 3 are
only 25% similar, and thus cannot form clone pairs. We
could further break down the code segments such that each
token is formatted to a separate line and then catch more
changes in the code segments. However, in that case, we
would have to reduce the similarity threshold, and in the
same time, time complexity would increase.

In TXL specifying such precise flexible pretty-printing
is simple. One needs only to override the grammar defini-
tion of the intended statement. For example, consider the
following TXL grammar definition for for headers in C.

define for_head
’for ([opt expr]’; [opt expr]’; [opt expr])

end define

Using grammar overrides we can redefine the grammar
to break for headers into four parts, each on a different line
(as in Table 1), simply by adding “[NL]” (new line) format-
ting cues to the grammar for each part as follows.

redefine for_head
’for( [NL]
[opt expr] ’; [NL]
[opt expr] ’; [NL]
[opt expr] ) [NL]
[statement]

end redefine

Let us consider another example, a function call, say
foo(len, sum). A typical approach would either normalize
this call as id(), or as id(id, id) and then apply an exact
matching algorithm. In the first case, all function calls in
the code are treated as the same and thus clone detection
may generate many false positives. In the second case, all
function calls that have two parameters will match, again
generating many false matches and in the same time may
miss some potential matches (e.g., overloaded function calls
in C++ where only number of parameters is changed).

Using flexible pretty-printing, we can stay in the middle.
For example, we may consider that for a function call, at
least the function name or the number of parameters (and
possibly names of the parameters) should be same to have
a match with other function calls. We can do this using
the same pretty-printing technique, using TXL formatting
to break function calls into two lines, the function name,



foo in one line and its parameters (len, sum) on another.
If there is another function call in another segment, say
foo(len, sum, product) (function overloading), it will sim-
ilarly be broken into two lines by the pretty-printer. Us-
ing a naive text-line-based comparison of the two pretty-
printed segments, we can see that these two function calls
are neither exactly similar nor completely dissimilar. They
are in fact in the middle, neither similar (as in normalizing
both to id()) nor dissimilar (as in normalizing the first call
to id(id, id) and the second to id(id, id, id)). Using size-
sensitive similarity, they are 50% similar. In the same way,
we can assign similarity values to each of the statements in
the two code segments and more accurately assess the pos-
sibility that they are clones.

In the prototype implementation of our method for C,
the user can either select from a set of flags controlling the
breaking level for each of the statements on how the pretty-
printing should be performed, or can change the TXL gram-
mar overrides by hand to achieve other custom granularities.

6. Flexible Code Normalization

While flexible pretty-printing helps us to find near-miss
clones, it may require us to adjust the similarity threshold
as well (e.g., the more fine-grained the break-up of a state-
ment, the higher the dissimilarity threshold might be). In
addition, as with all other methods, it may not be possible
to predict in advance where possible changes might have
been made in a cloned fragment. Using TXL transformation
rules in addition to its parsing and pretty- printing capabili-
ties, we can easily normalize parts of a statement (or whole
statements of a given type) to ignore editing differences. By
adding normalization to our pretty-printing, we can detect
near-miss clones even with a 100% similarity threshold.

Unlike other classical token-based methods, our flexi-
ble normalization is not simply limited to global replace-
ment, for example of all identifiers and literals, or simple
abstraction, for example of loop bodies. Using TXL rules
we can choose to normalize only certain parts of a state-
ment or only statements of a certain type, for example, only
if statements. Thus we can choose to normalize only those
parts that we expect to vary. Using TXL patterns, we can
also provide flexibility in applying the normalization, for
example choosing only to normalize within a certain type
of statement or within a certain level of nesting. In this
way, we can be sure of the locations of potential changes in
a detected cloned fragment when 100% similarity is used in
the comparison phase.

We can also apply both flexible pretty-printing and flex-
ible code normalization together in combination with a dis-
similarity threshold (e.g., 90% similarity). This allows us to
find near-miss clones that may have changed not only in the
normalized places but also some other arbitrary parts that
we could not anticipate in code normalization. To see effec-

Table 2. Typical normalization of an if-then-else

Original Statement Typical Normalization

if (x < (n + y))
m = (y + c)-x;

else
m = y;

if (id < (id + id))
id = (id + id)-id;

else
id = id;

tiveness of such flexible code normalization, let us consider
the case of normalizing conditional statements in C.

