
Examining the Co-Evolution Relationship Between
Simulink Models and their Test Cases

Eric J. Rapos and James R. Cordy
School of Computing
Queen’s University

Kingston, Ontario, Canada
{eric,cordy}@cs.queensu.ca

ABSTRACT
This paper presents an industrial case study that explores
the co-evolution relationship between Matlab Simulink Mod-
els and their associated test suites. Through an analysis of
differences between releases of both the models and their
tests, we are able to determine what the relation between
the model evolution and test evolution is, or if one exists at
all. Using this comparison methodology, we present empiri-
cal results from a production system of 64 Matlab Simulink
Models evolving over 9 releases. In our work we show that
in this system there is a strong co-evolution relationship (a
correlation value of r = 0.9, p < 0.01) between the models
and tests, and we examine the cases where the relationship
does not exist. We also pose, and answer, three specific
research questions about the practices of development and
testing over time for the system under study.

CCS Concepts
•Software and its engineering → Software testing
and debugging; Software evolution; Maintaining soft-
ware;

Keywords
model-based testing; Simulink; co-evolution; automotive; case-
study

1. INTRODUCTION
The link between development and testing is a strong one,

and one that strengthens even more over the life-cycle of a
software system. When this relationship is coupled with the
fact that software (be it source code, models, etc.) is not
a static object, and will change over time [5], it becomes
increasingly important to ensure the corresponding tests re-
main up to date.

A change in a software system is very likely to require a
corresponding change in its tests. This overall relationship
is known as test co-evolution, and when applied to model-
based tests is it is known as model-based test co-evolution.
Our work aims to improve the ability of our industrial part-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MiSE’16, May 16-17, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4164-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2896982.2896983

ner to easily and effectively maintain the model-based tests
that correspond to source models as they evolve over time,
and to infer associated practices to aid in this process. Our
industrial partners currently maintain this relationship man-
ually, which can be unnecessarily time consuming. Our long-
term goal is to provide semi-automated guidance on the re-
quired updates to test cases, and ultimately to automate
much of the test co-evolution process, in order to ensure the
continued production of high quality software with reduced
effort.

In order to properly understand the direct effects of model
changes on the tests, we must first understand how the
source models evolve over time, along with the same under-
standing of the associated tests, when manually maintained.
The best way to obtain this information is through examin-
ing an existing system of models and their tests to determine
the relationship between modeling and testing. By first com-
pleting the case study presented in this paper, we are able
to identify the frequency of changes in models that require
updates in tests, and other interesting basic relationships.
Based on this, we have performed an analysis of a system
of 64 production Matlab Simulink Models and their corre-
sponding test cases, provided by an industrial partner, to
answer the following research questions:

RQ1: Does test co-evolution happen synchronously or is
there a delay?

RQ2: Is there a noticeable increase in development and test
activity surrounding major releases or significant events? Is
there a noticeable stabilization nearing the final release?

RQ3: Are there instances of changes to models that do not
necessitate changes in the tests? If so, how common are
they?

RQ1 and RQ2 are very similar to the first two research
questions investigated in the work of Zaidman et. al. [15]
on the co-evolution of production and test code. Our study
aims at answering these questions in relation to models,
rather than source code.

These questions are being asked in order to better under-
stand the relationship between Matlab Simulink Models and
the tests for these models. This study is part of an overall
project related to the automation of co-evolution of these
tests based on the updates. Obtaining an understanding of
the relationship between them will help us to determine how
a change at the model level can propagate through to the
tests. In addition, an understanding of the relationship be-
tween modeling and testing is of interest to our industrial
partner; being able to determine where greater testing effort
is required can help to increase software quality.

2. BACKGROUND AND RELATED WORK
In this section we begin by briefly presenting some back-

ground to introduce key topics. We present a number of
related works related to the study of co-evolution of mod-
els and tests, as well as some applications to assist in the
automation.

