
Are Scripting Languages Really Different?

Chanchal K. Roy
Department of Computer Science

University of Saskatchewan
Saskatoon, SK, Canada S7N 5C9

croy@cs.usask.ca

James R. Cordy
School of Computing
Queen’s University

Kingston, ON, Canada K7L 3N6
cordy@cs.queensu.ca

ABSTRACT
Scripting languages such as Python, Perl, Ruby and PHP are in-
creasingly important in new software systems as web technology
becomes a dominant force. These languages are often spoken of
as having different properties, in particular with respect to cloning,
and the question arises whether the observations made based on
traditional languages also apply to them. In this paper we present a
first experiment in measuring the cloning properties of open source
software systems written in the Python scripting language using the
NiCad clone detector. We compare our results for Python with pre-
vious observations of C, C#, and Java, and discover that perhaps
scripting languages are not so different after all.

Categories and Subject Descriptors
D.2.7 [Distribution, Maintenance and Enhancement]: Restruc-
turing, reverse engineering, and reengineering

General Terms
Languages, Measurement, Experimentation

Keywords
code clones, empirical study, scripting languages, Python

1. INTRODUCTION
Reusing a code fragment by copying and pasting with or without

minor modifications is a technique frequently used by program-
mers, and thus software systems often have duplicate code frag-
ments in them. Such duplicated fragments are called code clones
or simply clones. Although cloning is at times beneficial [3, 8] and
often programmers intentionally use it [10], it can be detrimental to
software maintenance [7]. In response, many techniques and tools
for detecting code clones have been proposed [20, 21].

While there have been many empirical studies on cloning to val-
idate and compare tools [4, 5, 20, 21], and to study maintenance
impact [3, 8, 10, 11], taxonomies [9] and evolution [2] of clones,
until recently little work has looked directly at the cloning prop-
erties of the systems and languages themselves. In our work we
focus directly on this problem. In our first study we compared the
cloning characteristics of open source software systems written in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC2010 May 8, 2010, Cape Town.
Copyright 2010 ACM 978-1-60558-980-0/10/05 ...$10.00.

C, Java and C# [16]. In this paper we extend that work to look
at a completely different kind of language - the scripting language
Python. While there has been one in-depth study of exact clones in
web applications [13], this is to our knowledge the first study of the
cloning properties of a scripting language itself.

Scripting languages, those whose primary purpose is the rapid
development of code to support the generation or coordination of
other processes and technologies, are increasingly widely used due
to the rapid growth of web applications and web services. The de-
sign of scripting languages, which includes much higher level data
structures and programming concepts than traditional programming
languages, suggests that there may be fewer clones in systems writ-
ten using them, since repeated operations such as string and list
manipulations, which are a rich source of clones in traditional lan-
guages, are often built-in to scripting languages. On the other hand,
the rapid results-oriented development methods normally used with
scripting languages might actually lead to more clones, since script-
ing programmers tend to work more quickly.

In order to help answer these questions, in this paper we provide
an in-depth study of function clones in eight open source applica-
tions written in the Python scripting language. The applications
range from relatively small (sct, at 9 KLOC) to some of the largest
systems written in Python (Eric, at 99 KLOC and Zope, at 272
KLOC), and represent a variety of systems typical of the kinds of
applications scripting languages are used for, including an IDE, a
software build tool, a content management system, a web applica-
tion server, a wiki server and a network simulation tool.

We provide an in-depth empirical study of function clones in
these Python systems and compare the results to the more than
twenty open source C, Java and C# systems, including the entire
Linux Kernel, Apache httpd, J2SDK-Swing and db4o, that we have
previously studied [16]. We use the NiCad clone detector [19],
which has been shown to be highly accurate both with respect to
precision [19] and recall [22] in the detection of copy/pasted near-
miss clones. Using the web-based clone class user interface pro-
vided by NiCad, we manually verify all detected clones in this
study. The adaptation of NiCad to scripting languages, and Python
in particular, forms a part of the contribution of this paper. To our
knowledge there is only one other language-sensitive clone detec-
tion method [6] designed to detect clones in Python systems.

We compare the cloning characteristics of our new results for
Python with those for C, Java and C#, as well as comparing all of
the languages and systems with respect to clone localization across
subsystems. In particular, we focus on three research questions:

1. What is the cloning status of open source Python systems?
Are there many clones? Are there more near-miss than exact
clones?

2. Are there significant differences in cloning between Python
and the other languages used in open source systems?

3. Are there significant differences in cloning in large Python
systems compared to medium and small-sized systems?

Although NiCad is designed to allow for flexible pretty-printing,
code normalization and filtering, in this paper we focus on detecting
only exact and near-miss function clones, with up to 30% (three
lines in ten) of editing changes.

The rest of the paper is organized as follows. Following the ex-
perimental setup of our study in Section 2, we present and analyze
our findings in Section 3. Section 4 considers other empirical stud-
ies and their relation to ours. Finally, Section 5 concludes the paper.

2. EXPERIMENTAL SETUP
In this experiment we applied NiCad to find function clones in

a number of open source Python systems, and compared with the
results of our previous study of function clones in open source C,
Java and C# systems [16]. As in our earlier study, we have used
a set of metrics to analyze and compare the results. This section
introduces the systems we have studied and the metrics used, in-
cluding a brief overview of our clone definition and methodology
for manual verification of detected clones.

2.1 Subject Systems
In this study we have analyzed eight Python systems ranging

from 9K to 272K lines of code (LOC), and compared them with
ten C, seven Java and six C# systems varying in size from 4K LOC
to 6265K LOC including the entire Linux Kernel. The open source
Python systems [12] include Eric, a full featured Python and Ruby
IDE based on the Qt toolkit (99K LOC, 7440 functions); EricPlug-
ins, a suite of plugins for the Eric IDE (30K LOC, 2983 functions);
Moin, a Python-based Wiki system (74K LOC, 5820 functions);
NetworkX, a simulation toolkit for complex networks (15K LOC,
890 functions); Plone, a popular web-based content management
system (CMS) (74K LOC, 6877 functions); scons, a software build
system similar to Linux “make” (52K LOC, 3967 functions); Zope,
a complete web application server system (272K LOC, 26985 func-
tions), and sct, a collection of Django applications in Python (9K
LOC, 865 functions).

