
Towards a Taxonomy for Simulink Model Mutations

Matthew Stephan, Manar H. Alalfi, and James R. Cordy
Queen’s University

Kingston, Ontario, Canada
{stephan,alalfi,cordy}@cs.queensu.ca

Abstract—A relatively new and important branch of Mutation
Analysis involves model mutations. In our attempts to realize
model-clone detector testing, we found that there was little
mutation research on Simulink, which is a fairly prevalent
modeling language, especially in embedded domains. Because
Simulink model mutations are the crux of our model-clone
detector testing framework, we want to ensure that we are
selecting the appropriate mutations. In this paper, we propose
a taxonomy of Simulink model mutations, which is based on
our experiences thus far with Simulink, that aims to inject
model clones of various types and is fairly representative of
realistic Simulink edit operations. We organize the mutations
by categories based on the types of model clones they will
inject, and further break them down into mutation classes. For
each class, we define the characteristics of mutation operators
belonging to that class and demonstrate an example operator.
Lastly, in an attempt to validate our taxonomy, we perform a case
study on multiple versions of three Simulink projects, including
an industrial project, to ascertain if the actual subsystem edit
operations observed across versions can be classified using our
taxonomy and present any interesting cases. While we developed
the taxonomy with the specific goal of facilitating and guiding
the injection of mutants for model clones, we believe it is
fairly general and a solid foundation for future Simulink model
mutation work.

I. INTRODUCTION

Mutation Analysis involves analyzing a software system
using small modifications, or mutations, of elements within
that system and observing how the system handles these
changes [1]. The mutations, also termed mutation operators,
either showcase an important property of a system or are
representative of future modifications that may occur to a
system’s components. Up to this point, the majority of the
work on Mutation Analysis in software testing is done on
the source-code level. That is, mutation operators are devised
to modify source code such that they test specific properties
of a system. Most commonly, this involves the evaluation of
the completeness of test suites by injecting potential errors
and observing how the test suite covers them. Other examples
of source-code level Mutation Analysis include mutating Java
code to test concurrency [2], and C code to identify semantic
misunderstandings [3].

In contrast to traditional source-code based development,
Model-driven software development, or Model-driven Engi-
neering (MDE), is a relatively recent and continually growing
area within software engineering in which the primary artifacts
are higher-level descriptive abstractions, or “models”, that
represent a system’s elements and their behavior. It has seen
much adoption in embedded areas, like telecommunications,
and the automotive and aerospace domains. Compared to

source-code based Mutation Analysis, Mutation Analysis for
systems developed through MDE is still in its infancy.

One such MDE language that is of interest to us and our
industrial partners is Simulink1, which is a data-flow modelling
language for embedded systems that allows for simulation,
automatic code generation, and more. Specifically, we worked
with our industrial partners and created a Simulink model-
clone detector, Simone [4], that is able to identify identical
or similar subsystems within Simulink projects. While we
were able to perform a qualitative evaluation of our tool and
comparison to other tools through manual testing [5] and
analysis, we wanted to accomplish a more quantitative and
automatic approach. To that end, we proposed, outlined, and
are currently implementing a Model-Clone Detector Compar-
ison Framework that utilizes Mutation Analysis [6].

A key part of this framework is identifying the appropriate
Simulink model mutation operators that will allow for testing
Simulink model-clone detectors. The contributions of this
paper are proposing a taxonomy of classes for Simulink model
mutations, which are based on our work with Simulink models
thus far, and validating these classes through a case study
that identifies and counts the mutation operators witnessed as
evolutionary changes in multiple versions of three Simulink
projects. While the mutation classes were devised with the
goal in mind of testing Simulink model-clone detectors, we
believe they are representative of Simulink model mutations
in general and are a solid foundation to build on for future
data-flow model Mutation Analysis.

This paper begins by providing background information
on both Simulink and model-clone detection in Section II.
We then propose our taxonomy, organized by categories that
contain classes, in Section III. A case study we perform using
three MDE projects to validate our taxonomy is presented in
Section IV. We then discuss related work, future work, and
conclude the paper in Sections V,VI, and VII, respectively.

II. BACKGROUND

While we believe the Simulink model mutation classes are
fairly general, we still make mention of their application to
testing Simulink model-clone detectors, so we discuss model
clone detection in Section II-B. To begin, we provide a very
brief introduction to Simulink.

A. Simulink

Simulink models are data-flow models consisting of three
levels of granularity: whole models, (sub) systems, and blocks.

1http://www.mathworks.com/products/simulink/

Models contain systems, and systems contain other (sub)
systems and blocks. Blocks come from libraries, are con-
nected by lines, and have their own semantics, allowing for
parametrization and simulation. In addition to simulation,
many blocks have corresponding C code that can be generated
to embed into a target platform. Modellers edit Simulink
models through the Matlab environment by navigating through
systems and adding, modifying, and deleting blocks and lines.
The underlying internal representation of Simulink models are
stored as text either in Simulink MDL files or XML files, in
newer versions of Simulink.

B. Model Clone Detection

Clone detection in software refers to the identification
of similar or identical components within a set of projects.
Model clone detection refers specifically to the identification
of clones within model-based software systems and has been
implemented in a variety of ways for different modelling
languages [4], [7], [8]. It is generally accepted that there are
three types of model clones [4]:

Type 1 - Exact model clones
These are identical fragments of models, regard-
less of variations in visual presentation, layout,
and formatting.