TXL rules allow us to easily customize and localize nor-
malizations by language feature and context. As an exam-
ple, we can choose to custom normalize conditional state-
ments. In general there are several conditional statements
in a programming language, and using TXL rules we can
target only certain ones, and normalize each of them in the
most appropriate way. For example, in the case of the C
if-then-else statement, we can choose just to normalize the
control part of the statement.

Consider the C if-then-else statement of Table 2 (left col-
umn). A typical token-based approach will apply global
lexical normalization and produce something like the code
shown in the right column of Table 2. As general normal-
ization is applied to the entire source, such an approach can
produce many false positives [7]. In our method, we ap-
ply neither general lexical normalization nor exact string
matching. As with flexible pretty-printing, we stay in the
middle. For a conditional statement, we can first focus on
the control part, keeping the other parts unchanged (or left
to other custom normalizations).

In our example, we could simply normalize the control
part, (x < (n + y)) to AnyControl. Clones obtained us-
ing such a normalization will have the possibility of having
only the control parts edited. However, it may also gener-
ate false positives as it normalizes the entire control part.
So instead, we could apply the traditional normalization,
but only on the control part. For example, (x < (n + y))
could be normalized to (id < (id + id)) and keep the other
parts of the if-then-else statement unchanged. (In TXL, this
can be implemented using simply the scoped application of
a transformation subrule instead of a direct change.) As
only the control part is normalized and other parts are un-
changed, there will likely be fewer false positives than the
general normalization. However, since all the identifiers of
the control part are normalized, this could still return false
positives.

So we can consider an even more restricted normaliza-
tion. We can apply normalization only on the right hand
side of the control expression, for example to normalize
(x < (n + y)) to (x < (id + id)), keeping the left part
unchanged. This will allow identifier changes on the major
part of the control, and at the same time avoid false posi-
tives as the left-part is unchanged. However, all the above



normalizations can miss clones that have been structurally
modified in the control part only (e.g., (x < (n + y)) could
be changed to (x < (n*y))).

In the end we might refine to a more general normal-
ization. For example, we can normalize (x < (n ∗ y)) to
(x < rightControl). While this will allow more structural
changes, it will avoid false positives in two ways. First,
its left part is unchanged and second, other parts of the if-
then-else statement are either unchanged or normalized by
other applicable options. Moreover, clones obtained with
this normalization can indicate that possible changes are
made on the right-part of the control. To make it more gen-
eralized, we can normalize the control to (leftControl <
rightControl) or just simply AnyControl as mentioned
earlier. In a similar way, we can custom normalize the con-
trol parts of other statements appropriately to their context.
For example, the control part in the for-loop, while-loop or
even in the assignment statement (e.g. x = (x > 0) : 1 : 0)
can be normalized either in the same way, or in different
ways using other TXL rules. One has the option of normal-
izing the different types of controls to different IDs, or to
a single ID. For example, the following TXL rule normal-
izes the control part of all the if-then-else statements to the
specific ID AnyIfControl.

rule ifElseNormalization
replace $ [statement]

’if ( Expr1 [expr])
ThenPart [statement]

OptElsePart [opt else_statement]
by

’if (’AnyIfControl)
ThenPart

OptElsePart
end rule

With this rule, the code segment of Table 2 (left-column)
will be transformed to:

if (AnyIfControl)
m = (y + c)-x;

else
m = y;

Such a normalization of the control part allows arbitrary
changes in the control conditions of the copy/pasted seg-
ments and our method can efficiently detect them as clones.

As in Basit et al. [4], we also allow for flexible tok-
enization. We provide an option for equating different to-
ken classes, for example to assign the same ID to different
but similar data types such as int, short, long, float, double
depending on user choice.