The C, Java and C# systems we compare to include all of those
from Bellon’s experiment [4], as well as Apache httpd, JHotDraw,
and the entire Linux 2.6 Kernel, as well as six C# systems of dif-
ferent sizes and kinds, including db4o, a popular and widely used
production commercial and open source object database. Since the
Linux kernel is almost two orders of magnitude larger than any of
the other systems, we have treated it as an outlier, and we provide
statistical results both including and not including Linux in Section
3.1, and in later subsections we have dropped Linux from averages
to avoid any bias due to its exceptionally large size.

2.2 Clone Definition
In this study we have considered all non-empty functions of at

least 3 lines in pretty-printed format (function header and opening
bracket on the first line, at least one code line, and ending bracket
on the third line). Empty functions, which are common in some
systems, have intentionally not been considered. We then use size-
sensitive UPI (Unique Percentage of Items) thresholds [19] to find
exact and near-miss (copy/paste/modify) function clones. For ex-
ample, if the UPI threshold (UPIT) is 0.0, we detect only exact
clones; if the UPIT is 0.10, we detect two functions as clones if at
least 90% of the pretty-printed text lines are the same (i.e., if they
are at most 10% different). In this study we used the representa-
tive set of UPI thresholds 0.0, 0.10, 0.20 and 0.30, corresponding
to editing changes of from 0 to 30%, or 0 to 3 lines in every ten.

2.3 Validation of Clones
All clones detected in this study were validated by hand using

NiCad’s interactive HTML web page output to give an overall view
of the original source of the clone classes, followed by a pairwise
comparison of the original source of the functions in each clone
class using Linux diff, manually examining those with a greater
difference than the UPI trheshold. Manual validation using this
method is both easy and efficient [16].

2.4 Metrics and Visualizations
This subsection describes the different metrics and visualizations

that we have used in this study. These are the same metrics that we
have used in our previous study [16] which were either adapted or
reused from previous studies of cloning [13, 1, 9, 24, 14].

Total Cloned Methods (TCM): In this study we focus on func-
tion clones, and thus our first metric is related to the number of
functions/methods. By TCM we mean the total number of cloned
methods of a system for a given UPI threshold (after manual ver-
ification). TCMp is the percentage TCM of the total number of
methods in a system. A higher value of TCMp corresponds to a
higher percentage of cloning in the system with respect to the num-
ber of methods. For example, if the TCMp of a system is greater
than 50% with UPI threshold 0.0, we can say that the system has
more exact cloned methods than non-cloned methods. Such sys-
tems have a high update anomaly risk; every update to the system
has a higher chance of involving a clone than not.

Since methods can be of different sizes and there may be many
clones that are quite small, we define similar metrics with respect
to number of lines. We define TCSppLOC as the total number of
cloned lines in a system for a given UPI threshold and TCSppLOCp
as the percentage of total cloned lines in the system for a given UPI
threshold. Since we apply standard pretty-printing before clone
detection, which eliminates formatting and layout differences, re-
solves #ifdefs (in C systems) and ignores comments, we can get a
more accurate percentage of cloned lines, and thus we use pretty-
printed rather than raw lines. In practice there is little difference.

File Associated with Clones (FAWC): While the above metrics
give the overall cloning statistics for a subject system, they can’t
tell us whether the clones are from some specific files, or scattered
among many files all over the system. FAWC provides these statis-
tics for each system at each UPI threshold. We consider that a file
is associated with clones if it has at least one method that forms a
clone pair with another method in the same file or a different file.
We define FAWCp as the percentage of files associated with clones
in a system for a given threshold. For example, “FAWCp of a system
x with UPI threshold 0.0 (exact clones) is 50%” means that 50%
of the files of x contain at least one exact cloned method. From a
maintenance point of view, a lower value of FAWCp is better, since
clones localized to certain specific files may be easier to maintain.

Cloned Ratio of File for Methods (CRFM): While TCM re-
lated metrics provide a good indication of the overall cloning level
and FAWCp hints at the overall localization of the clones, still one
cannot say which files contain the majority of the clones in the sys-
tem. With CRFM we attempt to discover the highly cloned files. In
particular, for a file f , CRFM(f) is defined as follows:

CRFM(f) = Total number of cloned methods in file f ∗ 100
Total number of methods in file f

Where a method is considered to be a cloned method if it forms a
clone pair with another method in the system (either in the same
file or a different file) and total number of methods in file f denotes
the number of methods of f that are 3 LOC or more in standard
pretty-printed format. Similar metrics are defined with respect to
lines of code (CRFLOC) and standard pretty-printed lines of code

(CRFSppLOC). These metrics are similar to (but not same as) the
FSA metric of Rajapakse and Jarzabek [13] and the RSA metric of
Ueda et al. [24], although they ignore clone pairs in the same file.

With CRFM we can identify the highly cloned files of a system
and can potentially help predict maintenance difficulty. For exam-
ple, consider two systems x and y of similar size and with the same
values for the TCM related metrics. In x, clones are scattered across
the system in such a way that no two files are substantially similar.
But in y, clones are concentrated into a certain set of files. From
a clone treatment perspective, system y is more interesting than x
because clones in y might be more easily handled than those of x.

Qualifying File Count for Methods (QFCM): As in Rajapakse
and Jarzabek [13] we define QFCM(v) for CRFM value v as the
number of files for which CRFM is not less than v. For exam-
ple, QFCM(20%) gives the number of files in the system having a
CRFM value not less than 20%. QFCMp is QFCM expressed as a
percentage of the total number of files in the system. For example,
“QFCMp(30%+) = 28% for a system x with UPI threshold 0.0”
means that 28% of the files of x have 30% or more exact cloned
methods. As usual we define similar metrics for source lines of
code (QFCLOC and QFCLOCp) and for standard pretty-printed
lines of code (QFCSppLOC and QFCSppLOCp).