Type 2 - Renamed model clones
Renamed model clones are those that are struc-
turally the same, other than variations in labels,
values, types, visual presentation, layout, and for-
matting.

Type 3 - Near-miss model clones
Near-miss model clones are those that are the
same with additional modifications, such as posi-
tion changes or connections with respect to other
model fragments, small additions or removals of
blocks or lines, and the variations found in Type
2 clones.

III. SIMULINK MODEL MUTATION CLASSES

The mutation operators necessary for a model-clone de-
tector comparison framework must test variations of all three
model-clone types. That is to say, the Simulink mutation
classes should contain instances of mutation operators that,
once instantiated in the framework, will yield model clones
representing all three types. In addition, we aim for mutation
classes that are realistic edit scenarios as validated through our
case study presented later.

Based on our experience with Simulink developing Simone,
which included the creation of a Simulink grammar; and our
Simulink clone class evolution study [9]; we devised our
initial high-level categories of Simulink model mutations and
outlined them [6]. In this paper, we further elucidate the cate-
gories, and define mutation classes belonging to each category.
These categories and the classes themselves were based on
our observations of model edit operations we encountered in
a wide variety of Simulink models, including large public and
private-industrial sets.

We present and organize the mutation classes organized by
category. For each mutation class, we include 1) a description,
2) justification of its suitability, 3) and an example of a

mMLA

Fig. 1. Example of an mMLA Mutation Operator

mutation (operator) belonging to the respective mutation class,
including an image. For the examples, we manually mutate
existing models to make the concepts as clear as possible. We
present the models and their mutants in the native Simulink
GUI because this is the form most familiar to Simulink
modelers and it makes the mutants easily reproducible.

Table I provides a listing of the mutation classes in our
taxonomy, including the class’ respective section in the paper,
and the resulting type of model clone a mutation from the class
will generate.

A. Changing the Layout and Ordering of Elements

This category of mutation classes contain mutation oper-
ators that are related to layout and presentation aspects of
a model. Mutations belonging to these classes would enable
detection of Type 1 model clones. When developing Simone,
we found accounting for and filtering this information out
improved recall for both exact and near-miss clones [4]. In
addition, we also noticed that the ordering of elements in the
textual representation of identical models may differ, so we
have class of mutations accounting for that.

1) Modification of Layout Attribute (mMLA): Elements in
Simulink contain different properties pertaining to presentation
that should be filtered for clone detection as they do not impact
system structure or behavior. As per the definition of Type 1
model clones, any systems that are identical regardless of these
properties should be considered exact clones. As such we must
inject mutants that are identical to an existing system but have
some layout attribute differences. This includes differences in
colour, position, size, and other layout attributes.

Layout edits are a reasonable edit/evolution operation as
models may be refactored in this way to improve readability
and comprehension, implement updates to company standards,
and other related cases.

For our example mutation operator from this class, we
choose to change the foreground colour of a block. We start
with the original version of the Power Window model from
the automotive demonstration set, which comes with Simulink.
Specifically, we modify the root powerwindow system within
that model by changing the foreground colour to red of a
block of type Scope, entitled Position. The resulting mutant
is pictured in Figure 1. In this case, the highlighted Position
block was black until we mutated it to be red, as demonstrated
in the figure.

2) Reordering Underlying Elements (mRUE): During our
development of Simone, in which we looked at the underlying
textual representations of the models, we noticed that in some

TABLE I. SIMULINK MUTATION CLASSES

Mutation Key Title Section Clone Type
mMLA Modification of Layout Attribute III-A1 Type 1
mRUE Reordering Underlying Elements III-A2
mRBL Renaming a Block or Line III-B1 Type 2
mCBV Changing a Block’s Value III-B2

mADBD Add or Delete Block as Destination III-C1 Type 3
mADBS Add or Delete Block as Source III-C2
mCBT Changing a Block’s Type III-C3

mCSCH Changing a Subsystem’s clone hierarchy III-C4

Fig. 2. Example of an mRUE Mutation Operator

cases the ordering of subsystems were not the same, even
in identical systems. If this is the case, then a model-clone
detector should be able to account for this and still identify
such clones as Type 1. Thus, we need a class of mutants that
are identical to existing systems but have their elements; such
as, blocks, lines, ports, and branches; reordered textually.

We saw instances of this mutation class in multiple places,
including the examples presented by us previously [4]. In
terms of testing model-clone detectors, a mutant of this va-
riety would only fail to be killed on text-based model-clone
detectors, like Simone, as graph-based ones do not use the text
representations. Thus, a mutant instance from this class would,
correctly, be killed for all graph-based detectors and be a valid
test for text-based ones. From a general perspective, this type
of change in a system can sometimes occur when blocks are
either added or deleted.

Continuing with the first version of the Power Window
model, we this time choose to mutate the textual representa-
tion of the window system. This example is demonstrated in
Figure 2, which shows an excerpt of the text for the mutant
on the right. This example mutation operator shifts the text
representing the block named “down signal\n conversion”
below 2 Gain blocks. The two models are structurally and
semantically the same, however, any Simulink model-clone
detection that uses the text, has to account for the variance
represented by this mutant if they are to properly detect a Type
1 clone. In this case, we do not show a model image of this
mutation as the mutant is visually identically to the original.

