
Abstract 

Many tasks in software engineering can be characterized as 
source to source transformations.  Design recovery, software 
restructuring, forward engineering, language translation, 
platform migration and code reuse can all be understood as 
transformations from one source text to another.  TXL, the Tree 
Transformation Language, is a programming language 
specifically designed to support rule-based source to source 
transformation.  Originally conceived as a tool for exploring 
programming language dialects, TXL has evolved into a general 
purpose software transformation system that has proven well 
suited to a wide range of software maintenance and re-
engineering tasks, including the design recovery, analysis and 
automated reprogramming of billions of lines of commercial 
Cobol, PL/I and RPG code for the Year 2000.  In this short 
paper we introduce the basic features of modern TXL and its use 
in a range of software engineering applications, with an 
emphasis on how each task can be achieved by source 
transformation.

1. Background

Many tasks in software engineering and maintenance can be 
characterized as source to source transformations.  Reverse 
engineering or design recovery [1] can be cast as a source 
transformation from the text of the legacy source code files to 
the text of a set of design facts.  Software re-engineering and 
restructuring [2] can be cast as a source transformation from the 
poorly structured original source code text to the better 
structured new source code.  Forward engineering or 
metaprogramming [3], can be cast as a transformation from the 
source text of design documents and templates to the 
instantiated source code files.  Platform translation and 
migration tasks are easily understood as transformations from 

the original source code files to new source code files in the new 
language or paradigm.  And code reuse tasks can be 
implemented as a source transformation from existing, tested 
source code to generic reusable source code modules.

While many other methods can be applied to various parts of 
these problems, at some point each of them must involve dealing 
with actual source text of some kind at each end of the process.  
In this short paper we describe our experiences with attempting 
to tighten the relationship between the source text artifacts at 
each end of the processes by experimenting with actually 
implementing these and other software engineering tasks using 
pure source text transformations in the TXL source 
transformation language [4,5].  The experience we report is a 
summary of the results of many different projects over the past 
ten years, culminating with the success of the approach in 
addressing the difficulties associated with the famous 
"millennium bug" for over three billion lines of source code.

2. Overview of TXL

TXL is a programming language and rapid prototyping 
system specifically designed to support structural source 
transformation.  Source text structures to be transformed are 
described using an unrestricted ambiguous context free grammar 
in extended Backus-Nauer (BNF) form, from which a structure 
parser is automatically derived.  Source transformations are 
described by example, using a set of context sensitive structural 
transformation rules from which an application strategy is 
automatically inferred.

In order to give the flavor of the by-example style of TXL, 
Figure 1 shows a simple transformation rule for the base step of 
a transformation to vectorize sequences of independent scalar 
assignments in a Pascal-like programming language.  

2.1. The TXL Processor

The TXL processor is a compiler and run time system for 
the TXL programming language that directly interprets TXL 
programs consisting of a grammatical specification of the 
structure of the input text and a set of structural transformation 
rules such as the one in Figure 1 to implement a source to source 
transformation.  The result is a rapid prototype of the source 
transformer described by the rules that can be used immediately 
on real input (Figure 2).
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2.2. Grammatical Notation -
       Specifying Source Structure

TXL uses a BNF-like grammatical notation to specify source 
structure (Figure 3).  In order to keep the notation lightweight 
and in a by-example style, terminal symbols of the input, for 
example operators, semicolons, keywords and the like, appear 
simply as themselves.  References to nonterminal types defined 
elsewhere in the grammar appear in square brackets [ ].  The 
usual set of BNF extensions for sequences, written as [repeat X] 
for nonterminal [X], optional items, written as [opt X], and lists, 
written as [list X], are available.

Lexical specification is by regular expression patterns in 
special tokens and compounds sections, and keywords can be 
distinguished using a keys statement.  A large set of predefined 
nonterminal types for common tokens, including identifiers, 
string literals, numeric literals, etc. are built in to TXL.

2.3. Rule Notation - Specifying a Transformation

TXL transformation rules are specified using a by-example 
pattern notation that binds matched items by name in the pattern 
and copies them by name in the replacement (Figure 4).  Pattern 
variables are explicitly typed using the square bracket 
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Figure 2.  The TXL Processor.