Profiles of Cloning Locality w.r.t Methods (PCLM): Kapser
and Godfrey [9] provide three types of function clones based on
their location – clone pairs in the same file (category 1), in the
same directory (category 2) and in a different directory (category
3). They also provide the reasons, and usefulness / harmfulness
for each of these categories [9]. In this study we define three met-
rics, PCLM(1) for category 1, PCLM(2) for category 2 and
PCLM(3) for category 3, where PCLM(i) gives the total num-
ber of clone pairs in category i. PCLMp(i), the percentage of
clone pairs in category i is defined as follows:

PCLMp(i) = PCLM(i) ∗ 100
Total number of clone pairs in the system

As usual similar metrics are defined with respect to lines of code
(PCLLOC and PCLLOCp), and over a range of UPI thresholds.

Profiles of Remote Cloning Locality w.r.t Methods (PRCLM):
In order to gain further insight into cloning locality, we define three
additional metrics for remote clone pairs (those in different direc-
tories). Two fragments of a clone pair that are neither within the
same file nor under the same directory (i.e., do not have the same
parent), might have the same grandparent directory (category 1),
or they might be in the same subsystem (category 2), or in the
worst case, might be in a different subsystem (category 3). Sim-
ilarly to the above definition, we define metrics for the three cate-
gories, PRCLM(1) for category 1, PRCLM(2) for category 2
and PRCLM(3) for category 3 where PRCLM(i) gives the total
number of clone pairs in category i. PRCLMp(i), the percentage
of clone pairs in category i is defined as follows:

PRCLMp(i) = PRCLM(i) ∗ 100
Total no. of diff dir clone pairs in the system

As usual similar metrics are defined with respect to lines of code
(PRCLLOC and PRCLLOCp) and over a range of UPI thresholds.

3. COMPARISON OF RESULTS
In this section we provide a detailed comparison of the cloning

properties of open source systems written in Python with the cloning
properties of several other open source systems written in tradi-
tional languages such as C, C# and Java. We provide the compar-
ison results starting from overall cloning level in Python, C, Java
and C# systems and then for each individual system in a variety
of measures based on the metrics described in Section 2.4. While
we provide here only the overall findings and statistical measures,

the detailed results and the raw data for each of the systems using
different UPI thresholds can be found in an online repository [17]
as XML databases and an HTML website. Due to limited space,
we have not shown all of the detailed results for the C, C# and Java
systems, and have omitted results for UPI thresholds 0.1 and 0.2 in
some tables. Detailed statistics for all systems and all thresholds
for the other languages can be found elsewhere [16, 15].

3.1 Overall Cloning Level
We begin by looking at the overall cloning level, both in terms of

number of methods and in terms of number of pretty-printed LOC
(i.e., the values of the TCM-related metrics of subsection 2.4). Fig-
ure 1a summarizes our results for the Python, C, Java and C# sys-
tems by the proportion of functions (or methods in the case of Java)
that are cloned (i.e., TCMp over languages). The corresponding
values for the TCSppLOCp metric (i.e., the proportion of clones by
number of pretty-printed LOC for each language) can be found in
the %Total rows of Table 1.

Our detailed comparison of the C, C# and Java systems has been
presented elsewhere [16]. Here we are interested in comparing the
results for Python systems with systems in other languages. The
first thing we notice (Figure 1a, Table 1) is that the percentage of
function clones in open source Python systems is close to the over-
all average for the open source systems written in C, C# and Java.
For exact clones (with UPI threshold 0.0), the cloning percentage
for Python systems is even higher than the average. On average,
12.1% (7.4% LOC) of functions in these Python systems are ex-
act clones - those with no changes at all (except changes in for-
matting, whitespace and comments), whereas about 10.8% (4.9%
LOC) functions are exact clones for the rest of the systems.

The second thing we can notice in Figure 1a (and in the % Total
rows of Table 1 for LOC) is that the effect of increasing the UPI
threshold is almost identical across the languages, even for Python.
We can interpret this as meaning that the numbers of small changes
made to cloned functions in each of these languages is roughly the
same in these systems, and that scripting languages are really no
different. This is in some ways surprising - there is no particular
reason why the pattern of changes to copied code should be similar
across languages. Up to UPI threshold 0.2, Python systems have a
higher or similar cloning rate to the rest of systems, at about 16.7%
with UPI threshold 0.2. C# systems are very similar to Python up
to that point. However, when we use UPI threshold 0.3 to detect
relaxed near-miss clones, overall cloning in C# is much higher than
in Python, and the highest among all the languages. But it is inter-
esting to see that the cloning rate in Python systems is still much
higher than C systems, including the Linux kernel.

Figures 1b, 1c, 1d and 1e (also columns 3 to 6 of Table 1) re-
fine Figure 1a to show a detailed view of the same information for
the individual open source Python, C, Java and C# systems respec-
tively. As expected, the overall trends for each language are much
like the summaries in Figure 1a (or the % Total rows of Table 1),
with lower levels of cloning in C than Python, Java and C#.

Figures 1b and 1d (also Table 1 for LOC) are even more inter-
esting, because while the C and C# systems vary, the Python and
Java systems are remarkably consistent in their cloning characteris-
tics. All Python and Java systems begin with a relatively high level
of exact method clones (between 7 and 22 percent), and allowing
for changes increases the proportion only modestly. This property
seems to be independent of system size, and appears to be a charac-
teristic of the language, leading us to believe that Python and Java
may have similar cloning characteristics. The only exception seems
to be the Java system JDTcore, with about twice as many near-miss
clones at the 0.30 dissimilarity level than exact clones.