7. Flexible Code Filtering

Using agile parsing and source transformation we can
also efficiently filter out code statements from potential
clones according to user preferences. We can filter at any
stage, either while extracting potential clones or separately
following extraction. While extracting, we can use agile

parsing and island grammars to filter out uninteresting state-
ments from potential clones.

To filter out a certain type of statements after extract-
ing potential clones, we can use TXL rules. Filtering out
statements is simple and efficient in TXL, simply replacing
the uninteresting statement by an empty one. For example,
declaration and initialization statements are not major fac-
tors in affecting the logic of a code segment and thus could
be ignored before comparison using a TXL rule to remove
them. In a similar way, when searching for function clones,
the function name and parameters can often be ignored. A
sample TXL rule for filtering out all the declaration state-
ment could be as follows:

rule declarationFiltering
replace [repeat declaration_and_statement]

DeclarationPart [declaration]
Rest [repeat declaration_and_statement]

by
Rest

nd rule

8. Comparing the Potential Clones

Once the potential clones are extracted with preprocess-
ing (with or without flexible pretty-printing, code normal-
ization and filtering), they are fed to a comparison algo-
rithm. In this paper, we have used a Longest Common Sub-
sequence (LCS) algorithm for comparing the text lines of
potential clones. The details of the algorithm are described
elsewhere [17, 16], here we only provide an example of
what it does and how it helps in finding clones. The LCS al-
gorithm takes two sequences of items (each item is consid-
ered as string) as input and produces the longest sequence
of items that is present in both sequences in the same order.
For example, consider the following two sequences of items
where each item/letter represents a string:

Sequence 1: a b c d f g h j q z
Sequence 2: a b c d e f g i j k r x y z

The LCS algorithm will produce a new sequence I < S >
which can be obtained from the first sequence by deleting
some items, and from the second sequence by deleting some
others. The condition is that length(I < S >) should be
as long as possible. For the above two sequences, we find
I < S > as a b c d f g j z. Once the sequence is determined,
we use the number of unique items for both sequences as
a measure of similarity. In the following, we discuss how
this algorithm helps us in finding clones. The algorithm is
similar to the one employed by the Unix diff utility that we
have used in our previous work, but has been reimplemented
to be more efficient in our application.

To determine whether two potential clones really are
clones of each other, we compare their pretty-printed and
normalized sequences of text lines as items using LCS.
Once we get the longest common subsequence of the two
sequences, we determine the number of unique items in



Table 3. Two Function Clones
Item
No.

Sequence 1 (Original Seg-
ment)

Sequence 2 (Copied and
Edited Segment)

Similarity

1 void void 1
2 sumTimes sumTimes 1
3 (int n) { (int n) { 1
4 float sum= float sum= 1
5 0.0; 0.0; 1
6 double product = double product = 1
7 1.0; 1.0; 1
8 for ( for ( 1
9 int i=1; int i=1; 1
10 i<=n; i<=n; 1
11 i++){ i++){ 1
12 sum= sum= 1
13 sum + i; sum + (i * i); 0
14 product= product= 1
15 product * i; product * (i * i); 0
16 fun fun 1
17 (sum, product); (sum, product); 1
18 } } } } 1

Total Items = 18 Total Items =18
Unique Items = 2 Unique Items = 2
UPI = 11.11% UPI = 11.11%

each potential clone. For an item to be declared “com-
mon” between the two potential clone sequences, it is not
enough for it to occur in both sequences; it has to be an
item that occurs in the longest common subsequence of the
two sequences. Correspondingly, the items that have to be
deleted from the sequences to generate the longest common
subsequence are considered to be unique to their respective
sequences. In fact, an item that occurs in both sequences
might be considered as unique to both of them if it is not
part of the longest common subsequence. We then compute
the percentage of unique items for each potential clone (i.e.,
item-sequence) usng the following equation:

Unique Percentage of Items (UPI) = No. of Unique Items ∗ 100
Total No. of Items

If these ratios for both line sequences are either zero or be-
low a certain threshold, the sequences are considered to be
clones of each other.