The work of Pinto et. al. is aimed at understanding the
myths and realities of test-suite evolution [12]. In particular,
they investigate why tests change over time. The authors
state that test repair (fixing tests that no longer work after
a change) is only one of many ways tests can evolve; in
fact most changes occur as refactorings or additions and
deletions of test cases. These types of changes are likely
to appear in our study. One example of the automation of
test evolution is the work of Mirzaaghaei et. al., in which
they are able to automatically repair test cases for evolving
method declarations [10].

With the expansion of the software field to include model-
ing, the field of software evolution has expanded to include
the concept of model evolution as well. Paige et. al. present
a comprehensive survey of model evolution work over the
years in their recent paper [11]. Particularly, the authors dis-
cuss relevant work in the topics of metamodel and model co-
evolution, and model versioning - two concepts that closely
relate to our work.

While examining the evolution of software and models is
important to our work, our focus lies more specifically in
the application of maintenance of tests for systems devel-
oped using model-driven engineering (MDE). As such, it is
important to fully understand testing in the model-based
context. Dias Neto et. al. present survey on model-based
testing (MBT) [3] in which they analyze 78 papers on MBT
and come up with four succinct conclusions about the issues
facing the field, the most prominent of which is that the
testing and development processes in MBT are rarely well
integrated.

The combination of model-based testing and the co-evolution
of tests alongside their sources forms the area of model-based
test co-evolution. Early work on this topic is presented
by Zech et. al., in which they present a generic platform
for model-based regression testing, dealing specifically with
model versioning and evolution, known as MoVe [17].

Co-evolution of model-based tests is also the main focus
of our current and future research. Details of our research
plans have been presented in two doctoral symposium papers
[13][14].

Another piece of relevant background is the specific appli-
cation of our work, testing of Simulink Models. The recent
work of Matinnejad et. al. is aimed at the automated test-
ing of Simulink models [9], focusing on the creation of test
suites for existing models. While this work deals with the
creation of tests, it seemingly would require regeneration as
models evolve, and doesn’t explicitly provide a framework
for updates to the models. Regeneration of tests can become
expensive with many changes. Our future work aims to re-
duce or remove the need for the regeneration of test suites,
aiming instead at automated adaptation of existing tests
based on model changes. This technique could be combined
with the work on automatic generation, or used to assist
with manual test generation techniques.

A study similar to our work was conducted by Zaidman
et. al. [15] in which they examine the relationship between
source code and tests, as opposed to models and tests. The

authors explore research questions regarding the synchronic-
ity of co-evolution, testing efforts surrounding major events,
detection of test strategies from repository data, and the
relationship between test writing and test coverage. Follow-
ing this initial work, a follow-up study was conducted on
the use of association rules to study the co-evolution rela-
tion between tests and source code [6]. Their work was then
expanded to include, in addition to open source, industrial
software, again using repository mining [16]. In that work
they show that the observations of their earlier work on open
source systems also hold in the industrial case study. Most
recently they have applied their technique at a more fine-
grained level [8].

Another similar study, conducted on 6 open source soft-
ware systems, was conducted by Marinescu et. al. [7] in
which they present Covrig, their framework for the analysis
of code, test, and coverage evolution. In their framework
they pose 10 research questions, several of which relate to
the co-evolution relationship between source and tests. This
study however finds that testing does not increase as often
as source changes, and they conclude that testing is a phased
activity (with the exception of one of the 6 systems, Git).

Ens et. al. present a different approach to the analysis
of test and source co-evolution: they propose the use of vi-
sualization to understand the relationship, using their tool
ChronoTwigger [4]. ChronoTwigger uses co-change as it’s
basis, examining the correlations between source and tests,
to visualize their relationship, based on the premise that vi-
sualization helps with comprehension. From a small user
study (3 users) the authors conclude that ChronoTwigger
can lead to inferences about the relation between source and
testing that are not easily made using existing techniques.

While these co-evolution studies are focused on source
code and associated tests, the motivation is similar to ours,
and the insights from their findings led us to want to attempt
a similar study on models and tests.

In addition to looking at other studies regarding the co-
evolution relationship, it is also important to look at work on
the applications of co-evolution. One of the first applications
of co-evolution as a tool for test updating was presented by
Arcuri and Yao [2] in which they present their methodology
for using co-evolution to automate bug fixing. The authors
demonstrate their application by automatically fixing bugs
found in an implementation of a sorting algorithm.