0%

10%

20%

30%

40%

T=0 T=0.1 T=0.2 T=0.3

% Cloned Methods by Language

Python C w/o Linux
Java C#
All w/o Linux & Python C with Linux/Linux

(a) By Language

0%

10%

20%

30%

40%

50%

60%

T=0.0 T=0.1 T=0.2 T=0.3

% Cloned Methods in Python Systems

Eric EricPlugin Moin
networkx Plone scons
Zope

(b) Python Systems

0%

10%

20%

30%

40%

50%

60%

T=0.0 T=0.1 T=0.2 T=0.3

% Cloned Methods in C Systems

Abyss Bison Cook Gzip
Httpd Postgresql SNNS Weltab
Wget Linux

(c) C Systems

0%

10%

20%

30%

40%

50%

60%

T=0.0 T=0.1 T=0.2 T=0.3

% Cloned Methods in Java Systems

Ant EIRC Javadoc JDTcore
JHotdraw Spule Swing

(d) Java Systems

0%

10%

20%

30%

40%

50%

60%

T=0.0 T=0.1 T=0.2 T=0.3

% Cloned Methods in C# Systems

Vmukti Linq Nant RSSbandit
Castle db4o

(e) C# Systems

Figure 1: Proportion of cloned functions / methods in the systems

In Table 1 (columns 7 to 14) we also provide the number of
clone pairs and clone classes for most of the systems at varying
UPI thresholds. It is interesting that the average number of clone
pairs per clone class (the %Total row for each language) is more
or less consistent for Python, C, C# and Java systems for different
UPI thresholds. The only exception is C# systems at UPI threshold
0.3. which have a surprisingly high number (39.7 clone pairs per
clone class), indicating that copy/paste cloning of functions with a
significant amount of editing is frequent in the C# systems. What’s
interesting to us is that Python systems show a consistent ratio com-
pared to the other systems, and that the average number of clone
pairs per clone class in Python systems is even higher than in C
systems. We also see no significant differences between individual
systems in Python and other languages.

3.2 Clone Associated Files
The FAWC and FAWCp metrics of Section 2 address the issue of

what proportion of the files in a system is associated with clones,
that is, contain at least one cloned method. A system with more
clones but associated with only a few files may be better than a
system with fewer clones scattered over many files from a soft-
ware maintenance point of view. In this section, we examine the
FAWCp metrics for each of the systems with varying UPI thresh-
olds and compare the Python systems with systems in C, Java and
C#. Figure 2a shows the average values of FAWCp by language
with varying UPI thresholds.

We see that on average 32.1% of files in the Python systems, 15%
of the files in the C systems, 46% of the files in the Java systems,
and 29% of files in the C# systems are associated with exact clones
(i.e., with UPI threshold 0.0). These values simply indicate the fact
that there are no fewer clones in Python systems than in C, C# and

Java systems, rather it appears that more files in Python systems are
associated with exact clones than C and C# systems. The higher
percentage for Java systems can be explained by Java’s many small
similar accessor methods (see [16] for details).

Figures 2b, 2c, 2d and 2e refine Figure 2a to show a detailed view
of the same information for the individual open source Python, C,
Java and C# systems respectively. We see that while most of the
C systems have lower and most of the Java systems have higher
percentages at UPI threshold 0.0, Python and C# systems appear
to stay in the middle and show very similar percentages (20% to
45%), except for the small C# system Linq.

When we increase the UPI threshold to detect near-miss clones,
the C and C# systems show a faster growing ratio than the Python
and Java systems, indicating the fact that there might be more near-
miss clones in the C and C# systems than in Python and Java. What
we see from these metrics is that Python systems are not outliers
with respect to cloning, and possibly we should give similar priority
to dealing with clones in Python and other scripting languages.

3.3 Profiles of Cloning Density
While the subsection above provides an overall view of cloning

over the files in a system, one cannot immediately see which files
are highly cloned or which files contain the majority of clones. In
this section we provide the values for the CRFM and QFCM re-
lated metrics, and observe what happens in Python systems com-
pared to systems of other languages. Table 2 provides the data for
the Python, C, Java and C# systems. The second and third columns
give the subject systems and different UPI thresholds, while the
remaining columns show the corresponding QFCMp(v) (indicated
with column Meth) and QFCLOCp(v) (indicated with column LOC)
values. The Avg. row of the table shows the average values of the

Table 1: Proportion of cloned LOC, clone pairs and clone classes
% Cloned LOC No. of Clone Pairs No. of Clone Classes

Lang System T=0.0 T=0.1 T=0.2 T=0.3 T=0.0 T=0.1 T=0.2 T=0.3 T=0.0 T=0.1 T=0.2 T=0.3
Httpd 2.1 4.1 6.2 9.6 183 224 322 711 107 133 195 276

C Postgresql 0.1 1.0 4.3 9.43 7 24 195 530 7 20 89 203
Snns 3.2 6.2 13.3 18.6 109 157 343 495 63 86 143 191
Wetlab 21.0 55.2 62.7 72.2 46 105 148 160 8 11 17 20
Linux 1.0 2.6 8.3 10.8 5953 7362 13813 25767 1505 2263 4613 7918

% Total C with Linux 1.1 2.8 8.4 11.0 #CP per Clone Class 3.7 2.9 2.8 3.2
% Total C w/o Linux 2.0 4.7 8.6 13.2 #CP per Clone Class 1.8 2.0 2.2 2.7

Ant 5.1 5.4 6.3 9.7 363 365 374 426 92 94 101 119
Javadoc 10.8 12.6 18.6 24.0 193 197 240 304 80 82 95 110

Java Jdtcore 5.1 8.8 16.2 23.7 1427 1553 2126 4378 323 377 518 660
JHotDraw 7.6 8.28 12.0 19.1 291 295 377 598 137 141 170 208
Swing 9.4 11.0 15 19.4 8115 8203 9978 11209 516 558 687 843

% Total Java 7.2 9.4 14.4 20.0 #CP per Clone Class 8.8 8.3 8.2 8.6
Linq 3.4 3.8 8.3 12.4 427 428 523 565 4 5 16 31
Nant 3.7 5.8 12.8 21.6 2325 2341 3519 8554 45 57 110 192

C# RSS 9.8 11.7 15.3 20.6 1657 1698 2240 6405 440 469 533 605
Castle 5.4 7.6 15.5 28.4 2110 2311 5124 21351 347 380 585 981
db4o 4.8 5.4 10.6 26.6 1109 1149 2289 82571 391 411 652 1187

% Total C# 6.0 7.6 13.3 24.9 #CP per Clone Class 6.2 6.0 7.2 39.7
% Total Overall w/o Python and Linux 4.9 7.1 11.9 19.1 #CP per Clone Class 7.1 6.7 7.0 23.9

Eric 10.5 14.4 20.1 25.0 1121 1220 1577 2359 589 646 768 877
EricPlugin 3.5 3.9 9.2 13.8 375 380 531 639 70 75 110 150
Moin 6.6 8.7 12.5 16.4 470 510 692 1037 243 268 348 420

Python networkx 3.6 3.7 8.8 13.3 39 40 82 121 32 33 54 77
Plone 2.6 4.3 11.1 19.8 474 508 1868 2458 153 181 342 541
scons 2.5 2.9 4.9 8.2 316 322 401 545 109 115 150 205
Zope 9.4 11.1 15.3 20.3 7876 8028 10931 15324 1479 1581 1977 2470

