
Abstract

Many tasks in software engineering can be characterized as
source to source transformations. Design recovery, software
restructuring, forward engineering, language translation,
platform migration and code reuse can all be understood as
transformations from one source text to another. TXL, the Tree
Transformation Language, is a programming language
specifically designed to support rule-based source to source
transformation. Originally conceived as a tool for exploring
programming language dialects, TXL has evolved into a general
purpose software transformation system that has proven well
suited to a wide range of software maintenance and re-
engineering tasks, including the design recovery, analysis and
automated reprogramming of billions of lines of commercial
Cobol, PL/I and RPG code for the Year 2000. In this short
paper we introduce the basic features of modern TXL and its use
in a range of software engineering applications, with an
emphasis on how each task can be achieved by source
transformation.

1. Background

Many tasks in software engineering and maintenance can be
characterized as source to source transformations. Reverse
engineering or design recovery [1] can be cast as a source
transformation from the text of the legacy source code files to
the text of a set of design facts. Software re-engineering and
restructuring [2] can be cast as a source transformation from the
poorly structured original source code text to the better
structured new source code. Forward engineering or
metaprogramming [3], can be cast as a transformation from the
source text of design documents and templates to the
instantiated source code files. Platform translation and
migration tasks are easily understood as transformations from

the original source code files to new source code files in the new
language or paradigm. And code reuse tasks can be
implemented as a source transformation from existing, tested
source code to generic reusable source code modules.

While many other methods can be applied to various parts of
these problems, at some point each of them must involve dealing
with actual source text of some kind at each end of the process.
In this short paper we describe our experiences with attempting
to tighten the relationship between the source text artifacts at
each end of the processes by experimenting with actually
implementing these and other software engineering tasks using
pure source text transformations in the TXL source
transformation language [4,5]. The experience we report is a
summary of the results of many different projects over the past
ten years, culminating with the success of the approach in
addressing the difficulties associated with the famous
"millennium bug" for over three billion lines of source code.

2. Overview of TXL

TXL is a programming language and rapid prototyping
system specifically designed to support structural source
transformation. Source text structures to be transformed are
described using an unrestricted ambiguous context free grammar
in extended Backus-Nauer (BNF) form, from which a structure
parser is automatically derived. Source transformations are
described by example, using a set of context sensitive structural
transformation rules from which an application strategy is
automatically inferred.

In order to give the flavor of the by-example style of TXL,
Figure 1 shows a simple transformation rule for the base step of
a transformation to vectorize sequences of independent scalar
assignments in a Pascal-like programming language.

2.1. The TXL Processor

The TXL processor is a compiler and run time system for
the TXL programming language that directly interprets TXL
programs consisting of a grammatical specification of the
structure of the input text and a set of structural transformation
rules such as the one in Figure 1 to implement a source to source
transformation. The result is a rapid prototype of the source
transformer described by the rules that can be used immediately
on real input (Figure 2).

Software Engineering by Source Transformation -
Experience with TXL

James R. Cordy Thomas R. Dean+ Andrew J. Malton‡ Kevin A. Schneider†

Department of Computing & Information Science, Queen’s University
Kingston, Ontario, Canada K7L 3N6
{cordy,dean,malton,kas}@cs.queensu.ca

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).
 + Author’s current address: Department of Electrical & Computer
Engineering, Queen’s Univ., Kingston, Ontario, Canada K7L 3N6.
 ‡ Author’s current address: Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
 † Author’s current address: Dept. of Computer Science, University of
Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A9.

2.2. Grammatical Notation -
 Specifying Source Structure

TXL uses a BNF-like grammatical notation to specify source
structure (Figure 3). In order to keep the notation lightweight
and in a by-example style, terminal symbols of the input, for
example operators, semicolons, keywords and the like, appear
simply as themselves. References to nonterminal types defined
elsewhere in the grammar appear in square brackets []. The
usual set of BNF extensions for sequences, written as [repeat X]
for nonterminal [X], optional items, written as [opt X], and lists,
written as [list X], are available.

Lexical specification is by regular expression patterns in
special tokens and compounds sections, and keywords can be
distinguished using a keys statement. A large set of predefined
nonterminal types for common tokens, including identifiers,
string literals, numeric literals, etc. are built in to TXL.

2.3. Rule Notation - Specifying a Transformation

TXL transformation rules are specified using a by-example
pattern notation that binds matched items by name in the pattern
and copies them by name in the replacement (Figure 4). Pattern
variables are explicitly typed using the square bracket

TXL
Processor

Original
Source

Artifact

TXL Program
Grammatical Structure

Specification
Structural

Transformation Rules

Transformed
Source

Artifact

Figure 2. The TXL Processor.