B. Renaming and Value Modification of Elements

This category of mutation classes are those that deal with
variations in the names and values of the Simulink model
elements. From a model cloning perspective, the model clones
generated by mutations within this category are Type 2.

1) Renaming a Block or Line (mRBL): Each Simulink
block has a name associated with it. In addition, “All block
names in a model must be unique and must contain at least
one character.”2 Although, used much less often and not
necessary for a functional model, lines can also have names
associated with them. These line names can be modified by
changing the “Name” attribute of the line element itself, or
changing the “PropagatedName” or “SignalName” attributes
of an associated source or destination block.

Any model-clone detector that is capable of detecting Type
2 clones, should be able to identify clones that have blocks or
lines having different names but sharing the same BlockType
or LineType, respectively. A mutation that addresses this, must
duplicate the system entirely and rename a single block or line.

To showcase this mutation class, we present a mutation
operator that modifies a single block’s name. Continuing with
the window system subsystem from our previous example, we
this time rename an integrator block named “window position”
to “window position\n RENAMED”. The mutant is shown in
Figure 3. All other elements within the model are the same; the
mutated block is of the same type, and its connections remain
intact. The only change is the block name.

2mathworks.com/help/simulink/ug/changing-a-blocks-appearance.html

mRBL

Fig. 3. Example of an mRBL Mutation Operator

mCBV

Fig. 4. Example of an mCBV Mutation Operator

2) Changing a Block’s Value (mCBV): Simulink blocks
can be configured through parameters, or values, that dictate
specific aspects of the simulation. The simplest example is
a “Constant” block, which outputs the constant specified by
its “Constant Value” parameter. There are significantly more
complex values that can be configured for more complex
blocks including amplitude, relational operators, wave forms,
signal delays, dialog parameters, and much more.

This class of mutations is important as value changes may
not structurally modify the model, however, they likely, but
not always, represent semantic changes in the model. It is
analogous to the mutation of parameters in code, such as
method and class parameter mutations [2]. From a model-
clone perspective, mutation operators belonging to this class
will introduce Type 2 clones as the systems will be identical
except for a change in the values in a block.

A sample mutation operator from this mutation class is
presented in Figure 4. Using the original version of the
window system subsystem, we introduce a mutant that has
had a value modification occur to the highlighted Gain block,
which is a block that multiples the input by the scalar, vector,
or matrix parameter represented by the value3. Specifically, the
example mutation operator demonstrated changes the value of
the Gain block from 50 to 25.

C. Change Subsystems Structure

So far, the mutation categories presented have addressed
non-structural changes to systems. This category looks at
mutation classes that involve changing the structure of a
Simulink system. Mutation operators belonging to these classes
inject mutants that can test a model-clone detector’s ability
to discover Type 3 model clones. Mutations in this category

3mathworks.com/help/simulink/slref/gain.html

should take into account the preservation of model connectiv-
ity, when necessary, to ensure a valid model.

1) Add or Delete Block as Destination (mADBD): This
class of mutations involves adding or deleting a block as a
destination block, with respect to an existing block in the
system. This includes sink blocks4, lines (signals), and required
ports.

From a suitability perspective, changing a destination block
within a subsystem is a likely case and can happen for a
multitude of reasons, most of which are related to changes
in the desired semantics of the simulation.

To demonstrate this mutation class, we provide two ex-
amples of mutations in Figure 5. Both of the examples,
independently, mutate the “power window control system”
subsystem, which is also from the original version of the
PowerWindow model we have been using thus far. In the
left part of the figure, we illustrate a mutant that has the
highlighted Scope (sink) block, NEW DESTINATION BLOCK,
added to the system. Since every destination block must be
connected to something in a valid model, we simply branched
the output coming from the validate passenger subsystem.
This has much less impact on the model than creating a new
output signal and port in a respective source block or source
subsystem. The right side of the figure presents a mutant
that has had its sink block move down removed from the
original subsystem from the highlighted part on the right side
of the figure. In this case, it is not necessary to make any
additional changes to the system to make it valid with respect
to connectivity. Thus, we can have an unused port, as seen
with the moveDown port in the figure. In some cases, we may
have to check one level up to see if there is a higher level
signal that used that outport and delete that signal only.

2) Add or Delete Block as Source (mADBS): Similar to
mADBD, this mutation class includes both adding and deleting
a block, but in this class, it involves operations on blocks
that are a source block with respect to another block in the
subsystem. Source blocks5, required ports, and lines (signals)
are included in mutations found in this class.

Changing the source blocks within a system are likely a
common operation within a Simulink project as it is a key
and relatively straightforward way of updating the simulation
semantics, simply by updating the structure.

For this mutation class, we once again demonstrate it, in
Figure 6, with two separate mutants of the original version of
the “power window control system” subsystem. In the exam-
ple on the left, we simply add a new block called “NEW\n
SOURCE BLOCK” of type Constant, which is highlighted in
the figure and has a value of 18. Because it is being added
as a source block, we connect it to the remainder of the
model, including its corresponding lines, and add a new port
in the subsystem “detect obstacle endstop” to connect this
block to. For the deleting example, on the right, we illustrate
a mutation that removes the “passenger down” inport from
the original version of the subsystem from the highlighted
area in the figure. In this case, we removed the source block
with the highest numbered port. Had we removed another one,

4mathworks.com/help/simulink/sinks.html
5mathworks.com/help/simulink/sources.html

mADBD

Fig. 5. Examples of Adding (left) or Deleting(right) Block as Destination (mADBD) Mutation Operators

depending on how the mutation operator was implemented, the
other inports may have automatically had their port numbers
adjusted to be sequential, which would have a more significant
impact on model clone detection.