% Total Python 7.4 9.3 13.9 19.0 #CP per Clone Class 4.0 3.8 4.3 4.7

Table 2: Proportion of files that have clones over a certain percentage
Lang System UPIT v=0+% v = 10+% v = 20+% v = 30+% v = 40+% v = 50+% v=100%

Name Both Meth LOC Meth LOC Meth LOC Meth LOC Meth LOC Both
Avg. w/o 0.0 15.3 14.1 9.9 12.5 6.0 10.5 4.8 9.2 4.5 8.8 4.4 0.3

C Linux 0.3 42.2 38.4 34.4 32.8 28.0 28.5 25.0 25.2 20.9 22.9 16.6 12.5
Linux 0.0 14.0 9.6 6.0 7.0 3.8 5.0 2.9 3.8 2.4 3.3 3.3 0.9

0.3 49.6 38.1 31.0 26.0 21.5 18.0 15.7 13.3 12.1 10.7 9.5 3.1
Java Avg. 0.0 45.7 37.8 26.2 27.4 17.4 20.4 12.2 14.5 8.9 11.3 7.0 1.7

0.3 59.4 54.3 44.9 44.1 33.9 34.2 26.1 26.9 20.1 22.2 16.7 5.1
C# Avg. 0.0 28.6 25.1 20.1 21.6 16.7 18.2 14.0 14.3 12.3 13.5 10.1 5.7

0.3 65.4 62.8 55.3 56.1 46.3 48.4 40.2 41.8 34.6 38.5 28.5 14.7
EricPlugin 0 31 18.8 15 14.1 8.5 8.9 3.3 6.6 0.5 3.3 0 0

0.3 48.8 37.1 33.3 30 25.8 22.5 19.2 17.4 16 16 13.1 3.3
moin 0 24.1 19 11.9 14.6 8.6 12.2 6.6 9.3 5.3 8.2 4.4 2.6

0.3 37.2 31.4 24.8 24.8 18.2 20.1 14.4 15.9 12.8 14.6 11.1 4.2
networkx 0 25.0 21.0 12.0 14.0 12.0 11.0 10.0 10.0 9.0 10.0 8.0 8.0

0.3 41.0 39.0 35.0 30.0 28.0 24.0 21.0 18.0 16.0 14.0 12.0 8.0
Python Plone 0 29.7 20 10.4 12.6 6.2 7.7 4.2 4.8 3.5 4.2 3.3 2.2

0.3 57.3 50.7 43.6 38.3 27.1 24.7 20.5 15.2 14.5 11.2 9.5 3.1
scons 0 25.7 15.8 11.6 12.2 9.9 10.9 9.2 10.2 7.9 9.2 7.6 5.9

0.3 38.3 31 25.4 25.1 19.5 19.5 16.2 16.5 13.5 16.5 12.9 9.9
Zope 0 43.8 33.7 20.6 24.5 14.6 18.3 11.9 14.6 10.5 13 9.6 5.8

0.3 60.9 52.3 40.9 40.6 30.7 30.6 24.2 25 20.5 21.9 18.5 9.3
Avg. 0.0 32.1 24.0 16.5 18.1 12.3 13.8 9.6 11.4 7.8 9.9 6.7 4.6

0.3 49.0 42.3 35.9 33.8 27.3 26.2 21.8 20.6 18.0 18.3 15.1 7.2

metrics for each of the languages of the systems. When v=0+% or
v=100% (the fourth and last columns) both metrics are the same.

From the average rows of the table with v=10+% we can see
that on average 14.1% (9.9% LOC) of the files for C systems have
10% or more of their content as exact (UPI threshold 0.0) cloned
methods. For Java systems this is even higher, at 37.8% (26.2%
LOC). C# and Python systems, on the other hand, are in the mid-
dle, at 25.1% (20.1% LOC) for C# and at 24.0% (16.5%) for Python
with respect to the number of cloned methods/functions. When we
increase the UPI threshold to 0.3, the C# systems become the win-
ners, at 62.8% (55.3% LOC), with Java systems second at 54.3%
(44.9% LOC) compared to 38.1% (31.0% LOC) for the C systems,
and 42.3% (35.9% LOC) for the Python systems. For higher val-
ues of v, say 50+% with UPI threshold 0.3, C# systems are still
the winners, at 38.5% (28.5% LOC). Both C and Java systems tend

to have about the same percentage, at 22.9% (16.6% LOC) for C
systems and 22.2% (16.7% LOC) for Java systems, while Python
systems a bit lower, at 18.5% (16.1% LOC).

When we look at the individual Python systems, these also ex-
hibit clone density percentages very similar to similarly sized sys-
tems in other languages. Thus for clone density Python systems
again seem not particularly different for the systems we studied.

3.4 Profiles of Cloning Localization
In this section we examine the localization of Python clones

compared to systems in other languages using the PCLMp and
PRCLMp related metrics. The location of a clone pair is a fac-
tor in software maintenance [9, 24]. A code fragment can form a
clone pair with another fragment within the same file, in a different
file located in the same directory, or in a different file in a different

0%

10%

20%

30%

40%

50%

60%

70%

T=0.0 T=0.1 T=0.2 T=0.3

% of Files with at least one Cloned Method by Language

C w/o Linux Java C# Python

(a) By Language

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

T=0.0 T=0.1 T=0.2 T=0.3

% of Files with at least one Cloned Method - Python Systems

Eric EricPlugin Moin networkx
Plone scons Zope

(b) Python Systems

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

T=0.0 T=0.1 T=0.2 T=0.3

% of Files with at Least One Cloned Function - C Systems

Bison Cook
Httpd Postgres
Snns Weltab
Linux

(c) C Systems

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

T=0.0 T=0.1 T=0.2 T=0.3

% of Files with at Least One Cloned Method - Java Systems

Ant EIRC Javadoc
JDTcore JHotDraw Spule
Swing

(d) Java Systems

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

T=0.0 T=0.1 T=0.2 T=0.3

% of Files with at Least One Cloned Method - C# Systems

Vmukti Linq
Nant RSSbandit
Castle db4o

(e) C# Systems

Figure 2: Proportion of source files associated with cloned code

directory. Our overall comparison can be summarIzed by Figure
3, which compares the localization of clones in Python systems to
systems in other languages at the UPIT=0.3 difference threshold.