For example, consider the following code segment.
Imagine that it is copied and edited in two places (e.g.,
i is replaced with i ∗ i for the assignment statements in
the copied fragment), and assume that the UPI threshold
(UPIT) is 30% for considering the two segments as clones.

void sumTimes (int n) {
float sum=0.0;
double product =1.0; // C1
for (int i=1; i<=n; i++) {

sum=sum + i ; //C2
product = product * i;
fun(sum, product); //C3 }}

Following flexible pretty-printing (in this case without
code normalization or filtering) of both segments, the cor-
responding sequences of the fragments are shown in Table
3. After finding the longest common subsequence, we cal-
culate the UPI values for both the sequences. Since both se-
quences have UPI values (11%) below our assumed thresh-
old (30%), they are considered to be clones.

Table 4. Two Function Non-clones
Item
No.

Sequence 1 (Original Seg-
ment)

Sequence 2 (Copied and
Edited Segment)

Similarity

1 void void 1
2 sumTimes sumTimesExtended 0
3 (int n) { (int n, int m, int x, int y) { 0
4 float sum= float sum= 1
5 0.0; 0.0; 1
6 double product = double product = 1
7 1.0; 1.0; 1

10 Unique Lines 0
8/18 for ( for ( 1
9/19 int i=1; int i=1; 1
10/20 i<=n; i<=n; 1
11/21 i++){ i++){ 1
12/22 sum= sum= 1
13/23 sum + i; sum + (i * i); 0
14/24 product= product= 1
15/25 product * i; product * (i * i); 0
16/26 fun fun 1
17/27 (sum, product); (sum, product); 1
18/28 } } } } 1

Total Items = 18 Total Items =28
Unique Items = 4 Unique Items = 14
UPI = 22.22% UPI = 50%

Now consider another copy with several unique lines
added, and some lines modified, including the function
name and its parameters. From Table 4, we see that while
the UPI value for the original segment (22.22%) is below
the assumed UPI threshold (30%), the UPI value for the
copied segment (50%) is above the assumed threshold and
thus they are not considered to be clones.

From the above examples, we see that the UPI threshold
is size-sensitive w.r.t. the number of items in the sequence
(i.e., number of lines in the preprocessed potential clones,
although one can choose in terms of original lines of code).
For example, if UPI threshold is 30%, a potential clone of
10 lines can have a maximum of ((10 ∗ 30/100) = 3) three
unique lines in compare to its counterpart potential clone.
In addition to this size-sensitive threshold, one can also use
other size-sensitive thresholds such as maximum gap size
and maximum number of gaps in a sequence.

Clustering and Overall Algorithm: Because the LCS
algorithm can only compare two potential clones at a time,
in principle each potential clone needs to be compared
with all of the others, making the comparisons very ex-
pensive. We have used a number of strategies to reduce
the number of comparisons, based on the UPI thresholds
chosen by the user. If the UPI threshold is 0% (i.e., we
are looking for exact matches only), then only potential
clones of the exact same size (number of pretty-printed
lines) are compared to each other. If UPI threshold is
greater than 0%, then a potential clone x is compared to
another potential clone y if and only if size(y) in lines is
in the range between size(x) − size(x) ∗ UPIT/100 and
size(x) + size(x) ∗ UPIT/100. In essence, this imple-
ments dynamic clustering based on the size (i.e., number of
lines in the corresponding sequences) of the potential clones
and the UPI threshold. In addition, potential clones that are



below a certain threshold size (Minimum Clone Size) are ei-
ther not extracted as potential clones or not compared.

Generating Clone Classes: Once all potential clones
are compared and a correspondingly ordered clone pair
database is formed, it is a simple step to generate clone
classes from the database. If a potential clone Pi, forms a
clone pair with another potential clone Pj , then all the other
potential clones that form a clone pair with Pj are also in-
cluded in the clone class and this continues recursively. As
we maintain a unique ID for each potential clone and as
the clone pair database is ordered by size, one can directly
form all clone classes from the database without any com-
putational bottleneck or post-processing. Note that when
using this method with a UPI threshold greater than zero,
the relation between clones is no longer strictly an equiv-
alence relation since transitivity does not hold, and in the
theoretical worst case all instances could be subsumed by
the same class. Fortunately, in practice this is not an issue.