3) Changing a Block’s Type (mCBT): Each Simulink block
has a type, which has properties and actions associated with
it. Changing a type is relatively significant and essential to a
block’s identity. For example, model-clone detectors, including
Simone and CloneDetective [7], consider blocks with different
types to be non-equivalent. As such, it is clear that there is a
need for a class of mutations that account for this. In contrast
to the mADBD and mADBS mutation classes, a mutation
operator belonging to this class would modify only a block’s
type and leave the name intact. If both were changed, it would
belong to either the mADBD or mADBS mutation classes, as
it would essentially be deleting and adding a (different) block.

Changing a block’s type is a realistic edit scenario as it
is a quick way to change or tweak a system’s functionality.
Examples of this can include updated library blocks containing
new and improved types, behavior correction, and other related
refactoring tasks. In many of these cases, it is possible that,
rather than changing a subsystem’s structure and layout, it is
just easier to change a block’s type.

In order to demonstrate a sample mutation belonging to
this mutation class, we once again modify the original version
of the window system subsystem in Figure 7. Specifically, we
change the type of the highlighted block named friction from a
Gain block, as pictured on the left side of the figure, to a Sqrt
(square root) block in order to have friction simulated using
the square root of the input rather than a constant multiplier.
As explained, previously, this mutation modifies only the type
of the block.

4) Changing a subsystem’s clone hierarchy (mCSCH):
This class of mutations involves mutation instances that mimic
a batch of edit operations that are done to refactor model
elements from a system into a subsystem. Although it is
technically a batch of operations, it is such a common process
that there is even an option to do it automatically, in one step,
in the Simulink UI simply by selecting a group of blocks6. The
key defining characteristic of this mutation operator, is that all
of the model elements being refactored into a subsystem are
completely unchanged.

6mathworks.com/help/simulink/ug/creating-subsystems.html#f4-7371

This is a suitable mutation class in that refactoring groups
of blocks into reusable subsystems is one of the more useful
aspects of Simulink. Through the use and creation of block
libraries and sublibraries 7, extracting and using subsystems in
this manner is very plausible. From a model-clone detection
perspective, this mutation class is important, because it will
help test whether or not a model clone detector can properly
account for subsystem boundaries.

We present an example mutation from this class in Figure 8.
In this case, we mutate the system by taking four blocks
from the middle of the original version of the window system
subsystem, and extract them into the highlighted subsystem
“Subsystem” in the right part of the diagram. The four blocks,
which are highlighted in the left part of the figure, include
a Sum block, two Gain blocks, and an Integrator block. In
order to do this, however, the newly created subsystem must
have the proper amount of inports and outports created and
connected to the upper-level system. The extracted subsystem,
not shown in this diagram, contains the four blocks and
includes the appropriate connections. The first Sum block,
“window input” takes input from two inports, and the “angular
velocity” integrator block is connected to the newly created
outport.

IV. APPLYING THE TAXONOMY TO SIMULINK PROJECTS

Our taxonomy was developed with the goal of having
mutation classes that result in variations of the different model-
clone types. However, having mutation classes that represent
realistic edit scenarios that occur in actual MDE projects is
important to both the testing of model-clone detectors and the
generality of our Simulink model mutation taxonomy. So, in
order to validate our choice of mutation classes, we consider
both publicly available models and private models from our
industrial partners to perform a case study. That is, we will
be looking at these particular systems and analyzing them
by seeing how the witnessed edit operations across versions
correspond to the mutation classes in our Simulink model
mutation taxonomy. As we noted in our model clone evolution
study [9], model clones are fairly representative of an MDE
project in general, as is the evolution of such clones. So; rather
than exhaustively, and rather unfeasibly, consider every system
and subsystem within a project; we look for mutation instances
that occur from one version to the next in any subsystems that

7mathworks.com/help/simulink/ug/creating-block-libraries.html

mADBS

Fig. 6. Examples of Adding (left) or Deleting(right) Block as Source (mADBS) Mutation Operators

mCBT

Fig. 7. Example of an mCBT Mutation Operator

mCSCH

Fig. 8. Example of an mCSCH Mutation Operator

have been identified as belonging to a clone set in the original
version. This is sufficient as we are simply trying to exhibit
that these mutations do, in fact, exist within projects and can
be classified into one of our proposed mutation classes. Thus,
we will also note if there are any mutations that occur that do
not belong to our categories and elaborate on them.

In this case study, we consider both publicly available
models and private models from our industrial partners. The
public models include the Automotive Power Window (PW)
System that comes with the Simulink example set and a large
open-source Advanced Vehicle Simulator(AVS)8. Table II
displays statistics about the projects. The last column, Model
Clone Classes (MCC), demonstrates the number of model
clone classes discovered in each of the three projects using Si-
mone with our best-fit [4] settings of 70% similarity and blind-
renaming. As shown, the PW system is a smaller, compact, and
simple system. AVS is quite large and complex, and has more
MCCs than our industrial system set. Thus, we believe it is a
fairly representative and rich system.