In Table 3 we show the percentage clone pairs for each of the
different categories for the Python, C, Java and C# systems. For
each of the systems the first row represents PCLMp metric (i.e.,
w.r.t no. of methods) and the second row represents PCLLOCp
metric (i.e., w.r.t LOC). For each of the metrics four different values
are shown corresponding to UPI thresholds ranging from 0.0 (exact
clone) to 0.30 (relaxed near-miss clone). Due to limited space, we
include only the summary averages for C, Java and C# systems -
details for these systems can be found in our previous study [16]

From the table we see that while there are no exact clones (UPI
threshold 0.0) within the same file for C systems (except in the
Linux Kernel), there are on average 18.7% (17.6% LOC) exact
clone pairs within the same files for Java systems, 19.3% (18.6%
LOC) for C# systems, and 12.4% (8.9% LOC) for Python systems.

However, when we detect near-miss clones by allowing a higher
UPI threshold, we see that the metrics values grow at a higher rate
for the C systems than the Python, Java and C# systems. For ex-
ample, when UPI threshold is 0.3, on average 49.8% (52.5% LOC)
of clone pairs of the C systems occur within the same file com-
pared to only 25.3% (29.7% LOC) of the clone pairs in the Java
and 24.7% (33.7% LOC) in the Python systems. C# systems show
33.0% (36.2%), a little bit higher percentages than Java systems. If
we have a close look at the individual systems we also see higher
ratios for most of the C systems than the Python, Java and C# sys-
tems. We also see that there is a higher correlation between the Java
and Python systems than C and C# systems.

Both Python and Java systems tend to have a higher percentage
of exact clones (UPI threshold 0.0) in the same directory but dif-

ferent files than the C and C# systems, with C systems higher than
C# systems. However, the largest C system, the Linux Kernel, has
55.5% (58.9% LOC) of its exact clone pairs in the same directory
(but different files). The largest Java system, the Java 2 SDK Swing,
has even more, 87.5% (90.0% LOC). Among the C# systems, Cas-
tle, the biggest C# system in this study, shows the highest, 56.5%
(58.4% LOC), whereas the largest Python system, Zope, has only
15.8% (15.9% LOC). C# systems are the winners for exact clone
pairs in different directories though, at 62.9% (63.2% LOC), com-
pared to 45.5% (50.5% LOC) for C systems, 36.2% (39.9% LOC)
for Python systems, and 20.1% (19.5% LOC) for Java systems.

When we increase the UPI threshold to look for near-miss clones,
we see an interesting difference between language paradigms. While
the percentages of different directory clone pairs decrease signif-
icantly for procedural C systems, from 45.6% (52.1% LOC) to
15.0% (14.2% LOC), they tend to remain constant or even increase
for the object-oriented Java and C# systems. Python systems fall
in the middle, remaining constant up to UPI threshold 0.2 but de-
creasing with UPI threshold 0.3. Figure 3a provides an overview of
the localization of near-miss clone pairs at UPI threshold 0.3.

To provide further insight into clone locality, we also computed
the PRCLMp metrics for locality of remote clone pairs (i.e., those
in different directories). Two fragments of a different directory
clone pair might still share the same grandparent directory, or the
same subsystem, or they may be from different subsystems. Table
4 shows the data for the Python, C, Java and C# systems that have
different directory clone pairs. Due to limited space we include
only the summary averages for C, Java and C# systems - details for
these systems can be found in our previous study [16].

From the Average rows of the table, we see that in general ex-
act clone pairs (UPI threshold 0.0) that are not in the same file or

Table 3: Percentage localization of clone pairs
Lang System Same File and Same Dir Same Dir but Different Files Different Dirs

Name UPIT 0.0 0.10 0.20 0.30 0.0 0.10 0.20 0.30 0.0 0.10 0.20 0.30
Avg. w/o Meth 0.0 24.6 44.7 49.8 37.7 46.3 35.7 35.2 45.6 29.1 19.6 15.0
Linux LOC 0.0 35.2 48.3 52.5 31.2 41.5 34.0 33.4 52.1 23.3 17.7 14.2

C Linux Meth 0.1 2.7 12.2 22.5 55.5 53.3 41.2 33.5 44.4 44.1 46.6 44.0
LOC 0.3 8.6 20.2 28.0 58.9 52.5 40.0 34.7 40.8 39.0 39.8 37.2

Java Average Meth 18.7 18.4 20.1 25.3 61.2 60.7 59.4 54.5 20.1 20.1 20.5 20.4
LOC 17.6 19.2 24.5 29.7 62.4 60.5 55.1 50.4 19.5 20.4 20.1 20.0

C# Average Meth 19.3 20.8 28.3 33.0 24.0 23.3 19.5 14.5 56.7 55.9 52.3 52.4
LOC 18.6 22.8 31.8 36.2 24.4 22.6 18.5 15.3 57.0 54.7 49.9 48.5

EricPlugin Meth 20.5 20.5 22.6 26.6 67.5 67.1 53.5 47.7 12 12.4 23.9 25.7
LOC 9.2 9.6 26.5 30.9 74.3 72.8 39.5 35.7 16.5 17.6 33.9 33.4

Moin Meth 14.5 13.7 23.1 28.5 53 51.2 45.5 41.7 32.6 35.1 31.4 29.8
LOC 6.8 6.1 15.9 24.1 63.3 55.2 51.4 49.5 29.9 38.6 32.7 26.4

Python networkx Meth 0 0 28 29.8 76.9 77.5 58.5 60.3 23.1 22.5 13.4 9.9
LOC 0 0 48.6 46.4 56.9 58.6 35.9 42.9 43.1 41.4 15.6 10.8

Plone Meth 38 40.4 20.6 30 33.8 32.9 40.3 37.5 28.3 26.8 39.1 32.5
LOC 34.9 47.9 36.8 50.8 38.8 32.6 34.3 29.1 26.3 19.5 29 20.1

scons Meth 9.2 9.9 19.5 29.7 59.2 59 54.6 45.7 31.6 31.1 25.9 24.6
LOC 8 12.9 37.2 48.6 57 55.5 42.1 34.3 35.1 31.7 20.8 17.1