Clone Classes Using Exemplars: As in our previous
work [10], we also provide the option of applying an even
more efficient method to reduce the number of comparisons
and find clone classes directly. Although in theory this ap-
proach might seem a little arbitrary and clearly can miss
some clones, in practice it is very useful and misses very
few. The method uses the first clone of each kind as an
exemplar or distinguished representative of its clone class.
When two potential clones x and y are compared and found
to be clones, y is marked as being in the class x. That is, x is
considered to be the exemplar for the pair. After this finding
y is removed from the comparison set and never compared
to anything else. Instead, x is compared to all other po-
tential clones of the same cluster and any other matching
potential clones are directly added to the class of x. For
systems rich in clones, this optimization can reduce com-
parisons by a large factor. However, once again this is an
approximation and in the theoretical worst case it might be
possible that x is an exemplar of both y and z even though
y and z should not form a clone pair.

Time and Space Complexities: While it is hard to esti-
mate the exact computational and space complexities of this
multi-phase detection approach, we can provide an overall
estimate. Extraction of potential clones with flexible pretty-
printing, code normalization and filtering using the TXL
parser and transformation rules is clearly linear in time and
space over the total size of the system, requiring three linear
passes, one for parsing, one for normalization and filtering,
and one for extraction.

Thus the only real performance issue is the comparison
of extracted potential clones. In the worst case, one can ar-
tificially create a scenario where every potential clone must
be compared with every other, requiring quadratic time and
linear space in the number of potential clones. In the best
case, with the optimizations above, if full code normaliza-

tion allows us to use direct text comparison of only equally
sized potential clones then we can do the whole set of com-
parisons in linear time. In practice the usual case lies some-
where between, closer to linear than quadratic since the dy-
namic clusters tend to be very small.

When full flexible code normalization is used, we can
use exact text line comparison between potential clone pairs
and the time for pair comparison is linear in the size of the
potential clones. In the case where differences are allowed,
the LCS algorithm used in our prototype for individual pair
comparisons has a quadratic worst case time and space com-
plexity. However, in our method the potential clones to be
compared are orders of magnitude smaller than the entire
system, and the individual comparison time and space is
effectively approximated by a small constant per individ-
ual comparison. For example, when we had 125 potential
clones to compare for Weltab using flexible pretty-printing
of some statements (c.f., Section 10), there were 15,500 po-
tential comparisons to make. However, using our method
with a UPI threshold of 0%, it required only 139 actual
comparisons. Further, when we increased the threshold to
10%, it still required only 295 actual comparisons, when
the threshold was 20%, 464 actual comparisons, and when
the threshold was 30%, 581 actual comparisons. For the
small/medium-sized systems we experimented with, no en-
tire computation took more than several seconds.

9. Output Generation

Our framework provides results in two different repre-
sentations. The user can choose either one of the two or
both. The first one is the traditional textual report of the
clone class information where each clone class is shown
with the corresponding file name and line numbers of the
code segments, derived from the source file and line num-
ber annotations of the potential clones. The second is the vi-
sual representation as of our previous approach [10], which
generates an HTML page showing the first code segment as
an exemplar for each clone class. Each of the clone classes
is linked to a number of secondary clone report pages that
shows the other members of the same class. It is also possi-
ble to see the similarity values for each pair in the class.

10. Experimental Results

Thus far we have evaluated our approach on two small
to medium-size C programs with promising results. The
first program was Abyss [1], a small web server written in
approximately 1,500 lines of C code. The second program
was Weltab [6] , which is an election results program of
approximately 11,000 lines. We have chosen these two sys-
tems as our first testbed for two reasons. First, in this first
test we want to manually verify the clones found, which
is obviously difficult or impossible with large systems. Sec-
ond, there are already existing published results for function



clones available for these systems [31] that we can compare
with. Moreover, Weltab has already been used in a well
known tool comparison experiment [7].