The TXL Processor automatically implements source
transformations written in the TXL language.

rule vectorizeScalarAssignments
 replace [repeat statement]
 V1 [variable] := E1 [expression];
 V2 [variable] := E2 [expression];
 RestOfScope [repeat statement]

 where not
 E2 [references V1]
 where not
 E1 [references V2]

 by
 < V1,V2 > := < E1,E2 > ;
 RestOfScope
end rule

Figure 1. Simple Example TXL Transformation Rule.

The replace clause gives the pattern for which the rule
searches by example in actual source text, binding names to
parts (such as the [expression]s) which may vary in each
instance. The by clause gives the transformed result in similar
style, using the bound names to transfer parts from the matched
pattern. The where clauses specify additional semantic
constraints on when the rule can be applied.

rule resolveAddition
 replace [expression] % target
 % type

 N1 [number] + N2 [number] % pattern to
 % search for
 by
 N1 [+ N2] % replacement
 % to make
end rule

Figure 4. Simple Example of a TXL Transformation Rule.

The replace clause specifies the target nonterminal type to be
transformed and the by-example pattern to be matched. The by
clause specifies the by-example replacement to be made for the
matched pattern. Because rules are constrained to preserve
structure, both the pattern and the replacement must be
parseable as the target type. The square bracket notation is
used in the pattern to specify type and in the replacement to
specify subrule invocation.

define program % goal symbol
 [expression] % of the grammar
end define

define expression % general
 [term] % recursion
 | [expression] + [term] % & ambiguity
 | [expression] – [term] % supported
end define

define term
 [primary]
 | [term] * [primary]
 | [term] / [primary]
end define

define primary
 [number]
 | ([expression])
end define

Figure 3. Simple Example of a TXL Grammar.

Terminal symbols such as +, -, *, / and the parentheses in the
definitions above represent themselves. References to
nonterminal types are denoted by square brackets, as in
[expression] above. TXL comments begin with % and continue
to the end of the line.

nonterminal type notation. For example X[T] binds a pattern
variable named X of nonterminal type [T].

Pattern variables may be used in the replacement to copy the
item bound in the pattern into the result of the rule. Variables
copied into the replacement may optionally be further
transformed by subrules using the notation X[R], where R is the
name of a transformation rule. Subrule invocation has the
semantics of function application - in traditional functional
notation, the TXL subrule invocation X[R] would be written
R(X), the composed subrule invocation X[R1][R2] would be
written R2(R1(X)), and so on.

Transformation rules are constrained to preserve
nonterminal type in order to guarantee a well-formed result.
Each transformation rule searches its scope (the item it is

applied to) for instances of its pattern and replaces each one with
an instance of its replacement, substituting pattern variables in
the result. Patterns and replacements are source text examples
from which the intended structure trees are inferred by the parser
(Figure 5). Rules automatically re-apply to their own result until
no further matches are found.

Subrules can be parameterized to use items bound from
previous pattern matches in their patterns and replacements
(Figure 6). In this way complex transformations involving large
scale reorganization of source structures can be specified.

Pattern matches can be refined using deconstruct clauses,
which constrain bound pattern variables to match more detailed
patterns (Figure 7), and using where clauses, which allow for
semantic constraints on items bound to pattern variables (Fig. 8).

[expression]

[expression] +

[term]

[primary]

[primary]

[term]

N2: [number] (v2)

N1: [number] (v1)

[expression]

[primary]

[term]

[number] (v1+v2)

Figure 5. Semantics of the Simple Example Rule in Figure 4.

The example source text given for the pattern and replacement
of a rule are parsed into structure tree patterns which are
efficiently matched to subtrees of the parse tree of the input to
the transformation. Because rules are constrained to preserve
nonterminal type, the result is always well formed.

rule resolveConstants
 replace [repeat statement]
 const C [id] = V [expression];
 RestOfScope [repeat statement]
 by
 RestOfScope [replaceByValue C V]
end rule

rule replaceByValue ConstName [id]
 Value [expression]
 replace [primary]
 ConstName
 by
 (Value)
end rule

Figure 6. Using Rule Parameters to Reorganize Source.

This example demonstrates the use of rule parameters to
implement rules that depend on items bound in previous
patterns. In this case the second rule implements inlining of
constant values by searching for [primary] references that
match the identifier of a named constant, and replaces each
such reference with the constant's value. The first rule insures
that this is done for every declared named constant.

rule createSimultaneousAssignments
 replace [repeat statement]
 IfStatement [if_statement] ;
 RestOfStatements [repeat statement]

 deconstruct * [if_condition] IfStatement
 IfCond [if_condition]

 deconstruct IfCond
 false
 by
 RestOfStatements
end rule

Figure 7. Constraining Variables to More Specific Patterns.