Zope Meth 3.1 3.3 4.3 12.9 15.7 15.8 13.4 12.1 81.2 80.9 82.2 75
LOC 2.8 4.7 9.3 19.7 15.9 15.9 13.2 12.1 81.3 79.4 77.5 68.2

Avg. Meth 12.4 12.7 17.4 24.7 51.4 51.0 45.8 41.4 36.2 36.3 36.8 33.9
LOC 8.9 11.7 25.5 33.7 51.1 48.4 37.7 34.7 39.9 39.9 36.9 31.6

Table 4: Percentage localization of remote clone pairs
Lang System Same Grandparent Same Subsystem Different Subsystem

Name UPIT 0.0 0.10 0.20 0.30 0.0 0.10 0.20 0.30 0.0 0.10 0.20 0.30
Avg. w/o Method 44.2 49.8 53.4 53.8 30.7 24.4 20.3 17.9 25.1 25.7 26.2 28.3

C Linux LOC 39.6 52.3 50.9 57.7 35.3 21.2 22.4 14.6 25.0 26.5 26.7 27.6
Linux Meth 31.1 31.1 36.9 35.7 64.2 64.4 59.2 59.4 4.7 4.5 3.9 4.9

LOC 30.7 33.2 41.0 40.9 65.7 62.8 55.0 54.5 3.5 4.0 4.0 4.6
Java Average Meth 38.1 38.1 37.1 31.6 41.7 41.9 40.8 42.6 20.2 20.0 22.1 25.8

LOC 35.5 34.9 34.6 29.7 42.4 44.3 42.2 43.6 22.1 20.8 23.2 26.7
C# Average Meth 36.6 36.5 40.0 38.1 48.7 48.7 48.3 38.8 14.7 14.8 11.7 23.1

LOC 38.5 38.4 40.8 37.3 47.2 47.2 48.0 39.2 14.3 14.4 11.3 23.5
EricPlugin Meth 53.3 53.2 66.9 55.5 15.6 14.9 5.5 5.5 31.1 31.9 27.6 39.0

LOC 56.1 56.8 64.3 50.4 4.0 3.6 0.8 0.8 39.9 39.6 34.9 48.8
Moin Meth 22.2 19.6 18.0 20.4 76.5 79.3 81.1 79.0 1.3 1.1 0.9 0.6

LOC 21.3 13.8 12.0 13.3 78.1 85.9 87.8 86.5 0.5 0.3 0.2 0.2
Python networkx Meth 55.6 55.6 45.5 41.7 44.4 44.4 36.4 33.3 0.0 0.0 18.2 25.0

LOC 90.2 90.2 60.9 56.9 9.8 9.8 6.6 6.2 0.0 0.0 32.5 37.0
Plone Meth 14.2 14.7 3.6 4.6 85.8 85.3 96.4 95.4 0.0 0.0 0.0 0.0

LOC 16.6 19.6 6.2 7.9 83.4 80.4 93.8 92.1 0.0 0.0 0.0 0.0
scons Meth 16.0 16.0 16.3 17.2 73.0 73.0 71.2 64.2 11.0 11.0 12.5 18.7

LOC 23.9 23.9 23.9 27.2 66.1 66.1 63.1 58.0 10.1 10.1 13.1 14.8
Zope Meth 11.6 11.5 9.3 13 84.1 84 87.4 84.3 4.4 4.4 3.3 2.7

LOC 9.3 9.4 8.2 11.6 72.9 73.5 80.2 79.6 17.8 17.2 11.6 8.8
Avg. Meth 34.7 34.3 32.9 32.2 58.5 58.8 58.2 55.5 6.8 6.9 8.9 12.3

LOC 41.1 40.4 35.6 34.8 49.1 50.0 51.2 49.6 9.8 9.6 13.2 15.7

directory tend to have the same grandparents or subsystems. For
example, 36.6% (38.5% LOC) of different directory exact clone
pairs of C# systems have the same grandparents, while only 14.7%
(14.3% LOC) are under different subsystems. Python, C and Java
tend to have similar percentages to C#.

When we increase the UPI threshold to detect near-miss clones,
we see that for Python, C and C# systems, the percent of same
grandparent clone pairs tends to remain constant or even increase,
while Java systems decrease (from 37% to 31%). Percentages of
clone pairs for the other two metrics (same subsystem and different
subsystems) also tend to remain constant for Python, C and C# sys-
tems, but increase for Java systems. Figure 3b provides an overview
of the localization of remote near-miss clone pairs at UPI threshold
0.3. Once again these metrics show that in terms of cloning, Python
systems are not very different from traditional systems.

3.5 Summary
In this experiment we have explored the question of whether the

cloning properties of scripting languages, as represented by Python,
differ from those observed for systems written in the more tradi-

tional languages C, Java and C#. In light of the higher level oper-
ations available in Python, we might have expected fewer clones,
and conversely, in light of the rapid development style of Python
programming, perhaps more. For the systems we have studied,
Python turns out to be right in the middle, and similar in every
cloning respect to other languages, and particularly to Java. In
overall cloning level, clone associated files, cloning density and
both near and far clone localization, we observed that the proper-
ties of Python systems are very similar to those implemented in
other languages.

3.6 Threats to Validity
The main threat to the conclusions of this study is the lack of

a sound definition of code clones. While one can precisely define
exact clones, there is no widely accepted definition for near-miss
clones. In this study we have used a dissimilarity threshold on stan-
dard pretty-printed code as a measure of near-miss clones, intended
to model the copy/paste/edit cycle used by programmers. Another
threat is the question of whether our open source systems are typ-
ical of their languages. We have handled this issue by choosing a

0%

10%

20%

30%

40%

50%

60%

Same File Same Dir, Diff File Diff Dir

Localization of Clone Pairs, by Language

C w/o Linux
Java
C#
Python

(a) % localization of clone pairs, by language

0%

10%

20%

30%

40%

50%

60%

Same GrandParent Same Subsystem Different Subsystem

Localization of Remote Clone Pairs, by Language

C w/o Linux
Java
C#
Python

(b) % localization of remote clone pairs, by language

Figure 3: Localization of near-miss clone pairs by language, at UPIT = 0.3

range of kinds of applications in each language. Finally, we cannot
be sure that Python is typical of scripting languages in general. This
we can only address with further experiments on other languages.