Although our method can be used for finding clones of
any granularity (c.f., Section 4), in our first experiment we
have considered only clones of function granularity since
there are already detailed published results available (with
file and function names of all clones found). Tairas and
Gray [31] report exact function clones in these systems al-
lowing differences in function names and data types only.

For Abyss there are two previously reported clone
classes/pairs (Class 1: ConfGetToken in conf.c and Get-
Token in http.c, and Class 2: ThreadRun in thread.c and
ThreadStop in thread.c). Using our new method we accu-
rately found both of these two classes and one additional
valid near-miss clone class (ConfNextToken in conf.c and
NextToken in http.c) not previously reported.

In case of Weltab we have obtained eight exact match
clone classes from 27 clone pairs using standard pretty-
printing whereas Tairas and Gray [31] obtain only five ex-
act match clone classes (which they report as four groups
since they allow function name changes). The additional
clone pairs/classes we obtained are (prtpag in ejcn88.c
and lans.c), (whoentrer in poll.c and spol.c) and (shead
in samp.c and sped.c). We confirmed our additional find-
ings by checking the results submitted to the Bellon et al.
tool comparison experiment [6, 7] by a metrics-based tool
owner. This is interesting because in this case an AST-
based technique did not find even exact clones found by our
method (although of course, other AST-based techniques
might accurately detect these clones). By relaxing data
types, they were able to detect three more classes that we
also detected using a UPI threshold of 5%.

With Weltab we have also experimented with varying
different options to assess their effect in finding clone pairs
and clone classes. In Table 5, we provide the the number of
clone pairs and clone classes found from Weltab using our
method depending on the different options we used. The
first column of the table shows the UPI threshold we used,
the second column shows the clone pairs (CP) and clone
classes (CC) found when only standard pretty-printing op-
tion is used (std. PP), the third column (Flex. PP) shows
CP and CC when we used flexible pretty-printing for as-
signment, if and for loop statements, the fourth column
(Ctl.Norm) shows CP and CC when we normalize the con-
trol parts of if, for loop and while loop statements, the fifth
column (FunDef. Norm) shows the CP and CC when we
normalized/filtered function definition names and the last
column (ExpR. Norm) shows CP and CC when we have
normalized the right part of assignment statements.

From the table (first row), we see that when we use 0%
UPI threshold (i.e., looking for exact match), both stan-
dard pretty-printing and flexible pretty-printing return the

Table 5. Clone Pairs/Classes from Weltab

UPIT Std. PP Flex. PP Ctl. Norm. FunDef.Norm ExpR.Norm
CP CC CP CC CP CC CP CC CP CC

0% 27 8 27 8 29 9 27 7 32 10
5% 42 12 44 11 44 12 42 11 42 12
10% 45 11 55 15 47 12 47 11 47 12
20% 59 16 66 19 59 16 63 18 64 18
30% 68 20 79 25 70 21 72 22 70 21

same number of clone pairs and classes since for exact
match clones flexible pretty-printing does not have any ef-
fect. However, when we normalize the control part of some
statements, we get two more clone pairs and one more clone
class. When we normalize the function definition names,
we get the same number of clone pairs and one less clone
class. This is because, due to the normalizing of function
names, two different clone classes become one clone class.
On the other hand, when we normalize the right-part of as-
signment statements, we get five more clone pairs and two
more clone classes. When we increase the UPI threshold,
we get more clone pairs and classes. Given the fact that we
are only looking for function clones, not all the potential
changes can be captured with code normalization or filter-
ing, so we have tried using different UPI thresholds also
with good results.

In these first tests we have not found any false positives
using our method except when we use a very large UPI
threshold. Although we have manually examined all the
functions of the both systems to assess whether our method
has missed any, we of course cannot be completely sure. To
further validate the method, we decided to inject a substan-
tial number of new clones of different types using editing
scenarios [29] into the systems and attempted to find them
using our method. Our method was able to effectively find
all injected clones of the different types.