3. DATA SET: MODELS AND TESTS
The set of models used for this experiment were provided

to us by our industrial partner for analysis and experimenta-
tion. They are Matlab Simulink Models used in the automo-
tive domain. Simulink [1] is a graphical modeling technology
used to create components, and the relations between them;
code is then generated from the models and used in elec-
tronic control units (ECUs) in a vehicle.

The models are structured into nine main components (re-
ferred to as rings), each of which is made up of a number
of sub-components. For example, ring 1 is made up of 4
sub-components, so there is a model for each of the 4 sub-
components, and one integration model for the ring, which
links the sub-components together. In total there are 55
sub-component models, and 9 ring integration models, for a
total of 64 different models in the system (not all of them
exist in all versions).

Table 1: Number of models provided for each ring
at each release

Rings
Rel. 1 2 3 4 5 6 7 8 9
1 4 4 8 11 4 4 10 7 8
2 11 10
3 4 4 8 10 4 4 10 7 8
4
5
6 5 5 8 10 10 7 8
7 5 4 10 7
8 6 4 8 10 3 3 10 7 8
9
10 4 4 10 7 8
11 6 4 8 10 3 3 10 7 8
12
13 6 3 3 10
14
15 6 4 8 10 3 3 10 7 8

We were provided with 15 releases of the entire system
from their version control system (VCS). Table 1 shows the
breakdown of models per release per ring; each count in-
cludes the sub-component models and the ring integration
model. There are actually several releases of the system
during which there were no changes and no versions added
to the VCS (releases 4,5,9,12,14). Since those involved no
evolution, for this study they were removed entirely, and
we were left with 10 releases to examine. In some of these
remaining releases, there were no updates to some of the
models, meaning there are not 10 versions of each model.
For the purpose of this study, we created duplicates of the
previous versions where a version does not exist for a release,
for the purpose of comparing versions.

The term “release” in the context of this work does not
actually refer to a release version of the system, as all of the
versions examined are pre-release. A release in this context
refers to a milestone in development; every incremental time
block, the release number is increased. The releases where
all models were originally provided (as seen in Table 1) can
be considered major releases in the life-cycle of the system;
thus releases 1, 3, 8, 11, and 15 are the major releases for
this software.

For each of the models, there is an associated test suite
which was provided along with the models. For the purposes
of this application, a test suite is contained in an Excel work-
book comprised of a number of Excel spreadsheets (using
the tabs in Excel), each containing test inputs and expected
outputs for the given model, over a number of time steps.
Each row represents a time step, and each column is an in-
put value or an expected output value. The tests are run by
simulation within Simulink, and the results compared with
the expected outputs.

4. EXPERIMENT

4.1 Preprocessing
We began by removing the ring integration models from

the analysis, due to the fact that their contents is simply the
merge of the sub-components along with connecting lines

between them. Additionally, the test cases for the ring inte-
gration models were not created until the final release, thus
there is no valuable information provided by including them
in the study. Furthermore, there are two models which sim-
ply produce output, and do not reply on input. These were
excluded from the analysis since there are no associated tests
for these models, and thus no comparison results to be ob-
tained. We also removed release 2 from the analysis, because
there were some issues with one of the model files in that
version. We dealt with this problem by performing the com-
parison between release 1 and release 3. We have no concern
about the validity of removing this release since there were
only two systems with changes, and only one model in each
was changed. These changes are adequately captured in the
comparison between releases 1 and 3.

After all of the pruning of extraneous models, we were
left with the 53 component models over 9 releases, for a
total of 477 models and their associated tests, to perform
our experiment on.

4.2 Process
The experiment was conducted by performing a pairwise

comparisons of two consecutive versions of the same model,
and recording the results. This was repeated for each model,
and then for every pair of releases, resulting in 8 release
comparisons for the 53 models.

The result of a model comparison is one of the following:
No Change, Model Does Not Exist Anymore (but existed
previously), Model Does Not Exist Yet (but will exist in a
later release), Model Newly Created This Release, Model
Deleted This Release, or Model Was Modified (listed as #
of additions, modifications, and deletions).