The TXL Processor automatically implements source 
transformations written in the TXL language.

rule vectorizeScalarAssignments
   replace [repeat statement]
       V1 [variable] := E1 [expression];
       V2 [variable] := E2 [expression];
       RestOfScope [repeat statement]

   where not
       E2 [references V1]
   where not
       E1 [references V2]

   by
       < V1,V2 > := < E1,E2 > ;
       RestOfScope
end rule

Figure 1.  Simple Example TXL Transformation Rule.

The replace clause gives the pattern for which the rule 
searches by example in actual source text, binding names to 
parts (such as the [expression]s) which may vary in each 
instance.  The by clause gives the transformed result in similar 
style, using the bound names to transfer parts from the matched 
pattern.  The where clauses specify additional semantic 
constraints on when the rule can be applied.

rule resolveAddition
   replace [expression]           % target 
                                  % type

      N1 [number] + N2 [number]   % pattern to 
                                  % search for
   by
      N1 [+ N2]                   % replacement  
                                  % to make
end rule

Figure 4.  Simple Example of a TXL Transformation Rule.

The replace clause specifies the target nonterminal type to be 
transformed and the by-example pattern to be matched.  The by 
clause specifies the by-example replacement to be made for the 
matched pattern.  Because rules are constrained to preserve 
structure, both the pattern and the replacement must be 
parseable as the target type.  The square bracket notation is 
used in the pattern to specify type and in the replacement to 
specify subrule invocation.

define program               % goal symbol 
    [expression]             % of the grammar   
end define

define expression            % general 
    [term]                   %   recursion
  | [expression] + [term]    % & ambiguity
  | [expression] – [term]    %   supported
end define

define term  
    [primary]                 
  | [term] * [primary]          
  | [term] / [primary]      
end define  

define primary
    [number]
  | ( [expression] )
end define

Figure 3.  Simple Example of a TXL Grammar.

Terminal symbols such as +, -, *, / and the parentheses in the 
definitions above represent themselves.  References to 
nonterminal types are denoted by square brackets, as in 
[expression] above.  TXL comments begin with % and continue 
to the end of the line.



nonterminal type notation.  For example X[T] binds a pattern 
variable named X of nonterminal type [T].  

Pattern variables may be used in the replacement to copy the 
item bound in the pattern into the result of the rule.  Variables 
copied into the replacement may optionally be further 
transformed by subrules using the notation X[R], where R is the 
name of a transformation rule.  Subrule invocation has the 
semantics of function application - in traditional functional 
notation, the TXL subrule invocation X[R] would be written 
R(X), the composed subrule invocation X[R1][R2] would be 
written R2(R1(X)), and so on.  

Transformation rules are constrained to preserve 
nonterminal type in order to guarantee a well-formed result.  
Each transformation rule searches its scope (the item it is 

applied to) for instances of its pattern and replaces each one with 
an instance of its replacement, substituting pattern variables in 
the result.  Patterns and replacements are source text examples 
from which the intended structure trees are inferred by the parser 
(Figure 5).  Rules automatically re-apply to their own result until 
no further matches are found.

Subrules can be parameterized to use items bound from 
previous pattern matches in their patterns and replacements 
(Figure 6).  In this way complex transformations involving large 
scale reorganization of source structures can be specified.

Pattern matches can be refined using deconstruct clauses, 
which constrain bound pattern variables to match more detailed 
patterns (Figure 7), and using  where clauses, which allow for 
semantic constraints on items bound to pattern variables (Fig. 8).
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Figure 5.  Semantics of the Simple Example Rule in Figure 4.

The example source text given for the pattern and replacement 
of a rule are parsed into structure tree patterns which are 
efficiently matched to subtrees of the parse tree of the input to 
the transformation.  Because rules are constrained to preserve 
nonterminal type, the result is always well formed.

rule resolveConstants
   replace [repeat statement]
      const C [id] = V [expression];
      RestOfScope [repeat statement]
   by
      RestOfScope [replaceByValue C V]
end rule

rule replaceByValue ConstName [id] 
                    Value [expression]
   replace [primary]
      ConstName
   by
      ( Value )
end rule

Figure 6.  Using Rule Parameters to Reorganize Source.