While these initial tests of our method are by no means
conclusive, the results are certainly promising, and we look
forward to a more extensive controlled experiment compar-
ing our method with others.

11. Related Work

Most text-based approaches [13, 33] are related to our
work in the sense that like them we also find clones by com-
paring program text. Although many of them can find near-
miss clones, these approaches do not find syntactic clones
and do not provide for accurate approximation in any way
similar to our flexible pretty-printing, normalization and fil-
tering.

Most lexical approaches [20, 4, 3, 25] (also called token-
based approaches) are related to our work in the sense that
like them we also use a similar sequence matching algo-
rithm, and like them, we can also apply token transforma-
tion on the input. However, we do not use a generalized



tokenization of identifiers and literals (e.g., normalizing all
identifiers to a unique id) as they do. Moreover, special
treatment or post-processing is required to find syntactic
clones or gapped clones with such tools, which calls for the
use of further “helper” tools such as CLICS [22] or extended
implementation in Gemini [32]. We deal with these issues
easily in our pre-processing and comparison phases.

Syntactical approaches [5, 18, 24, 31, 14] (also called
tree-based approaches) are also related to ours in the sense
that they are also parser-based and are aimed at syntactic
clones. However, these are heavily dependent on fully-
fledged parsers and find clones on ASTs or sequences of
AST nodes (suffix trees) [24, 31], whereas we work on
(pretty-printed) program text. Our method adds more flexi-
ble and restricted code normalization and filtering, and pro-
vides for the post-normalization inexact matching necessary
to find many non-structural near-misses. Asta [14] can find
near-miss clones based on structural abstraction much like
ours, but using arbitrary pattern matching on ASTs.

For a detailed introduction to all of the various available
methods, the reader is referred to our technical report [28]
or summary paper [29].

12. Conclusion

Clone detection is an active research area and the litera-
ture is rich with work on detecting, removing and analyzing
clones. In this paper we have presented a new clone detec-
tion method based on a two stage approach: identification
and normalization of potential clones using flexible pretty-
printing and code normalization, followed by simple text-
line comparison of potential clones using dynamic cluster-
ing. Early experiments demonstrate that this new method
can do at least as well as existing methods in finding and
classifying function clones in C. In addition to continu-
ing our empirical validation for larger and more challeng-
ing C systems, in future we will be exploring the applica-
tion of our method to different languages, and designing a
new mutation-based [2] controlled experiment to compare
it with other methods using synthetically generated clones
of different types and granularities.

Acknowledgements: The authors would like to thank
Robert Tairas and the four anonymous reviewers for their
valuable comments, suggestions and corrections in improv-
ing the paper. Thanks also to Nikita Synytskyy and Thomas
R. Dean for providing us with resources from their earlier
work on clones. This work is supported by the Natural Sci-
ences and Engineering Research Council of Canada.

References
[1] The Abyss: http:// abyss.sourceforge.net/ (December, 2007)
[2] J. H. Andrews, L. C. Briand and Y. Labiche. Is Mutation an Appro-

priate Tool for Testing Experiments? In ICSE, pp. 402-411, 2005.
[3] B. Baker. On Finding Duplication and Near-Duplication in Large

Software Systems. In WCRE, pp. 86-95, 1995.

[4] H. Basit, S. Pugliesi, W. Smyth, A. Turpin and S.Jarzabek. Effi-
cient Token Based Clone Detection with Flexible Tokenization. In
ESEC/FSE, pp. 513-515, 2007.

[5] I. Baxter, A. Yahin, L. Moura and M. Anna. Clone Detection Using
Abstract Syntax Trees. In ICSM, pp. 368-377, 1998.

[6] S. Bellon and R. Koschke. Detection of Software Clones:
Tool Comparison Experiment. URL: http://www.bauhaus-
stuttgart.de/clones/ (December, 2007).

[7] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo.
Comparison and Evaluation of Clone Detection Tools. IEEE TSE,
33(9):577-591, 2007.

[8] The TIL Chairmarks. www.program-transformation.org/Sts/
TILChairmarks, 2008.