The same process was repeated for the test cases, again
storing the results for analysis. The result of a test case
comparison is one of the following: No Change, Test Does
Not Exist Anymore (but existed previously), Test Does Not
Exist Yet (but will exist in a later release), Test Newly Cre-
ated This Release, Test Deleted This Release, or Test Was
Modified (listed as # of test cases added or removed OR #
of test which are the same and # of tests that have changed)

With results for both models and tests, matching types of
results, we performed a comparison between each result for
a given model and test evolution. This is to say, for sub-
component 1, between release 1 and release 3, we obtain
a result of how the model changed (if at all) and how the
test changed (if at all) and compare the two looking for a
relationship. The result of this comparison is one of the fol-
lowing: (1) No Change In Both, (2) Model and Test Do Not
Exist in Both Releases, (3) Model and Test Newly Added
This Release, (4) Model and Test Deleted This Release, (5)
Change in Model But Not In Test, (6) No Change in Model
But Change In Test, or (7) Change in Model and Test.

The above outcomes can be summarized as matching (1,
2, 3, 4, 7) or not matching (5, 6). These results form the
basis of our analysis.

4.3 Implementation
In this section we discuss the implementation of our ex-

periment. As we are working with Matlab Simulink Models,
we chose to perform the comparisons in the Matlab envi-
ronment. Matlab scripts were written to collect all of the
appropriate model and test files, and to perform the pairwise
comparisons.

4.3.1 Model Comparison
Our Matlab script took as input the paths to two versions

of the same Matlab Simulink model, and performed a com-
parison between the two versions. To do this, we made use
of the built-in Simulink differencing tool, which is an XML
comparison method that returns a single object, containing
all of the differences between any two Simulink models (or
two versions in this case).

Given this result, our script then removes any non-semantic
differences such as placement, colours, version number la-
bels, etc. and then iterates over each difference one at a
time. The script then determines whether the difference is
the addition of a new element to the model, a modification
to an existing element, or the deletion of an element from
the previous version. The result is reported as a string of
the form:

A: # M: # D: #

where the numbers of additions, modifications, and deletions
are reported respectively.

This process is repeated for all of the models, perform-
ing a total of 424 pairwise comparisons of the models, and
storing the results in a Matlab cell-array. Upon completion
the results are written to an Excel spreadsheet for further
investigation.

4.3.2 Test Suite Comparison
Similarly to the model comparison, we created a script

which took as parameters the paths to the two Excel work-
books containing the test suites for two versions of the same
test suite.

The first step in comparison was to examine the number
of test cases in the test suite, which is done by counting the
spreadsheets in the workbook, and determining if there are
the same number of test cases. If there are an equal number
of test cases investigation continues, otherwise the result is
reported as the addition or removal of some number of test
cases.

If there are the same number of test cases, we then be-
gin a comparison of each test case from each test suite to
the corresponding test case in the other test suite. This is
done by performing an element by element comparison of
the spreadsheet; if a single cell is found to be different, that
individual test case is marked as changed, and exploration
continues with the remaining test cases. Upon completion of
the comparison, the result is reported as the number of test
cases that have changed and the number that remained the
same. If all of the tests change, or none of them change, this
is the result reported, otherwise, the resulted is reported as
a string of the form:

Same: # Diff: #

where the number of tests that are the same and the number
that have changed are reported respectively.

This process is repeated for all of the test suites, perform-
ing a total of 424 pairwise comparisons of the test suites, and
storing the results in a Matlab cell-array. Upon completion
the results are written to an Excel spreadsheet for further
investigation.

4.3.3 Co-Evolution Relationship
With the results of both comparisons available, a final

Matlab script was created to perform a comparison between
the model results and the test results, in order to come up
with the relationship between the two comparisons.

This was done by simply iterating over the 424 cells in
each table and comparing them to come up with a result;
the result being a number from 1 to 7, corresponding to the
seven outcomes presented in Section 4.2. The results were
written to an Excel spreadsheet for further investigation and
final analysis.