8http://sourceforge.net/projects/adv-vehicle-sim/?source=dlp

TABLE II. PROJECTS UNDER STUDY. MODIFIED FROM [9]

Project Version # Model Files SubSystems MCCs

PW

1 1 18 5
2 1 29 5
3 1 33 6
4 1 25 4
5 1 45 6

AVS
r0000 69 861 18
r0080 69 1621 35
r0116 72 1714 38

Industrial Set
55 9 977 20
56 9 977 21
57 9 986 23
58 9 1091 30

In order to look for evidence of mutation operators in these
projects, we use Simulink’s model XML comparison tool9,
which is part of the Simulink Report Generator package. While
performing model comparison using XML comparison has its
drawbacks [10], [11], this tool was very useful for our purposes
when combined with our domain knowledge and some manual

9mathworks.com/help/rptgenext/ug/
how-to-compare-xml-files-exported-from-simulink-models.html

interaction/tweaking. For example, things that clearly should
have matched with one another, did not because of innate XML
hierarchy issues. Fortunately, albeit it non-trivial, we could
manually enumerate and classify the instances of mutations
witnessed within the models as we went through it.

Using the following filtration settings, we were able to trace
through the different project versions, and tally and classify the
mutation instances as we encountered them9:

Do not filter - Nonfunctional changes
By default, the comparison tool ignores all tags
that are considered non-functional, including po-
sitions, fonts, colors, and more. We want this
comparison to be included because this will allow
us to detect layout mutations.

Do not filter - Changes in lines
Changes in lines are often indicative of changes in
source or destination blocks, which is information
we want.

Filter - Changes in the graphical interface
This information is a summary of inports and
outports at the top level of the model. While we
are interested in ports, as values, this information
is reported at the higher level as a block‘s value,
so we do not need this information in this form
for the comparison.

Filter - Changes in block parameter defaults
Because changes in blocks are exhibited as func-
tional changes and default usage will be repre-
sented uniformly across versions, we do not need
to know if the default values have changed.

A helpful feature of the Simulink Report Generator tool
is each element has all of its sub elements contain a property
called ZOrder that indicates the sub elements’ location within
the element’s textual representation. So, if a matching element
is out of order with respect to its containing element, we
would see that as a difference within the comparison tool.
This was perfect for identifying instances of mutations where
an underlying textual ordering change had occurred.

We apply this approach to the three projects individually
and discuss them as such below. So, for each subsystem that
was discovered within a clone class, we traced that subsystem
across all versions of the project, and counted and classified
all mutations. There were a few clone classes that contained
a significant amount of systems, for example there were some
classes that contained thirty seven, seventy one, and even 222
systems. Because this process was mostly manual and we
needed only evidence of existence of the mutations as edit
operations, we decided to consider only a random sampling of
a quarter of the systems belonging to clone classes larger than
twenty systems.

We present a table summarizing our findings for each
project in each of the respective project sections; IV-A,IV-B,
and IV-C; and present any interesting cases we encountered.
In each table, the column “# Of Times a System Changed”
represents each time that at least one change was witnessed
from one version of a subsystem to the next. For the subsequent
columns, each value in the “Total Count” row represents the
number of times a specific instance of a mutation corre-
sponding to the column’s mutation class was witnessed from

one version of a subsystem to the next. The subsequent row
presents that information as a ratio of the number of times the
specific mutation class was observed with respect to the total
number of times a system change was observed. The purpose
of the “Other” column is to illustrate if there were any model
edits that were unclassifiable with respect to our taxonomy.

A. Case 1: Application to the PW Project

The original version of the PW project contained eleven
subsystems that were spread across five clone classes. We
traced those subsystems across five versions and classified
and counted the instances of mutations, yielding the results
presented in Table III. As noted in the table, each mutation
class was represented in some form among the system edits.
The layout mutation class (mMLA) and source block mutation
(mADBS) were present in more than half of the cases when
a system was changed from one version to the next. All
of mutation classes were observed in at least one fifth of
the system traces that involved changes. In addition, no edit
operations were observed in this project that could not be
classified using our taxonomy.

In this project, we observed a number of edit operations
that could be classified as mCSCH instances. One such ex-
ample of this was the modification from the third version of
the “window system” into the fourth version. Each version is
illustrated in Figure 9. What we specifically witnessed was all
the highlight blocks and lines in the left part of the diagram
from version three were extracted and placed into a subsystem
entitled “process”. This subsystem was then used in the fourth
version, as highlighted in the right part of the figure.

B. Case 2: Application to the AVS Project

Our model-clone analysis of the first version of the AVS
project discovered 281 subsystems that belonged to eighteen
different model clone classes. After taking a random quarter of
the subsystems belonging to larger clone classes, as discussed
before, we considered 132 subsystems and how they changed
across three versions of this project. The summarized results
are in Table IV. As we soon discovered with this open-source
system, the majority of changes across versions were not
model-based changes but changes to Matlab simulation code.
However, there were some model-based changes witnessed.
The vast majority of times a subsystem was changed, a
value/parameter change was observed. Also, more than half of
the subsystems that changed across versions included a change
in layout.

An example of one of these documented mCBV mutation
instances in the AVS project is demonstrated in Figure 10,
where the system “lib controls|<vc>par auto s/a”, from the
model “models/library/lib controls.mdl” is presented in the
Simulink Report Generator tool after it has been configured
as we discussed earlier. In this case, the block key on has had
its “Mask Initialization”10 value changed.