The deconstruct clause allows for stepwise pattern refinement.
The first deconstruct in the example above constrains the item
bound to IfStatement to contain an [if_condition], which is
bound to the new pattern variable IfCond. The second
deconstruct constrains IfCond to be exactly the identifier false.
If either deconstruct fails, the entire pattern match fails and the
scope is searched for another match.

rule sortNumbers
 replace [repeat number]
 N1 [number] N2 [number] Rest [repeat number]
 where
 N1 [> N2]
 by
 N2 N1 Rest
end rule

Figure 8. Semantic Constraints on Bound Variables.

The where clause constrains items bound to pattern variables
using a (possibly complex) set of subrules. In the rule above,
the number bound to N1 is constrained to be greater than the
number bound to N2, otherwise the pattern match fails. (This
rule is the entire specification for bubble sorting a sequence of
numbers in TXL.)

3. Software Engineering
 by Source Transformation

The remainder of this paper gives examples of how TXL has
been used in various software engineering projects in research
and industry over the past ten years.

3.1. Interface Translation

ESPRIT Project REX [6] was an ambitious and wide
ranging project to explore the specification and implementation
of reusable, extensible distributed systems, and was the first
serious use of TXL in software engineering tasks. One of the
key ideas in REX was the use of language independent interface
specifications in the ISL notation [7]. Closely related to IDL
[8], ISL allowed the specification of complex data structures to
be passed between nodes in a widely distributed heterogeneous
network. Each node in the network could be implemented using
different hardware, operating system and programming
language.

In order to insure that data could be reliably passed between
nodes implemented using different programming languages, it
was important that the interfaces described in ISL be accurately
and consistently represented in each language. Initially such
representations were carried out by hand translation, but very
quickly it became obvious that it was much too difficult and
error prone to incrementally adapt such translations in response
to changes in the ISL specifications of the interfaces.

Modula II

C

Prolog

ISL Interface
Specification TXL

Transforms

(a)

REX
Modula II Modula II

REX
C C

TXL

Transform

TXL

Transform

(b)

Figure 9. Applications of TXL in ESPRIT Project REX.

TXL transformation rule sets were used to instantiate ISL data
structure descriptions into data type declarations in each of the
REX target languages (a), and to implement REX extended
dialects of each target language (b).

% Project REX - TXL ruleset for transforming from
% REX Extended Modula II -> unextended Modula II
% Georg Etzkorn, GMD Karlsruhe, 25.02.91
% Part 4 - Transform SELECT statements

rule transformSelectStatement ModuleId [id] PortListId [id]
 replace [repeat statement]
 SELECT
 Alternatives [repeat or_alternative]
 OptElse [opt else_StatementSequence]
 END;
 RestOfStatements [repeat statement]

 construct InsertPortStatements [repeat statement]
 _ [mapAlternativeToIf PortListId ModuleId each Alternatives]

 construct PortMessageCases [repeat or_case]
 _ [mapAlternativeToCase ModuleId each Alternatives]

 by
 AllocPortList (PortListId);
 InsertPortStatements
 CASE WaitOnPortList (PortListId) OF
 PortMessageCases
 END;
 ReleasePortList (PortListId);
 RestOfStatements
end rule

Figure 10. Transformation Rule to Implement the REX Modula II SELECT Statement.

Transformation from REX Modula II to pure Modula II is not just a matter of syntax, as this rule demonstrates. Each
REX Modula II SELECT statement is transformed to a complex set of logic involving a sequence of IF statements derived
from each alternative followed by a CASE statement whose cases are derived in a different way from the same set of
alternatives. The by-example style of TXL makes the overall shape of both the original and the translated result easy to
see. Figure 11 shows an example of this transformation.

Instead, a source transformation from ISL to each target
language was designed and implemented in TXL (Figure 9(a)).
Once completed, these transformations allowed much more
rapid experimentation since only the ISL specification need be
changed when updating interface data structures.

3.2. Language Extension

Project REX also involved research in appropriate language
features for supporting effective distributed computing. New
language primitives were designed to support REX message
passing for each target language. REX extended languages
included REX Modula II, REX C, REX Prolog, and so on. In
each case, the semantics of the new features were specified
using templates in the original unextended language, augmented
with calls to a standard REX communication library that was
common across all languages.

TXL was used to provide usable implementations of each of
the REX extended languages by directly implementing their
semantics as source transformations to the original languages
(Figure 9 (b)). The relationship between the source of the REX
extended language and the original language was often both
semantically and structurally complex, and is not simply a
question of syntax. Figure 10 shows one of the transformation
rules in the TXL implementation of REX Modula II, and Figure
11 shows an example of the transformation it implements.

3.3. Design Recovery

The Software Design Technology (SDT) project was a joint
project involving IBM Canada and Queen's University. The
global goal of the project was to study how we can formalize
and better maintain the relationship between design documents
and actual implementation code throughout the life cycle of a
software system. Early on it was realized that if such an
approach is to be introduced into practice, it must be applicable
to existing large scale legacy systems whose design documents
have been long ago lost or outdated. Thus design recovery, the
reverse engineering of a design database from source code
artifacts, became an important practical goal of the project [9].