5. ANALYSIS

5.1 Results
The results of the co-evolution relationship analysis be-

tween the models and tests can be found in Table 2. Each
column represents the evolution from one release to the next,
while each row is a specific model. The values in the cells cor-
respond to the comparison results described in Section 4.2.
However, since several of the outcomes can be grouped to-
gether, the cells have been shaded to show the groupings of
similar outcomes. The most common outcome (64.6%), was
when there was no change in the model and no change in
the test (result 1), which is shown by all of the white cells.
The next most common outcome (21.7%) was the fact that
a co-evolution relationship existed between the model and
the test suite; this can mean that either both did not exist
at that time (result 2), both were added (result 3), both
were deleted (result 4), or both were changed (result 7); all
of these are shown by the cells shaded light gray. The fi-
nal two results, which occurred the least frequently (13.7%)
were the results where there was a change in one artifact but
not the other: a change in the test but not in the model (re-
sult 6) is shown in medium gray, and a change in the model
but not the test (result 5) is shown in dark gray. It is these
two categories that provide relationships outside of the ex-
pected, and thus the ones that require further investigation;
this analysis can be found in the answers to RQ1 and RQ2.

From this data, we wanted to determine how often through-
out a particular model’s life-cycle did it occur that there
was a change in one artifact but not the other. This data
is shown in Figure 1. What can be seen here is that 38 of
the 53 models (71.1%) only have this occur 0 or 1 times
throughout their life cycle, with a small portion of the mod-
els displaying this property more frequently. Of note, model
42 demonstrated the property of having a change in one ar-
tifact and not the other in 5 of the 8 evolutions. Upon fur-
ther investigation, it was found that model 42 was a model
that changed frequently, but the changes did not necessitate
changes to the test cases as they were internal changes (more
on this type of change is discussed in RQ2).

While we had an initial belief there should be a relation-
ship between changes in the models and changes in the tests,
we wanted to examine this relationship in detail. Figure 2
shows us the relationship between the percentage of mod-
els that change between each release and the percentage of
tests that change in each release. From the data we are able
to conclude there is a strong positive correlation between
models changed and tests changed, r(6) = 0.9, p < 0.01.

Our next area of analysis was an examination of the type
of change (or lack thereof) over time. For this we returned
to our groupings from Table 2, but group the two types
where changes occur in only one artifact into one group.
This left us with the fact that in a given evolution, models
and tests could either both not change, both change, or only
one change. The results of this can be found in Figure 3.

Table 2: Co-Evolution Relationships Between
Models and Tests

Model Release Pairs
mdl 1|3 3|6 6|7 7|8 8|10 10|11 11|13 13|15
1 1 7 5 5 1 5 1 1
2 7 7 1 5 1 6 1 1
3 2 2 2 3 1 7 1 1
4 2 3 7 5 1 7 7 1
5 7 1 4 2 2 2 2 2
6 2 2 3 7 1 5 1 1
7 1 7 1 5 1 5 1 5
8 7 7 1 1 1 1 1 1
9 7 1 4 2 2 2 2 2
10 2 3 1 7 5 7 1 1
11 1 7 1 1 1 1 1 1
12 1 5 1 1 6 5 1 1
13 1 1 1 1 1 1 1 1
14 1 1 1 5 1 1 1 1
15 5 1 1 1 5 1 1 1
16 1 7 1 1 1 5 1 1
17 7 1 1 5 1 1 1 1
18 5 1 1 1 1 1 1 7
19 7 7 1 1 1 5 1 1
20 7 1 1 5 1 1 1 1
21 7 1 1 1 1 1 1 1
22 7 1 1 1 1 1 1 1
23 7 5 7 7 1 1 1 7
24 4 2 2 2 2 2 2 2
25 7 7 1 1 1 5 1 1
26 1 1 1 7 1 1 1 1
27 1 1 1 7 1 1 7 1
28 7 1 1 4 2 2 2 2
29 1 1 1 7 1 1 6 1
30 1 1 1 7 1 1 5 1
31 7 1 1 4 2 2 2 2
32 5 1 1 1 1 1 1 1
33 7 1 1 7 1 1 1 1
34 5 5 1 5 1 1 1 1
35 5 7 1 1 1 1 1 1
36 7 1 1 7 1 1 7 1
37 5 1 1 1 1 1 1 1
38 5 1 1 1 1 1 1 1
39 5 1 1 5 1 1 1 1
40 5 1 1 5 7 1 1 1
41 1 7 1 1 1 1 1 1
42 5 5 1 5 6 5 1 1
43 1 1 1 1 1 1 1 1
44 1 1 1 5 1 1 1 1
45 1 1 7 1 1 1 1 1
46 5 1 1 1 5 1 1 1
47 7 1 1 5 1 1 1 1
48 7 5 1 5 1 1 1 1
49 6 1 1 5 1 1 1 1
50 6 1 1 5 1 1 1 1
51 7 1 1 5 5 1 1 1
52 6 7 1 5 5 1 1 1
53 6 1 1 7 1 1 1 1