This example demonstrates the use of rule parameters to 
implement rules that depend on items bound in previous 
patterns.  In this case the second rule implements inlining of 
constant values by searching for [primary] references that 
match the identifier of a named constant, and replaces each 
such reference with the constant's value.  The first rule insures 
that this is done for every declared named constant.

rule createSimultaneousAssignments
   replace [repeat statement]
      IfStatement [if_statement] ;
      RestOfStatements [repeat statement]

   deconstruct * [if_condition] IfStatement
      IfCond [if_condition]

   deconstruct IfCond
      false
   by
      RestOfStatements
end rule

Figure 7. Constraining Variables to More Specific Patterns.

The deconstruct clause allows for stepwise pattern refinement. 
The first deconstruct in the example above constrains the item 
bound to IfStatement to contain an [if_condition], which is 
bound to the new pattern variable IfCond.  The second 
deconstruct constrains IfCond to be exactly the identifier false. 
If either deconstruct fails, the entire pattern match fails and the 
scope is searched for another match.

rule sortNumbers
   replace [repeat number]
      N1 [number] N2 [number] Rest [repeat number]
   where
      N1 [> N2]
   by
      N2 N1 Rest
end rule

Figure 8.  Semantic Constraints on Bound Variables.

The where clause constrains items bound to pattern variables 
using a (possibly complex) set of subrules.  In the rule above, 
the number bound to N1 is constrained to be greater than the 
number bound to N2, otherwise the pattern match fails.  (This 
rule is the entire specification for bubble sorting a sequence of 
numbers in TXL.)



3. Software Engineering 
    by Source Transformation

The remainder of this paper gives examples of how TXL has 
been used in various software engineering projects in research 
and industry over the past ten years.

3.1. Interface Translation

ESPRIT Project REX [6] was an ambitious and wide 
ranging project to explore the specification and implementation 
of reusable, extensible distributed systems, and was the first 
serious use of TXL in software engineering tasks.  One of the 
key ideas in REX was the use of language independent interface 
specifications in the ISL notation [7].  Closely related to IDL 
[8], ISL allowed the specification of complex data structures to 
be passed between nodes in a widely distributed heterogeneous 
network.  Each node in the network could be implemented using 
different hardware, operating system and programming 
language.

In order to insure that data could be reliably passed between 
nodes implemented using different programming languages, it 
was important that the interfaces described in ISL be accurately 
and consistently represented in each language.  Initially such 
representations were carried out by hand translation, but very 
quickly it became obvious that it was much too difficult and 
error prone to incrementally adapt such translations in response 
to changes in the ISL specifications of the interfaces.
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Figure 9.  Applications of TXL in ESPRIT Project REX.

TXL transformation rule sets were used to instantiate ISL data 
structure descriptions into data type declarations in each of the 
REX target languages (a), and to implement REX extended 
dialects of each target language (b).

% Project REX - TXL ruleset for transforming from
% REX Extended Modula II -> unextended Modula II
% Georg Etzkorn, GMD Karlsruhe, 25.02.91
% Part 4 - Transform SELECT statements

rule transformSelectStatement ModuleId [id] PortListId [id]
   replace [repeat statement]
      SELECT
         Alternatives  [repeat or_alternative] 
         OptElse       [opt else_StatementSequence]
      END;
      RestOfStatements [repeat statement]

   construct InsertPortStatements [repeat statement]
      _ [mapAlternativeToIf PortListId ModuleId each Alternatives]

   construct PortMessageCases [repeat or_case]
      _ [mapAlternativeToCase ModuleId each Alternatives]

   by
      AllocPortList (PortListId);
      InsertPortStatements 
      CASE WaitOnPortList (PortListId) OF
         PortMessageCases
      END;
      ReleasePortList (PortListId);
      RestOfStatements
end rule

Figure 10.  Transformation Rule to Implement the REX Modula II SELECT Statement.

Transformation from REX Modula II to pure Modula II is not just a matter of syntax, as this rule demonstrates.  Each 
REX Modula II SELECT statement is transformed to a complex set of logic involving a sequence of IF statements derived 
from each alternative followed by a CASE statement whose cases are derived in a different way from the same set of 
alternatives.  The by-example style of TXL makes the overall shape of both the original and the translated result easy to 
see.  Figure 11 shows an example of this transformation.