C. Case 3: Application to the Industrial Project

The first iteration of our industrial project contained 217
subsystems that were contained in twenty clone classes. After

10www.mathworks.com/help/simulink/ug/initialize-mask.html

Fig. 9. Version Three and Four of the PW Project “window system” Subsystem

TABLE III. SUMMARY OF MUTATION INSTANCES WITNESSED IN THE PW PROJECT

Of Times a System Changed mMLA mRUE mRBL mCBV mADBD mADBS mCBT mCSCH Other
Total Count 15 10 7 4 4 6 8 3 3 0

% of Total # of System Changes - 66.67% 46.67% 26.67% 26.67% 40.00% 53.33% 20.00% 20.00% 0.00%

TABLE IV. SUMMARY OF MUTATION INSTANCES WITNESSED IN THE AVS PROJECT

Of Times a System Changed mMLA mRUE mRBL mCBV mADBD mADBS mCBT mCSCH Other
Total Count 50 28 0 0 48 1 0 0 0 0

% of Total # of System Changes - 56.00% 0.00% 0.00% 96.00% 2.00% 0.00% 0.00% 0.00% 0.00%

Fig. 10. mCBV Mutation Operator Observed in AVS Project

considering only a random quarter of the subsystems from
larger clone classes, we focused on 102 subsystems. Looking
at how these subsystems evolved from version fifty five to
version fifty eight led to the results shown in Table V. This
project, in contrast to the AVS project, had many model edit
operations that occurred from one version to the next. Similarly
to the AVS project, the modification of layout attributes and
the changing of values were witnessed in more than half
of the instances where a subsystem was updated. Other edit
operations that corresponded to mutations that were witnessed
in roughly a third or more of subsystems that were changed in-
cluded reordering the textual representations; renaming blocks
or lines; and adding and deleting blocks, both as sources and
destinations. There was one instance where we saw an edit
operation that corresponded to a subsystem hierarchy change.
Lastly, there were a small number of subsystem changes that
we were unable to classify using our taxonomy. We discuss
these in Section IV-D.

D. Discussion

Overall, the significant majority of edit operations we found
in these projects could be sorted into the classes proposed in
our taxonomy. In terms of each mutation class’ prevalence with
respect to the total number of times a subsystem was changed,
most of the classes were well represented. However, changing
a block’s type (mCBT) and changing a subsystem’s hierarchy
(mCSCH) were underwhelmingly present in the projects in our

case study. We still believe these two are suitable classes for the
reasons provided in our original definitions of them and hope
it was just a function of the projects we were investigating.

One instance of an edit operation that could not be clas-
sified in our taxonomy was the addition, modification, or
removal of a standalone and unconnected Annotation block. In
regards to both testing model-clone detectors and the generality
of our taxonomy, this operation is not significant nor semantic,
as it is essentially documentation11. A graph-based model-
clone detector would likely disregard it and a text-based detec-
tor would include it, but since it is only a single block, it would
affect the similarity only slightly. The remaining occurrences
of edit operations that were unclassifiable according to our
taxonomy were a small number of additions or deletions of
a standalone and unconnected block of type Reference that
was added or removed. This type of block is essentially a
maintenance hyperlink in that it is something for engineers to
look at when using or changing the system containing this
reference block and is used by Simulink to refer to other
libraries as a place holder. Again, the impact to testing model-
clone detectors would be quite trivial and, from a general
perspective, the block is just an unconnected library block
linking to other models.

The obvious threat to validity in this case study is that
this process was performed semi-automatically, rather than
fully automatically. It would be ideal if this process could
be automated, as discussed in Section VI. However, because
we are looking only for evidence of the existence of edit
operations that can be classified using our taxonomy, it is
acceptable if we missed some. The only issue is if we missed
unclassifiable edit operations belonging to the “Other” class.
We made an effort to investigate every single edit operation
for each subsystem, so we believe that none were missed.

Another threat to validity is our choice and availability
of Simulink models available to us. The open-source projects

11http://www.mathworks.com/help/simulink/ug/annotating-diagrams.html

TABLE V. SUMMARY OF MUTATION INSTANCES WITNESSED IN THE INDUSTRIAL PROJECT

Of Times a System Changed mMLA mRUE mRBL mCBV mADBD mADBS mCBT mCSCH Other
Total Count 83 67 38 27 50 32 32 0 1 3

% of Total # of System Changes - 80.72% 45.78% 32.53% 60.24% 38.55% 38.55% 0.00% 1.20% 3.61%

were ideal because they both had multiple versions and could
be shared publicly. The industrial project is a rather rich and
real-life MDE project in use, so we believe that is a very strong
example. However, we claim only that this is a starting point
for a taxonomy of Simulink model mutations. It would, of
course, be great to see the applicability of our taxonomy to
further industrial projects as mentioned in Section VI

V. RELATED WORK

Model transformations, which involve going from a source
model to specific target model, are generally related to the
idea of model mutations and the corresponding edit operations
we were looking for in our case study. A key difference
between what we did in our case study and what is done
in the majority of model transformation work, is we were
retroactively looking at model evolution to see what operations
had occurred, whereas the model transformation area is more
focused on forward engineering and prescriptive. An example
of this is the work done by Sen and Baudry [12], where
they use graph grammers on meta models to develop model
transformations. Simulink model transformations are discussed
by Tran et al. [13], who attempt to employ them for the
purposes of Simulink refactoring. They have operations that
include adding, copying, replacing, and deleting blocks and
use these to devise composite operations. The relation between
their work and our work, is that once their transformations have
been applied, we would be able to classify them according to
our taxonomy. Also worth mentioning is the mutation work
done on the ATL model transformation language by Khan
and Hassine [14]. They devise mutation operators for that
language in order to detect inadequacies in programmed model
transformations. The key difference here is their work is more
related to code-based mutation work than it is model-based
mutations.