Numbers refer to definitions in Section 4.2

White – No Change in Both (1,2)
Light Gray – Co-Evolution Occurrence (3,4,7)
Medium Gray – Change in Test, None in Model (6)
Dark Gray – Change in Model, None in Test (5)

5.2 Discussion
RQ1: Does co-evolution happen synchronously or is there a
delay?

Since it is the case that at each release the tests are run
on the models prior to checking into the VCS, and we only
have the information of the version check-ins for the releases,
we cannot provide any further granularity beyond releases
to know exactly when changes in tests occur in relation to
changes in the models. Given the information available, we

Figure 1: Frequency Graph of Evolution Step
Disparity

Figure 2: Percentage of Models & Tests Changed at
Each Release

can conclude that it does happen consistently when required,
with only a few minor exceptions.

The exceptions are those instances where there is a change
in one artifact and not the other: a change in model and not
test (result 5), and a change in test but not model (result
6). RQ2 will address those instances of result 5, however
when a change is made to a test but not the model, this can
be seen as an instance of a delayed update to the test, and
warrants further investigation.

There are 8 instances where the tests changed and not
the model (result 6), and these occurred only once in the
life time of models 2, 12, 29, 42, 49, 50, 52, and 53. Each
of these will be discussed here in order to understand what
the lone occurrence of test changes means for the system.

To begin, we can address Models 49-53; the changes made
to these tests was that they were newly added tests. These
5 models are all sub-components of the same ring, and the
absence entirely of tests in the first release of the system
means that there was in fact, not a delay of changes to the
models, they were just not included with the check-in of this

Figure 3: Types of Change over Time

version for some reason. Thus, this negates the concept of
a delay in test updates to these tests.

The occurrences of changes in tests but not models to
models 2, 29, and 42 all share similar circumstances; there
were no changes made to the existing tests, and additional
tests were created. This again negates the concept of a delay
in testing, and simply represents an increased effort in test-
ing when changes were not required to the models during
this release period.

The final occurrence of changes to a test suite but not the
source model is within model 12, where all of the test cases
were modified. This marks the first result requiring investi-
gation into the actual test cases to determine the changes;
however the findings were that the changes to each test case
were changes to the frequency of changes in values (the time
step of the values), and not the inputs or expected outputs
themselves.

From this analysis, we can conclude that in this model
set, there is no concept of delayed updates to test suites
after model updates, and that when a change to test suites
is required, it is completed prior to the end of the current
release cycle.

RQ2: Is there a noticeable increase in development and test
activity surrounding major releases or significant events? Is
there a noticeable stabilization nearing the final release?

The answer to this question can be found by examining the
percentage of models and/or test that change surrounding
these events, as compared to the releases immediately prior.
A summary of this information can be seen in Figure 2.

Recall that releases 1, 3, 8, 11, and 15 are the major
releases for this software. By eliminating the first release,
since there is no prior information, which can also be said
for the change from release 1 to release 3, we can highlight
the changes made between releases 7 and 8, 10 and 11, and
13 and 15 as the points of interest for this research question,
as they are the updates made prior to the major events in
the product life cycle.

Upon a visual inspection of Figure 2, it becomes clear that
there is indeed an increase in development and testing prior
to release 8 and 11, but not release 15.