While analysis of source code for the purpose of design
recovery does not at first glance seem like a good application for
source transformation, it quickly became clear that the pattern
matching capabilities of TXL made it well suited to this task.
Using the three stage source annotation approach shown in
Figure 12, a completely automated design recovery system was
implemented in TXL and used to recover the design of a large
piece of software for the purpose of design analysis.

The approach involves several TXL transformations, each of
which searches for a set of source patterns for a particular
design relationship and annotates the source with design facts
for the relationship in Prolog notation (Figure 13). These
"embedded" design facts are then extracted and merged to create
a Prolog design database for the entire program.

Figure 11. Trivial Example of the Transformation Implemented by the TXL Rule in Figure 10.

This example demonstrates the complexity of the relationship between the original source and the result
source in this transformation. For larger SELECT statements, the difference is even more striking.

SELECT
 (allocated = None) OR (allocated = Left) && ACCEPT(left,req):
 CASE req.order OF
 pickup: allocated := Left; | putdown: allocated := None;
 END;
 REPLY(left,ack);
 | (allocated = None) OR (allocated = Right) && ACCEPT(right,req):
 CASE req.order OF
 pickup: allocated := Right; | putdown: allocated := None;
 END;
 REPLY(left,ack);
END;

AllocPortList (XdrM2_PortList1);
IF (allocated = None) OR (allocated = Left) THEN
 InsertPort (XdrM2_PortList1, XdrM2_Fork.left, NoHandle);
END;
IF (allocated = None) OR (allocated = Right) THEN
 InsertPort (XdrM2_PortList1, XdrM2_Fork.right, NoHandle);
END;
CASE WaitOnPortList (XdrM2_PortList1) OF
 XdrM2_Fork.right:
 XdrM2_Fork.Accept_right (XdrM2_Fork.right, NoHandle, req);
 CASE req.order OF
 pickup: allocated := Right; | putdown: allocated := None;
 END;
 XdrM2_Fork.Reply_left (XdrM2_Fork.left, NoHandle, ack);
 | XdrM2_Fork.left:
 XdrM2_Fork.Accept_left (XdrM2_Fork.left, NoHandle, req);
 CASE req.order OF
 pickup: allocated := Left; | putdown: allocated := None;
 END;
 XdrM2_Fork.Reply_left (XdrM2_Fork.left, NoHandle, ack);
END;
ReleasePortList (XdrM2_PortList1);

Normalize.Txl

Standardized Source

Rename.Txl

Scope Independent Source

Argmatch.Txl

Base Source

Embedded
Resource Facts

Fact Extraction

Design Factbase

Design Analysis

Source Code

Embedded Import/
Export Facts

Embedded Symbol
Reference Facts

Embedded
Parameter Facts

1

3

Contains.Txl ImpExps.Txl Refs.Txl Parms.TxlResources.Txl

Embedded
Containment Facts

Formal
Design Theory

Figure 12. Design Recovery by Source Transformation.

The process involves three stages: a normalization phase which uses TXL transforms to resolve global unique naming of
identifiers (1), a fact generation phase which uses a set of TXL transforms to recognize and annotate source with design
relationships (2), and an extraction phase which gathers the annotations into a design database (3). This same basic
strategy was used in the LS/2000 system to recover the designs of over three billion lines of source applications written in
Cobol, PL/I and RPG.

rule processProcedureRefs
 replace $ [declaration]
 procedure P [id] ParmList [opt parameter_list]
 Scope [repeat statement]
 'end P
 by
 procedure P ParmList
 Scope [embedProcCalls P]
 [embedFuncCalls P]
 [embedVarParmRefs P]
 [embedPutRefs P]
 [embedGetRefs P]
 'end P
end rule

rule embedVarParmRefs ContextId [id]
 replace $ [argument]
 ReferencedId [id] Selectors [repeat selector] : var FormalId [id]
 by
 ReferencedId Selectors : var FormalId [id]
 $ vararguse (ContextId, ReferencedId, FormalId) $
end rule

Figure 13. A Simple Design Recovery Rule.

This simple rule demonstrates the strategy of source annotation to represent design relationships. For each procedure
declaration in the source, the first rule invokes a number of different subrules to recognize design relationships in the
procedure's inner scope. One such relationship is recognized by the second rule, which annotates each argument of each
procedure call in the scope with a "vararguse" design fact. Most design relationship rules are more complex than this one.

While this first TXL-based design recovery system was only
a small scale research prototype, this same approach has been
used in large scale industrial applications such as the LS/2000
Year 2000 analysis and conversion system [10], which used
TXL-based design recovery to process more than three billion
lines of Cobol, PL/I and RPG source code.