While research on model-based mutations is still relatively
newer than its source-code counterpart, there is still some work
of note. Trakhtenbrot [15] introduces model mutations for state
charts. This work is not directly applicable to Simulink models,
however, there are Simulink Stateflow12 blocks, which are state
charts. This work may be applicable to those blocks, in isola-
tion. Adra and McMinn [16] developed mutations intended
for agent-based models, while Bartel et al. [17] develop a
model-mutation based framework for testing adaptive systems.
In both of these cases, the mutations themselves are derived
at in a model-driven fashion and later transformed to text for
test suites. Other than our mRUE mutation, all of our proposed
mutations in our taxonomy are purely model-driven and can
be tested as such, as we outlined in our original presentation
of our framework [6].

The notion of Simulink model mutations have been ad-
dressed previously by Zhan and Clark [18], He et al. [19], and
Araujo et al. [20]. In these examples, they describe mutations
that explicitly try to mutate a model’s run-time properties. That

12mathworks.com/products/stateflow/

is, their mutation operators are concerned with modifying the
signal carried on wires between blocks only. In contrast, our
proposed mutation taxonomy considers both design-time prop-
erties, which are necessary for model-clone detection testing,
in addition to some run-time properties, like value changes.
Neither of them purpose a taxonomy, per se, however, Zhan
and Clark identify three categories of signal mutations: Add,
Multiply, and Assign, representing signal addition, multiplica-
tion, or specific value assignment, respectively. The mutation
operators they purpose to accomplish those signal mutations
can be classified using our taxonomy.

Lastly, our model-clone detection framework is a direct
extension of the work done by Roy and Cordy [21], [22]
in which they proposed a framework for testing code-clone
detectors that was based on mutations. Our work is contrasted
with theirs in our initial framework outline [6], with key
differences including the representation and implementation of
the mutation operators, the different nature of the model-clone
detectors, the output format of the resulting model clones, and
other differences that are specific to the modeling domain.
The Roy and Cordy framework used much existing research
on code mutations and “realistic” programmer edit scenarios
to explicate and utilize its mutation taxonomy, whereas, we
had no relevant existing studies pertaining to Simulink model
mutation or edit operations, and, thus, carried out the work
presented in this paper.

VI. FUTURE WORK

The first area of future work involves completely automat-
ing the process that was performed semi-automatically in our
case study. Because there are issues with the Simulink Report
Generator XML comparison tool, we would have to use the
provided API, because the internal workings are proprietary,
and perform quite a bit of tweaking on the output of the
tool to try to account for the errors. We would then need
to programmatically represent the mutation classes and create
detection algorithms for each of them, which would include
definitions of a more formal nature than we have provided
above. As mentioned in our discussion, we held off on doing
that for now as we needed only to see if our taxonomy was
applicable in the various MDE projects we had access to
for the purpose of our mutation-based model-clone detection
evaluation framework.

The second area of future work, which we are currently
conducting, involves implementing the mutation operators so
that they can be utilized in our evaluation framework. This step
involves properly choosing where to inject the model mutants;
and how this will be done, which includes the complete and
precise rules and form the mutation operators will have. So
far, we plan on representing the mutations as Matlab model
functions13, possibly in conjunction with TXL [23] for the
reordering text mutation (mRUE). By using this proposed
taxonomy, we can ensure that we have chosen the right

13mathworks.com/help/simulink/functionlist.html

selection and quantity of mutation operators for our evaluation
framework.

Lastly, it would be beneficial to have access to more multi-
version Simulink projects, especially from industry. This would
allow us to further validate our proposed taxonomy and would
help improve its generality.

VII. CONCLUSION

In this paper, we contributed a Simulink model mutation
taxonomy that is primarily intended to facilitate and guide
creation of mutation operators for a model-clone detection
comparison framework. The original taxonomy was based on
our experiences developing our Simulink model-comparison
tool, creation of a Simulink grammar, and a Simulink clone-
class evolution study. It included mutation classes that were
constructed in such a way that mutation operators belonging to
each class would facilitate testing various model-clone types.
We then attempted to validate our taxonomy by means of
a case study that used the taxonomy to classify edit opera-
tions witness in multiple versions of three Simulink projects.
Specifically, we selected subsystems within a project that were
discovered in clone classes, and contrasted those subsystems
from one version to the next. For each project, we presented
a table summarizing the number of times an edit operation
corresponded to one of our proposed mutation classes and also
compared these tallies to the total number of times a subsystem
was modified.

Overall, each of the mutation classes were represented
among the edit operations observed in the three projects,
albeit some more than others. Layout (mMLA) and value
changes (mCBV) were the most prevalent, while changing
a block’s type (mCBT) and a subsystem’s hierarchy (mSCS)
were the least common. There was a very small number of
edit operations observed that could not be classified using
our taxonomy, however, these were relatively trivial model
elements that were unconnected to the systems and mostly
related to documentation and maintenance.