Between releases 6 and 7 13.2% of the models changed,
and between releases 7 and 8 58.5% of the models changed,
an increase of 343.2%; similarly changes in tests at these two
evolution steps increased from 11.3% to 24.5%, an increase
of 116.8%. Examining these same differences for the major
event surrounding release 11, we note that changes in models
increased from 11.3% to 20.8%, an increase of 84.1%, and
changes in tests increased, only slightly, from 5.7% to 7.5%,
an increase of 31.6%.

While it is shown that changes in models and changes in
tests actually decrease prior to the final release (decreasing
24% and 49.3% respectively), we still feel confident in con-
cluding that there are substantial increases in development
and testing efforts surrounding major events of a software
system prior to release, with the exclusion of the final re-
lease. Our understanding of this exception is that the fi-
nal release changes would only be small minor ‘polishing’
changes.

Regarding the question of stabilization, referring to the
reduction of changes made at each evolution step, as the sys-
tem approaches the final release, examination of Figure 3,
showing the amount of change over time, does indeed in-
dicate a stabilization. The obvious conclusion here is that
we can indeed notice a point of stability as the system ap-
proaches the final release, with the peak of no change being
the final evolution step, at 94.3% of the models and tests not
changing at all. There are however 3.8% of the models and
tests that have a consistent co-evolution at this co-evolution
step; we can again attribute this the same types of ‘polish-
ing’ changes discussed above.

RQ3: Are there instances of changes to models that do not
necessitate changes in the tests? If so, how common are
they?

The answer to this question is of importance for our con-
tinued work, in that identifying the types and frequency of
changes in models that do not have a direct impact on the
test suites can help reduce the testing efforts by identifying
when a change needs (or need not) to be made to the test
suite.

Since the test suite for each model is run and must pass
at every release prior to being checked into the VCS, any
time where there is a change in the model but not the test
(a result of 5 in Table 2) provides us with an instance of
changes that do not necessitate changes in the test suites.
Based on this, we can claim that there are indeed changes
that do not require direct updates to the test suite.

To the question of frequency, there are 50 occurrences
of this over the life of the system, whereas there are 110
instances of model changes occurring over the life of the
system; this equates to 45.5% of the model changes not re-
quiring a change in the associated test suite.

From this we can conclude that there are a substantial
number of changes that occur to source models that do not
impact the overall behaviour of the models, nor the results
of running the existing functional tests.

Identifying the exact types of these changes will help us
better understand the impact of Simulink model changes on
their test suites, which will be explored further in our future
work.

6. CONCLUSIONS & FUTURE WORK
In this study, we were able to examine in detail the re-

lationship between evolution of models and the evolution
of their associated tests in a production model-driven au-
tomotive industrial system, with the goal of determining
whether or not a co-evolution relationship exists. This was
done by comparing the differences between versions of both
the models and the tests, at every version, then creating
a link between these comparisons. The results of this can
be found in Table 2. Of note, we were able to conclude
that there is a strong positive correlation between models
changed and tests changed, r(6) = 0.9, p < 0.01, thus con-
firming that there is indeed a co-evolution relationship be-
tween the source models and their tests.

In addition to simply examining the existence of the re-
lationship, we also looked into 3 specific research questions
regarding the existence of a delay in updates, increases in ef-
forts surrounding major events in a life-cycle and approach-
ing final release, and the existence of changes to models that
do not require changes to tests. Each of these questions was
discussed in detail, with a definitive answer provided.

With an understanding of the relationship between the
models and tests, and how they evolve alongside one an-
other, the next step in our work is to investigate at a lower
level and determine the relationship between individual changes
and the required test changes. This study focused on whether
or not models changed between two versions, and the same
for the corresponding tests for those versions, and an anal-
ysis of these relationships was conducted; however we now
would like to expand beyond the fact that a model has X
additions, Y modifications, and Z deletions into an analysis
of what each of these model changes are and which exact
changes occurred in the test as a result of each of these
changes. These results will be useful in determining what
updates are required to a previous test version, given the dif-
ferences between a current model and its previous version.
Eventually, these updates will be automated, removing the
need for manual updates.