3.4. Metaprogramming

The other half of maintaining the relationship between
design documents and actual implementation concerns the
generation of original code from design documents, often called
automatic programming or metaprogramming [3]. In
metaprogramming, the generation of code is guided by a set of
code templates which are instantiated in response to queries on
the design database. For example, a procedure header template
may be instantiated once for each "procedure" fact in the design.

µ* (pronounced "mew star") is a family of
metaprogramming languages sharing a common notation and
implementation. In µ*, templates are written as example source
in the target programming language, which may be one of many,
including C, Prolog, etc., and are instantiated under direction of
metaprogramming annotations added to the template source.
The metaprogramming annotations specify the design conditions
under which the parts of the template apply (Figure 14).

Implementation of µ* uses a two-stage source
transformation system implemented in TXL. In the first stage,
metaprograms are transformed using TXL into a TXL ruleset
that implements their meaning as a source transformation of a
design database represented as Prolog facts, and in the second
stage this ruleset is run as a TXL source transformation of the
design database for the system to be generated (Figure 15). This
system has been used for tasks such as generating the several
kinds of C and Prolog "glue" code necessary to allow Prolog
programs access to C library interfaces described by a formal
interface design specification. This method was applied to
generate the code to make the GL graphics library available to
Prolog programmers.

3.5. Software Restructuring

Code restructuring [2] is perhaps the most natural
application of source program transformation. The Modularity
Toolkit [11] is a sequence of TXL transformations designed for
remodularizing legacy source code. Even in a well designed
system, as maintenance proceeds over the years, original module
boundaries are blurred as requirements shift and the system is
tuned for performance. This blurring of the original modular
design is a major contributor to the degradation in
maintainability of mature systems.

In extreme cases, blurring becomes so extreme that existing
module boundaries in the code actually get in the way of further
maintenance. The modularity toolkit addresses this situation by
attempting to remodularize to better reflect the design
relationships actually present in the maintained code. Using

\ struct {
 char *name;
 int (*addr)();
 } func[] =
 {
 $AllEntries,
 {"",0}
 };
\
 where AllEntries
 \ {$X,$Y} \ [list init]
 each function (F [id])
 where X \ "" \ [string] [" F]
 where Y \ mpro \ [id] [_ F]

Figure 14. A µ* template for generating a C entry point array.

The code between the lines beginning with a backslash \ is a
template for the C code to be generated. The code following the
second backslash is µ* notation for a complex query on the
design database that guides the generation.

 µL
Metaprogram

Design
Database

Instantiated
L Program

µ* Grammar µ* → TXL
XL Rules

Metaprogram
TXL Rules

Prolog
 Grammar

µµµµ* Prototype
System

TXL

TXL
Prolog

 Grammar
L Reference
 Grammar

Figure 15. The µ* prototype implementation.

Templates for the language L are expressed as mL metaprograms. A generic TXL transformation translates µ*
metaprograms (for any target language) to a TXL ruleset. The TXL ruleset is then combined with the TXL grammar for
target language L to implement a second TXL transformation that transforms the design database into instantiated
language L program code.

clustering algorithms to gather together the most tightly related
data and code, the system propose new modularizations that can
be considered by an expert programmer and accepted or
modified interactively to yield a better modularized result
(Figure 16).

Each stage of this process is implemented by an independent
TXL source transformation under control of a unified user
interface that allows the transformations to be applied
sequentially or in any chosen order that makes sense to the
expert. Each stage is itself a complex multi-stage TXL source
transformation (Figure 17). This system was used to improve
the modularity of several heavily maintained Turing language
[12] programs, including the implementation of TXL itself.

3.6. Maintenance Hot Spots

Maintenance hot spots [13] are a generalization of
performance hot spots to any kind of design or source code
analysis activity. Sections of source code are labeled as hot
when a design or source analysis looking for sensitivity to a
particular maintenance issue, such as the Year 2000 problem,
expansion of credit card numbers from 13 to 16 digits, or
changes to European exchange computation laws, has identified
them as relevant. Maintenance hot spots can be used either by
human maintainers to focus their maintenance and testing
efforts, or by automated reprogramming tools as targets for
reprogramming templates.

function createModule ModuleId [id] VarsToHide [repeat id]
 replace [program]
 Comments [opt comment_lines]
 Imports [repeat import_list]
 Body [repeat statement]
 by
 Comments
 Imports
 Body [createEmptyModule ModuleId]
 [hideVarsInModule ModuleId VarsToHide]
 [createAccessRoutines ModuleId each VarsToHide]
 [moveRoutinesIntoModule ModuleId VarsToHide]
 [qualifyExportedReferences ModuleId VarsToHide]
 [createImportExports ModuleId VarsToHide]
 [relocateModuleInProgram ModuleId VarsToHide]
end function

Figure 17. Main TXL function of the Modularize stage of the Modularity Toolkit.