In the future, we will be looking into automating the
process executed in our case study, although there are a few
non-trivial obstacles to overcome in doing so. Currently, we
are working on implementing the mutation operators within
our model-clone detection evaluation framework based on
this proposed taxonomy by representing them in both Mat-
lab model modification functions and text transformations. It
would also be ideal if we could further validate this taxonomy
by having access to more industrial Simulink model sets that
have multiple versions.

While our taxonomy was developed with a specific goal
in mind, we hope that it is fairly general to Simulink model
mutations and that our taxonomy provides a solid starting
foundation for future Simulink, and data-flow, model mutation
research.

ACKNOWLEDGMENT

This work is supported by NSERC, the Natural Sciences
and Engineering Research Council of Canada, as part of the
NECSIS Automotive Partnership with General Motors, IBM
Canada, and Malina Software Corp.

REFERENCES

[1] A. Acree, T. Budd, R. DeMillo, R. Lipton, and F. Sayward, “Mutation
analysis,” DTIC Document, Tech. Rep., 1979.

[2] J. Bradbury, J. Cordy, and J. Dingel, “Mutation operators for concurrent
Java (J2SE 5.0),” in International Workshop on Mutation Analysis,
2006, pp. 57–62.

[3] H. Dan and R. M. Hierons, “SMT-C: A semantic mutation testing tools
for C,” in International Conference on Software Testing, Verification,
and Validation Workshops (ICSTW), 2012, pp. 654–663.

[4] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and A. Stevenson,
“Models are code too: Near-miss clone detection for Simulink models,”
in ICSM, 2012, pp. 295–304.

[5] M. Stephan, M. H. Alafi, A. Stevenson, and J. R. Cordy, “Towards
qualitative comparison of simulink model clone detection approaches,”
in International Workshop on Software Clones (IWSC), 2012, pp. 84–
85.

[6] ——, “Using mutation analysis for a model-clone detector comparison
framework,” in NEIR track - ICSE, 2013, pp. 1261–1264.

[7] F. Deissenboeck, B. Hummel, E. Juergens, B. Schaetz, S. Wagner, J.-F.
Girard, and S. Teuchart, “Clone detection in automotive model-based
development,” in ICSE, 2009, pp. 603–612.

[8] H. Storrle, “Towards clone detection in UML domain models,” in ECSA:
Companion Volume, 2010, pp. 285–293.

[9] M. Stephan, M. H. Alalfi, J. R. Cordy, and A. Stevenson, “Evolution
of model clones in Simulink,” in Models 2013 - Models and Evolution,
2013, pp. 38–47.

[10] M. Stephan and J. R. Cordy, “A survey of methods and applications of
model comparison,” Queen’s University, Tech. Rep. 2011-582 Rev. 3,
2012.

[11] ——, “A survey of model comparison approaches and applications,” in
Modelsward 2013, 2013, pp. 265–277.

[12] S. Sen and B. Baudry, “Mutation-based model synthesis in model driven
engineering,” in Second Workshop on Mutation Analysis, 2006.

[13] Q. M. Tran, B. Wilmes, and C. Dziobek, “Refactoring of Simulink
diagrams via composition of transformation steps,” in International
Conference on Software Engineering Advances, 2013, pp. 140–145.

[14] Y. Khan and J. Hassine, “Mutation operators for the Atlas Transfor-
mation Language,” in International Conference on Software Testing,
Verification, and Validation Workshops (ICSTW), 2013, pp. 43–52.

[15] M. Trakhtenbrot, “Implementation-oriented mutation testing of state-
chart models,” in International Conference on Software Testing, Verifi-
cation, and Validation Workshops (ICSTW), 2010, pp. 120–125.

[16] S. F. Adra and P. McMinn, “Mutation operators for agent-based mod-
els,” in International Conference on Software Testing, Verification, and
Validation Workshops (ICSTW), 2010, pp. 151–156.

[17] A. Bartel, B. Baudry, F. Munoz, J. Klein, T. Mouelhi, and Y. Le Traon,
“Model driven mutation applied to adaptative systems testing,” in Inter-
national Conference on Software Testing, Verification, and Validation
Workshops (ICSTW), 2011, pp. 408–413.

[18] Y. Zhan and J. Clark, “Search-based mutation testing for Simulink
models,” in Genetic and Evolutionary Computation Conference, 2005,
pp. 1061–1068.

[19] N. He, P. Rümmer, and D. Kroening, “Test-case generation for em-
bedded Simulink via formal concept analysis,” in Design Automation
Conference (DAC), 2011, pp. 224–229.

[20] R. F. Araujo, A. M. R. Vincenzi, F. Delebecque, J. C. Maldonado,
and M. E. Delamaro, “Devising mutant operators for dynamic systems
models by applying the HAZOP study,” in ICSEA 2011, 2011, pp. 58–
64.

[21] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic
framework for evaluating code clone detection tools,” in International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW). IEEE, 2009, pp. 157–166.

[22] C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach,” Science
of Computer Programming, vol. 74, no. 7, pp. 470–495, 2009.

[23] J. Cordy, “The TXL source transformation language,” Science of Com-
puter Programming, vol. 61, no. 3, pp. 190–210, 2006.