Instead, a source transformation from ISL to each target 
language was designed and implemented in TXL (Figure 9(a)).  
Once completed, these transformations allowed much more 
rapid experimentation since only the ISL specification need be 
changed when updating interface data structures.

3.2. Language Extension

Project REX also involved research in appropriate language 
features for supporting effective distributed computing.  New 
language primitives were designed to support REX message 
passing for each target language.  REX extended languages 
included REX Modula II, REX C, REX Prolog, and so on.  In 
each case, the semantics of the new features were specified 
using templates in the original unextended language, augmented 
with calls to a standard REX communication library that was 
common across all languages.

TXL was used to provide usable implementations of each of 
the REX extended languages by directly implementing their 
semantics as source transformations to the original languages 
(Figure 9 (b)).  The relationship between the source of the REX 
extended language and the original language was often both 
semantically and structurally complex, and is not simply a 
question of syntax.  Figure 10 shows one of the transformation 
rules in the TXL implementation of REX Modula II, and Figure 
11 shows an example of the transformation it implements.

3.3. Design Recovery

The Software Design Technology (SDT) project was a joint 
project involving IBM Canada and Queen's University.  The 
global goal of the project was to study how we can formalize 
and better maintain the relationship between design documents 
and actual implementation code throughout the life cycle of a 
software system.  Early on it was realized that if such an 
approach is to be introduced into practice, it must be applicable 
to existing large scale legacy systems whose design documents 
have been long ago lost or outdated.  Thus design recovery, the 
reverse engineering of a design database from source code 
artifacts, became an important practical goal of the project [9].  

While analysis of source code for the purpose of design 
recovery does not at first glance seem like a good application for 
source transformation, it quickly became clear that the pattern 
matching capabilities of TXL made it well suited to this task.  
Using the three stage source annotation approach shown in 
Figure 12, a completely automated design recovery system was 
implemented in TXL and used to recover the design of a large 
piece of software for the purpose of design analysis.  

The approach involves several TXL transformations, each of 
which searches for a set of source patterns  for a particular 
design relationship and annotates the source with design facts 
for the relationship in Prolog notation (Figure 13).  These 
"embedded" design facts are then extracted and merged to create 
a Prolog design database for the entire program.

Figure 11.  Trivial Example of the Transformation Implemented by the TXL Rule in  Figure 10.

This example demonstrates the complexity of the relationship between the original source and the result 
source in this transformation.  For larger SELECT statements, the difference is even more striking.

SELECT
  (allocated = None) OR (allocated = Left) && ACCEPT(left,req):
      CASE req.order OF
          pickup: allocated := Left;  | putdown: allocated := None;
      END;
      REPLY(left,ack);
  | (allocated = None) OR (allocated = Right) && ACCEPT(right,req):
      CASE req.order OF
          pickup: allocated := Right; | putdown: allocated := None;
      END;
      REPLY(left,ack);
END;

AllocPortList (XdrM2_PortList1); 
IF (allocated = None) OR (allocated = Left) THEN
    InsertPort (XdrM2_PortList1, XdrM2_Fork.left, NoHandle);
END; 
IF (allocated = None) OR (allocated = Right) THEN
    InsertPort (XdrM2_PortList1, XdrM2_Fork.right, NoHandle);
END; 
CASE WaitOnPortList (XdrM2_PortList1) OF
    XdrM2_Fork.right: 
      XdrM2_Fork.Accept_right (XdrM2_Fork.right, NoHandle, req);
      CASE req.order OF
           pickup: allocated := Right; | putdown: allocated := None;
      END; 
      XdrM2_Fork.Reply_left (XdrM2_Fork.left, NoHandle, ack);
  | XdrM2_Fork.left: 
      XdrM2_Fork.Accept_left (XdrM2_Fork.left, NoHandle, req); 
      CASE req.order OF
           pickup: allocated := Left;  | putdown: allocated := None;
      END;
      XdrM2_Fork.Reply_left (XdrM2_Fork.left, NoHandle, ack);
END; 
ReleasePortList (XdrM2_PortList1);
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Figure 12.  Design Recovery by Source Transformation.