Each stage is implemented by an independent TXL source transformation which itself may involve multiple transforms.
In the Modularize stage, new module boundaries are introduced using source transformations to create a new empty
module, to hide the clustered variables in it, to create access routines for the variables, to move routines in the cluster
inside the module, to qualify all external references to the new module's variables and routines, to create the module's
import/export interface and to relocate the new module appropriately in the program source.

Interface Separate

Integrate Demodularize Cluster Modularize Hide Evaluate

N

Y

The Modularity
Toolkit

Figure 16. The Modularity Toolkit.

Remodularization consists of integrating the source code of all existing modules and removing module boundaries,
textually clustering together related source items, introducing new module boundaries for the clusters and evaluating the
result. When a new module is accepted by the user, additional source transformations introduce the new interfaces and
separate the result into new modules.

LS/2000 [10] used the concept of maintenance hot spots to
assist in the Year 2000 conversion of over three billion lines of
Cobol, PL/I and RPG source code. Using a variant of the design
recovery process described in Section 3.3 followed by design
analysis and hot spotting processes for the Year 2000 problem,
LS/2000 produced hot spot reports for every module of an
application that had any potential Year 2000 risks embedded in
it, and automatically reprogrammed the majority of hot spots
according to a set of transformation patterns. Clients of
LS/2000 reported a 30-40 fold increase in Year 2000 conversion
productivity using automated hot spot identification and
reprogramming. Time to examine and convert a source code
module of a few thousand lines of source was reduced from a
few hours to less than five minutes, and accuracy of conversion
before testing was increased from about 75% to over 99%.

At the core of LS/2000 were the hot spot markup and hot
spot transform phases of the process (Figure 18). Hot spot
markup took as input each source module of the software system
being analyzed along with the set of Year 2000 date
relationships inferred by design analysis for the module. In
order to implement the markup process as a pure source to
source transformation, the inferred date relationships were
represented as Prolog source facts prepended to the module
source. Potentially Year 2000 sensitive operations in the source
were marked as hot by a set of TXL rules using source patterns
guarded by matches of the source facts. Figure 19 shows one
such markup rule.

Hot spot transform then took as input the marked-up source
and used a set of TXL source transformation rules to search for
marked hot spots that were instances of a large set of

Version
Integration

Transformed
Original Source

Design
Recovery

Unique
Naming

Normalized
Source

Design
Analysis

Original
Source

Design
Database

Hot Spot
Markup

Marked-up
Normalized Source

Hot Spot
Transform

Transformed
Normalized Source

Report
Generation

Hot Spot
Reports

Figure 18. The LS/2000 Process Architecture.

Software system source files are first uniquely renamed and normalized to factor out irrelevant formatting and syntactic
details. The normalized source files are then analyzed using design recovery to produce a detailed design database.
Under guidance of a human analyst, design analysis identifies those design entities which are of interest in the context of
the particular maintenance task. Hot spot markup then uses the results of the design analysis to identify sections of code
that may need to be changed (“hot spots”), which hot spot transform automatically reprograms using a set of
transformation patterns. Finally, version integration restores original source formatting, naming and syntactic details to
the reprogrammed source and report generation summarizes the changes. All phases of LS/2000, with the exception of
version integration and report generation, were implemented using TXL source transformations.

rule markupDateLessThanYYMMDD
 import DateFacts [repeat fact]

 replace $ [condition]
 LeftOperand [name] < RightOperand [name]

 deconstruct * DateFacts
 Date (LeftOperand, “YYMMDD”)

 deconstruct * DateFacts
 Date (RightOperand, “YYMMDD”)

 by
 {DATE-INEQUALITY-YYMMDD
 LeftOperand < RightOperand
 }DATE-INEQUALITY-YYMMDD

end rule

Figure 19. Example LS/2000 Hot Spot Markup Rule.

Each hot spot markup rule searches for a particular pattern, in
this case a condition using the operator “<”, which involves
something classified by design analysis as interesting, in this
case operands known to represent dates of type “YYMMDD”.
Interesting instances of the pattern are marked up using hot
spot brackets, in this case“{DATE-INEQUALITY-YYMMDD”
and “}DATE-INEQUALITY-YYMMDD”. “DateFacts” above
refers to the Prolog source facts for the result of design
analysis. The deconstruct statements in the rule use source
pattern matching to query the source facts for “Date” facts
about the operands. This rule has been simplified for
presentation in this paper. In practice hot spot markup rules
are much more general than this one.

reprogramming templates based on a “windowing” solution to
Year 2000. Because the hot spot markup phase had explicated
the kind of potential risk in the markup label of each hot spot,
these templates could be applied very efficiently. Figure 20
shows an example of a TXL hot spot transform rule for
reprogramming one kind of Year 2000 hot spot.