The important results from this study that will carry for-
ward into this future work stem from the any of the occur-
rences of a result of 5 or 7 in Table 2. The occurrences of 7
mark a successful co-evolution, and provide us with a direct
link between changes in the models to changes in the tests.
Additionally, results of 5 provide us with clear examples of
changes in the models that do not require changes in the
tests. These two types of relations provide us with an excel-
lent starting point for continued analysis of co-evolution of
Simulink model-based tests.

Acknowledgments
This work is supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), as part of
the NECSIS Automotive Research Partnership with Gen-
eral Motors, IBM Canada and Malina Software Corp. We
particularly thank our partners at General Motors Canada
for their continuing collaboration and support.

7. REFERENCES
[1] MathWorks Simulink product page.

http://www.mathworks.com/products/simulink/.
Accessed: 2015-10-27.

[2] Arcuri, A., and Yao, X. A novel co-evolutionary
approach to automatic software bug fixing. In
Congress on Evolutionary Computation, 2008 (2008),
IEEE, pp. 162–168.

[3] Dias Neto, A., Subramanyan, R., Vieira, M.,
and Travassos, G. A survey on model-based testing
approaches: a systematic review. In ASE ’07 (2007),
ACM, pp. 31–36.

[4] Ens, B., Rea, D., Shpaner, R., Hemmati, H.,
Young, J., and Irani, P. Chronotwigger: A visual
analytics tool for understanding source and test
co-evolution. In VISSOFT ’14 (2014), IEEE,
pp. 117–126.

[5] Lehman, M. Programs, life cycles, and laws of
software evolution. Proceedings of the IEEE 68, 9
(1980), 1060–1076.

[6] Lubsen, Z., Zaidman, A., and Pinzger, M. Using
association rules to study the co-evolution of
production & test code. In MSR ’09 (2009), IEEE,
pp. 151–154.

[7] Marinescu, P., Hosek, P., and Cadar, C. Covrig:
A framework for the analysis of code, test, and
coverage evolution in real software. In International
Symposium on Software Testing and Analysis, 2014
(2014), ACM, pp. 93–104.

[8] Marsavina, C., Romano, D., and Zaidman, A.
Studying fine-grained co-evolution patterns of
production and test code. In SCAM ’14 (2014), IEEE,
pp. 195–204.

[9] Matinnejad, R., Nejati, S., and Briand, L.
Automated test suite generation for time-continuous
simulink models. Tech. Rep. TR-SnT-2015-7, 2015.

[10] Mirzaaghaei, M., Pastore, F., and Pezze, M.
Automatically repairing test cases for evolving method
declarations. In ICSM ’10 (2010), IEEE, pp. 1–5.

[11] Paige, R., Matragkas, N., and Rose, L. Evolving
models in model-driven engineering: State-of-the-art
and future challenges. J. Syst. Software (2015).

[12] Pinto, L., Sinha, S., and Orso, A. Understanding
myths and realities of test-suite evolution. In FSE ’12
(2012), ACM, p. 33.

[13] Rapos, E. Co-evolution of model-based tests for
industrial automotive software. In ICSME ’14
(September 2014), IEEE, pp. 663–663.

[14] Rapos, E. Co-evolution of model-based tests for
industrial automotive software. In ICST ’15 (April
2015), pp. 1–2.

[15] Zaidman, A., Van Rompaey, B., Demeyer, S., and
Van Deursen, A. Mining software repositories to
study co-evolution of production & test code. In ICST
’08 (2008), IEEE, pp. 220–229.

[16] Zaidman, A., Van Rompaey, B., van Deursen, A.,
and Demeyer, S. Studying the co-evolution of
production and test code in open source and industrial
developer test processes through repository mining.
Empirical Software Engineering 16, 3 (2011), 325–364.

[17] Zech, P., Felderer, M., Kalb, P., and Breu, R.
A generic platform for model-based regression testing.
In Leveraging Applications of Formal Methods,
Verification and Validation. Technologies for
Mastering Change. Springer, 2012, pp. 112–126.