The process involves three stages: a normalization phase which uses TXL transforms to resolve global unique naming of 
identifiers (1), a fact generation phase which uses a set of TXL transforms to recognize and annotate source with design 
relationships (2), and an extraction phase which gathers the annotations into a design database (3).  This same basic 
strategy was used in the LS/2000 system to recover the designs of over three billion lines of source applications written in 
Cobol, PL/I and RPG.

rule processProcedureRefs
   replace $ [declaration]
      procedure P [id] ParmList [opt parameter_list]
         Scope [repeat statement]
      'end P
   by
      procedure P ParmList
         Scope [embedProcCalls P]
               [embedFuncCalls P]
               [embedVarParmRefs P]
               [embedPutRefs P]
               [embedGetRefs P]
      'end P
end rule

rule embedVarParmRefs ContextId [id]
   replace $ [argument]
      ReferencedId [id] Selectors [repeat selector] : var FormalId [id]
   by
      ReferencedId Selectors : var FormalId [id]
      $ vararguse (ContextId, ReferencedId, FormalId) $ 
end rule

Figure 13.  A Simple Design Recovery Rule.

This simple rule demonstrates the strategy of source annotation to represent design relationships.  For each procedure 
declaration in the source, the first rule invokes a number of different subrules to recognize design relationships in the 
procedure's inner scope.  One such relationship is recognized by the second rule, which annotates each argument of each 
procedure call in the scope with a "vararguse" design fact.  Most design relationship rules are more complex than this one.



While this first TXL-based design recovery system was only 
a small scale research prototype, this same approach has been 
used in large scale industrial applications such as the LS/2000 
Year 2000 analysis and conversion system [10], which used 
TXL-based design recovery to process more than three billion 
lines of Cobol, PL/I and RPG source code. 

3.4. Metaprogramming

The other half of maintaining the relationship between 
design documents and actual implementation concerns the 
generation of original code from design documents, often called 
automatic programming or metaprogramming [3].  In 
metaprogramming, the generation of code is guided by a set of 
code templates which are instantiated in response to queries on 
the design database.  For example, a procedure header template 
may be instantiated once for each "procedure" fact in the design.

µ* (pronounced "mew star") is a family of 
metaprogramming languages sharing a common notation and 
implementation.  In  µ*, templates are written as example source 
in the target programming language, which may be one of many, 
including C, Prolog, etc., and are instantiated under direction of 
metaprogramming annotations added to the template source.  
The metaprogramming annotations specify the design conditions 
under which the parts of the template apply (Figure 14).

Implementation of µ* uses a two-stage source 
transformation system implemented in TXL.  In the first stage, 
metaprograms are transformed using TXL into a TXL ruleset 
that implements their meaning as a source transformation of a 
design database represented as Prolog facts, and in the second 
stage this ruleset is run as a TXL source transformation of the 
design database for the system to be generated (Figure 15).  This 
system has been used for tasks such as generating the several 
kinds of C and Prolog "glue" code necessary to allow Prolog 
programs access to C library interfaces described by a formal 
interface design specification.  This method was applied to 
generate the code to make the GL graphics library available to 
Prolog programmers.

3.5. Software Restructuring

Code restructuring [2] is perhaps the most natural 
application of source program transformation.  The Modularity 
Toolkit [11] is a sequence  of TXL transformations designed for 
remodularizing legacy source code.  Even in a well designed 
system, as maintenance proceeds over the years, original module 
boundaries are blurred as requirements shift and the system is 
tuned for performance.  This blurring of the original modular 
design is a major contributor to the degradation in 
maintainability of mature systems.

In extreme cases, blurring becomes so extreme that existing 
module boundaries in the code actually get in the way of further 
maintenance.  The modularity toolkit addresses this situation by 
attempting to remodularize to better reflect the design 
relationships actually present in the maintained code.  Using 

\   struct {
        char *name;
        int (*addr)();
    } func[] =
    {
        $AllEntries,
        {"",0}
    };
\ 
    where AllEntries
            \ {$X,$Y} \ [list init]
        each function (F [id])
        where X \ "" \ [string] [" F]
        where Y \ mpro \ [id] [_ F]

Figure 14.  A µ* template for generating a C entry point array.

The code between the lines beginning with a backslash \ is a 
template for the C code to be generated.  The code following the 
second backslash is µ* notation for a complex query on the 
design database that guides the generation. 
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Figure 15.  The µ* prototype implementation.