The ideas behind LS/2000 have been generalized and
codified in the LS/AMT automated maintenance system
discussed in [13]. By customizing the hot spot markup and
transform phases to a range of other large scale software
maintenance problems, LS/AMT has already been used to
process more and one and a half billion lines of additional code
in addressing problems such as IT mergers, database migrations,
web migrations and other large scale maintenance tasks.

4. Summary

TXL is a general and flexible source transformation
language and rapid prototyping system which has been used in a
wide range of software engineering and maintenance
applications. This short paper has given a quick introduction to
the flavor of TXL and our experience in its application to a
range of software maintenance activities. We observed that
most automatable software engineering applications can be
modeled as source to source transformations, and showed how
TXL can be used to implement some of these models in practice.

TXL has been used in hundreds of projects in industry and
academia all over the world, including several other software
engineering applications such as implementation of the HSML
design-directed source code mining system [13] and the reverse
engineering facilities of the commercial Graphical Designer
CASE tool [14]. With the move towards XML [15] based
software representations such as GXL [16], we expect that
source to source transformation will be playing an even greater
role in software engineering in the future.

5. Related Work

The important role of transformation in software engineering
has been pointed out by several other researchers. Perhaps the
most eloquent spokespersons for transformation in software
engineering are Ira Baxter and Christopher Pidgeon of Semantic
Designs, who have proposed a design-directed transformational
model for the entire software life cycle [19]. Other source
transformation tools have been used to implement software
engineering tasks of various kinds. Of particular note are Gentle
[20], FermaT [21] and NewYacc [22], any of which could be
used to implement most of the techniques described in this
paper. TXL is distinguished from these systems in its use of by-
example patterns and replacements, which simplify the
specification of practical transformation tasks by shielding the
user from direct manipulation of internal abstract structures.

rule transformLessThanYYMMDD
 replace $ [repeat statement]
 IF {DATE-INEQUALITY-YYMMDD
 LeftOperand [name] < RightOperand [name]
 }DATE-INEQUALITY-YYMMDD
 ThenStatements [repeat statement]
 OptElse [opt else_clause]
 END-IF
 MoreStatements [repeat statement]

 construct RolledLeftOperand [name]
LeftOperand [appendName “-ROLLED”]

 construct RolledRightOperand [name]
RightOperand [appendName “-ROLLED”]

 by
 {TRANSFORM-INSERTED-CODE
 ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledLeftOperand
 ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledRightOperand
 }TRANSFORM-INSERTED-CODE
 IF {TRANSFORMED-DATE-INEQUALITY-YYMMDD
 RolledLeftOperand < RolledRightOperand
 }TRANSFORMED-DATE-INEQUALITY-YYMMDD
 ThenStatements
 OptElse
 END-IF
 MoreStatements

end rule

Figure 20. Example LS/2000 Hot Spot Transform Rule.

Each hot spot transform rule implements the reprogramming template for a particular kind of hot spot. In this case the
rule searches for IF statements whose condition has been marked as DATE-INEQUALITY-YYMMDD. When one is
found, it is replaced by a copy of the statement in which the inequality operands have been replaced by new operands
whose value is computed by ADD statements inserted to implement the Year 2000 windowing computation. A separate
transformation rule later inserts declarations for the new operands. This rule has been simplified for presentation in this
paper. In practice, most hot spot transform rules are much more general than this one, covering many cases in one rule.

6. Acknowledgments

TXL has benefited from the contributions of a range of
people over many years. The original Turing programming
language extension tool from which TXL has evolved was
designed by Charles Halpern and James R. Cordy at the
University of Toronto in 1985, and the first practical
implementations were developed by Ian Carmichael and Eric
Promislow at Queen’s University between 1986 and 1990. The
design and implementation of the modern TXL language and
transformation system was undertaken by James R. Cordy at
GMD Karlsruhe and Queen’s University between 1990 and
1995. Andrew Malton developed the formal semantics of the
modern TXL language at Queen’s University in 1993 [17].

Independent early explorations of the application of TXL to
software engineering tasks were undertaken by Georg Etzkorn,
Nicholas Graham, Kevin Schneider and Donald Jardine of
Queen’s University and GMD Karlsruhe. The TXL approach to
software engineering tasks was heavily inspired by the theory-
model paradigm for software design described by Arthur Ryman
of the Centre for Advanced Studies of IBM Canada [18].

A range of experiments with TXL have been carried out by
graduate students of Queen’s University including Medha
Shukla Sarkar, Ramesh Srinivasan, Rateb Abu-Hamdeh,
Chunsheng Xie, Edna Abraham, Russell Halliday, Darren
Cousineau, Andy Maloney, Minchul Cha and Richard Zanibbi.
Finally, several hundred TXL users from institutions all over the
world have contributed to the evolution of TXL from a compiler
technology academic toy to an industrial strength software
transformation system over the past ten years.