[9] J.R. Cordy. The TXL source transformation language. In Science of
Computer Programming, 61(3):190-210, 2006.

[10] J.R. Cordy, T.R. Dean and N. Synytskyy. Practical Language-
Independent Detection of Near-Miss Clones. In CASCON, pp. 29-
40, 2004.

[11] T.R. Dean, J.R. Cordy, A.J. Malton and K.A. Schneider. Agile Pars-
ing in TXL. J. ASE, 10(4):311-336, 2003.

[12] A. van Deursen and T. Kuipers. Building Documentation Genera-
tors, In ICSM, pp. 40-49, 1999.

[13] S. Ducasse, M. Rieger and S. Demeyer. A Language Independent
Approach for Detecting Duplicated Code. In ICSM, pp. 109-118,
1999.

[14] W. Evans and C. Fraser. Clone Detection via Structural Abstraction.
In WCRE, pp. 150-159, 2007.

[15] M. Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000.

[16] J. W. Hunt and M. D. McIlroy. An Algorithm for Differential File
Comparison. Technical Report 41, Bell Laboratories, 1976.

[17] J. W. Hunt and T. G. Szymanski. A Fast Algorithm for Comput-
ing Longest Common Subsequences. Comm. ACM, 20(5):350-353,
1977.

[18] L. Jiang, G. Misherghi, Z. Su and S. Glondu. DECKARD: Scalable
and Accurate Tree-based Detection of Code Clones. In ICSE, pp.
96-105, 2007.

[19] J. Johnson. Visualizing Textual Redundancy in Legacy Source. In
CASCON, pp. 171-183, 1994.

[20] T. Kamiya, S. Kusumoto and K. Inoue. CCFinder: A Multilinguistic
Token-Based Code Clone Detection System for Large Scale Source
Code. IEEE TSE, 28(7):654-670, 2002.

[21] C. Kapser and M. Godfrey. “Cloning Considered Harmful” Consid-
ered Harmful. In WCRE, pp. 19-28, 2006.

[22] C. Kapser and M. Godfrey. Supporting the Analysis of Clones in
Software Systems: A Case Study. JSME: Research and Practice,
18(2):61-82, 2006.

[23] M. Kim and G. Murphy. An Empirical Study of Code Clone Ge-
nealogies. In FSE, pp. 187-196, 2005.

[24] R. Koschke, R. Falke and P. Frenzel. Clone Detection Using Ab-
stract Syntax Suffix Trees. In WCRE, pp. 253-262, 2006.

[25] Z. Li, S. Lu, S. Myagmar and Y. Zhou. CP-Miner: Finding Copy-
Paste and Related Bugs in Large-Scale Software Code. IEEE TSE,
32(3):176-192, 2006.

[26] J. Mayrand, C. Leblanc and E. Merlo. Experiment on the Automatic
Detection of Function Clones in a Software System Using Metrics.
In ICSM, pp. 244-253, 1996.

[27] L. Moonen. Generating Robust Parsers using Island Grammars. In
WCRE, pp. 13-22, 2001.

[28] C.K. Roy and J.R. Cordy. A Survey on Software Clone Detection
Research. School of Computing TR 2007-541, Queen’s University,
115 pp., 2007.

[29] C.K. Roy and J.R. Cordy. Scenario-Based Comparison of Clone De-
tection Techniques. In ICPC, 10 pp., 2008.

[30] F.V. Rysselberghe and S. Demeyer. Evaluating Clone Detection
Techniques. In ELISA, 12 pp., 2003.

[31] R. Tairas and J. Gray. Phoenix-Based Clone Detection Using Suffix
Trees. In ACM-SE, pp. 679-684, 2006.

[32] Y. Ueda, T. Kamiya, S. Kusumoto and K. Inoue. On Detection of
Gapped Code Clones Using Gap Locations. In APSEC, pp. 327-
336, 2002.

[33] R. Wettel and R. Marinescu. Archeology of Code Duplication: Re-
covering Duplication Chains From Small Duplication Fragments. In
SYNASC, 8 pp., 2005.