4. RELATED WORK
Empirical study of clones in open source systems is not a new

topic. When a new clone detection technique is published, it nor-
mally comes with an empirical study, but these studies focus on
validating the methods [21] rather than on the subject systems.

Several tool comparison studies have used open source systems
for comparing different tools [21]. The Bellon et al. experiment
[5, 4] used four C and four Java systems to compare several state-
of-the-art tools. Kapser and Godfrey conducted extensive empir-
ical studies [9, 8] with Apache httpd, the Linux file system and
several other open source systems, providing a detailed categoriza-
tion of code clones in the form of a taxonomy. Empirical stud-
ies of cloning in the Linux Kernel have also been carried out [2],
focussing on clone evolution. Al-Ekram et al. [1] have also con-
ducted an promising empirical study on cloning, focussing on C/C++
systems from two different domains. Uchida et al. [23] studied
code clones in 125 open source C packages for software analysis.

The most closely related work to ours is the work of Rajapakse
and Jarzabek [13], which was also one of the motivations of our
study. While they studied exact cloning in web applications, we
look at the scripting language itself, and at near-miss clones, in a
variety of applications. This work is directly related to our previ-
ous studies [16, 18] on the cloning properties of open source C,
Java and C# systems. In this study, we extend our work to Python
systems and compare the results to the more traditional languages.

5. CONCLUSION
In this paper we have provided an empirical study of function

clones in a variety of open source applications written in the Python
scripting language, and compared it to several C, Java and C# open
source software systems of varying size. Our results indicate that
while there is good reason to believe that scripting languages such
as Python might be different with respect to cloning, the evidence
is that they are quite similar to traditional languages in this respect,
exhibiting a large number of copy/paste/edit clones. In fact, at least
in the case of Python, the cloning characteristics seem to be very
similar to Java, on the face of it a much lower level language.

Acknowledgements
This work is supported in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and by IBM Canada
through a CAS Faculty Award.

6. REFERENCES
[1] R. Al-Ekram, C. Kapser and M. Godfrey. Cloning by Accident: An Empirical

Study of Source Code Cloning Across Software Systems. In ISESE, pp.
376-385, 2005.

[2] G. Antoniol, U. Villano, E. Merlo and M.D. Penta. Analyzing Cloning
Evolution in the Linux Kernel. Information and Software Technology, 44
(13):755-765, 2002.

[3] L. Aversano, L. Cerulo, and Massimiliano Di Penta. How Clones are
Maintained: An Empirical Study. In CSMR, pp. 81-90, 2007.

[4] S. Bellon. Detection of Software Clones: Tool Comparison Experiment:
http://www.bauhaus-stuttgart.de/clones/ (December 2007).

[5] S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E. Merlo. Comparison and
Evaluation of Clone Detection Tools. IEEE Transactions on Software
Engineering, 33(9):577-591, 2007.

[6] P. Bulychev and M. Minea. An Evaluation of Duplicate Code Detection using
Anti-unification. In IWSC, pp. 22-27, 2009.

[7] E. Juergens, F. Deissenboeck, B. Hummel and S. Wagner. Do Code Clones
Matter? In ICSE, pp. 485-495, 2009.

[8] C. Kapser and M.W. Godfrey. “Cloning Considered Harmful” Considered
Harmful: Patterns of Cloning in Software. Empirical Software Engineering,
13(6):645-692 (2008).

[9] C. Kapser and M. Godfrey. Toward a Taxonomy of Clones in Source Code: A
Case Study. In ELISA, pp. 67-78, 2003.

[10] M. Kim, V. Sazawal, D. Notkin and G. Murphy. An Empirical Study of Code
Clone Genealogies. In FSE, pp. 187-196, 2005.

[11] J. Krinke. A Study of Consistent and Inconsistent Changes to Code Clones. In
WCRE, pp. 170-178, 2007.

[12] Open Source Software in Python. http://pythonsource.com/ (Jan 2010)
[13] D. C. Rajapakse and S. Jarzabek. An Investigation of Cloning in Web

Applications. In WWW, pp. 924-925, 2005.
[14] M. Rieger, S. Ducasse and M. Lanza. Insights into System–Wide Code

Duplication. In WCRE, pp. 100-109, 2004.
[15] C.K. Roy. Detection and Analysis of Near-miss Software Clones. Ph.D. Thesis,

Queen’s University, Kingston, Canada, 263 pp., 2009.
[16] C.K. Roy and J.R. Cordy. Near-miss Function Clones in Open Source Software:

An Empirical Study. Journal of Software Maintenance and Evolution, 25 pp.
(online October 2009, in press)

[17] C.K. Roy and J.R. Cordy. IWSC’10 Clone Results: http://www.cs.
queensu.ca/home/stl/download/NICADOutput/.

[18] C.K. Roy and J.R. Cordy. An Empirical Study of Function Clones in Open
Source Software Systems. In WCRE, pp. 81-90, 2008.

[19] C.K. Roy and J.R. Cordy. NiCad: Accurate Detection of Near-Miss Intentional
Clones Using Flexible Pretty-Printing and Code Normalization. In ICPC, pp.
172-181, 2008.

[20] C.K. Roy, J.R. Cordy and R. Koschke. Comparison and Evaluation of Clone
Detection Techniques and Tools: A Qualitative Approach. Science of Computer
Programming, 74(7):470-495, 2009.

[21] C.K. Roy and J.R. Cordy. A Survey on Software Clone Detection Research.
Queen’s School of Computing TR 2007-541, 115 pp., 2007.

[22] C.K. Roy and J.R. Cordy. A Mutation / Injection-based Automatic Framework
for Evaluating Clone Detection Tools. In Mutation’09, pp. 157-166, 2009.

[23] S. Uchida, A. Monden, N. Ohsugi and T. Kamiya. Software Analysis by Code
Clones in Open Source Software. Journal of Computer Information Systems,
XLV(3):1-11, 2005.

[24] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. Gemini: Maintenance Support
Environment Based on Code Clone Analysis. In METRICS, pp. 67-76, 2002.