Development of TXL has been funded at various stages by
the Natural Sciences and Engineering Research Council of
Canada (NSERC), by the Information Technology Research
Centre (ITRC, a province of Ontario Centre of Excellence), by
ESPRIT project REX and GMD (the German National Research
Centre for Information Technology) Karlsruhe, and by the
University of Toronto and Queen’s University.

References.

[1] T.J. Biggerstaff, "Design recovery for maintenance and reuse", IEEE
Computer 22,7 (July 1989), pp. 36-49.

[2] R.S. Arnold, "Software Restructuring", Proceedings of the IEEE
77,4 (April 1989), pp. 607-617.

[3] J.R. Cordy and M. Shukla, "Practical Metaprogramming”, Proc.
CASCON '92, IBM Centre for Advanced Studies 1992 Conference,
Toronto, Canada (November 1992), pp. 215-224.

[4] J.R. Cordy, C.D. Halpern and E. Promislow, "TXL: A Rapid
Prototyping System for Programming Language Dialects", Computer
Languages 16,1 (January 1991), pp. 97-107.

[5] J.R. Cordy, I.H. Carmichael and R. Halliday, The TXL Programming
Language - Version 10, Legasys Corp. and Queen’s University,
Kingston, Canada, January 2000.

[6] J. Magee, J. Kramer, M. Sloman and N. Dulay, "An Overview of the
REX Software Architecture", Proc. 2nd IEEE CS Workshop on Future
Trends of Distributed Computing Systems, Cairo, Egypt (October 1990),
pp. 396-402.

[7] F. Bieler (ed.), “The REX Interface Specification Language”,
Technical Report REX-WP2-GMD-36.1.1, GMD Karlsruhe, Karlsruhe,
Germany (June 1990).

[8] D.A. Lamb, “IDL: Sharing Intermediate Representations”, ACM
Transactions on Programming Languages and Systems 9, 3 (July 1987),
pp. 297-318.

[9] D.A. Lamb and K.A. Schneider, “Formalization of information
hiding design methods”, Proc. CASCON '92, IBM Centre for Advanced
Studies Conference, Toronto, Canada (November 1992), pp. 201-214.

[10] J.R. Cordy, "The LS/2000 Technical Guide to the Year 2000",
Technical Report ED5-97, Legasys Corp., Kingston, and IBM Corp.,
Toronto (April 1997).

[11] R. Srinivasan, "Automatic Software Design Recovery and Re-
Modularization Using Source Transformation", M.Sc. thesis,
Department of Computing and Information Science, Queen's
University, Kingston, Canada (April 1993).

[12] R.C. Holt and J.R. Cordy, “The Turing Programming Language”,
Communications of the ACM 31,12 (December 1988), pp. 1410-1423.

[13] J.R. Cordy, K.A. Schneider, T.R. Dean and A.J. Malton, "HSML:
Design Directed Source Code Hot Spots", Proc. IWPC 2001 - 9th Int.
Workshop on Program Comprehension, Toronto, Canada (May 2001).

[14] Advanced Software Technologies Inc., GDPro 5.0 (Sept. 2000).

[15] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, "Extensible
markup language (XML) 1.0", W3C Recommendation REC-
xml19980210 (February 1998).

[16] R.C. Holt, A. Winter and A. Schürr, "GXL: Toward A Standard
Exchange Format", Proc. WCRE 2000 Working Conference on Reverse
Engineering, Brisbane, Australia (November 2000).

[17] A.J. Malton, "The Denotational Semantics of a Functional Tree-
Manipulation Language", Computer Languages 19,3 (July 1993), pp.
157-168.

[18] A.G. Ryman, "Constructing Software Design Theories and
Models", in Studies of Software Design, Springer Verlag Lecture Notes
in Computer Science 1078 (1996), pp.103-114.

[19] I. Baxter and C. Pidgeon, "Software Change Through Design
Maintenance", Proc. ICSM’97, IEEE 1997 International Conference on
Software Maintenance, Bari, Italy (October 1997), pp. 250-259.

[20] F.W. Schröer, The GENTLE Compiler Construction System, R.
Oldenbourg Verlag, Munich and Vienna, 1997.

[21] M.P. Ward, "Assembler to C Migration using the FermaT
Transformation System", Proc. ICSM’99, IEEE 1999 International
Conference on Software Maintenance, Oxford (Sept. 1999), pp. 67-76.

[22] James J. Purtilo and John R. Callahan, "Parse-Tree Annotations",
Communications of the ACM 32,12 (December 1989), pp. 1467-1477.

	Header: Proc. SCAM'01 - IEEE 1st International Workshop on Source Code Analysis and Manipulation, Florence, November 2001, pp. 168-178