Templates for the language L are expressed as mL metaprograms.  A generic TXL transformation translates µ* 
metaprograms (for any target language) to a TXL ruleset.  The TXL ruleset is then combined with the TXL grammar for 
target language L to implement a second TXL transformation that transforms the design database into instantiated 
language L program code.



clustering algorithms to gather together the most tightly related 
data and code, the system propose new modularizations that can 
be considered by an expert programmer and accepted or 
modified interactively to yield a better modularized result 
(Figure 16).

Each stage of this process is implemented by an independent 
TXL source transformation under control of a unified user 
interface that allows the transformations to be applied 
sequentially or in any chosen order that makes sense to the 
expert.   Each stage is itself a complex multi-stage TXL source 
transformation (Figure 17).  This system was used to improve 
the modularity of several heavily maintained Turing language 
[12] programs, including the implementation of TXL itself.

3.6. Maintenance Hot Spots

Maintenance hot spots [13] are a generalization of 
performance hot spots to any kind of design or source code 
analysis activity. Sections of source code are labeled as hot 
when a design or source analysis looking for sensitivity to a 
particular maintenance issue, such as the Year 2000 problem, 
expansion of credit card numbers from 13 to 16 digits, or 
changes to European exchange computation laws, has identified 
them as relevant.  Maintenance hot spots can be used either by 
human maintainers to focus their maintenance and testing 
efforts, or by automated reprogramming tools as targets for 
reprogramming templates. 

function createModule ModuleId [id] VarsToHide [repeat id]
   replace [program]
      Comments [opt comment_lines]
      Imports  [repeat import_list]
      Body     [repeat statement]
   by
      Comments
      Imports
      Body  [createEmptyModule         ModuleId]
            [hideVarsInModule          ModuleId VarsToHide]
            [createAccessRoutines      ModuleId each VarsToHide]
            [moveRoutinesIntoModule    ModuleId VarsToHide]
            [qualifyExportedReferences ModuleId VarsToHide]
            [createImportExports       ModuleId VarsToHide]
            [relocateModuleInProgram   ModuleId VarsToHide]
end function

Figure 17.  Main TXL function of the Modularize stage of the Modularity Toolkit.

Each stage is implemented by an independent TXL source transformation which itself may involve multiple transforms.  
In the Modularize stage, new module boundaries are introduced using source transformations to create a new empty 
module, to hide the clustered variables in it, to create access routines for the variables, to move routines in the cluster 
inside the module, to qualify all external references to the new module's variables and routines, to create the module's 
import/export interface and to relocate the new module appropriately in the program source.

Interface Separate

Integrate Demodularize Cluster Modularize Hide Evaluate

N

Y

The Modularity 
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Figure 16.  The Modularity Toolkit.

Remodularization consists of integrating the source code of all existing modules and removing module boundaries, 
textually clustering together related source items, introducing new module boundaries for the clusters and evaluating the 
result.  When a new module is accepted by the user, additional source transformations introduce the new interfaces and 
separate the result into new modules.



LS/2000 [10] used the concept of maintenance hot spots to 
assist in the Year 2000 conversion of over three billion lines of 
Cobol, PL/I and RPG source code. Using a variant of the design 
recovery process described in Section 3.3 followed by design 
analysis and hot spotting processes for the Year 2000 problem, 
LS/2000 produced hot spot reports for every module of an 
application that had any potential Year 2000 risks embedded in 
it, and automatically reprogrammed the majority of hot spots 
according to a set of transformation patterns.  Clients of 
LS/2000 reported a 30-40 fold increase in Year 2000 conversion 
productivity using automated hot spot identification and 
reprogramming.  Time to examine and convert a source code 
module of a few thousand lines  of source was reduced from a 
few hours to less than five minutes, and accuracy of conversion 
before testing was increased from about 75% to over 99%. 

At the core of LS/2000 were the hot spot markup and hot 
spot transform phases of the process (Figure 18).  Hot spot 
markup took as input each source module of the software system 
being analyzed along with the set of Year 2000 date 
relationships inferred by design analysis for the module.   In 
order to implement the markup process as a pure source to 
source transformation, the inferred date relationships were 
represented as Prolog source facts prepended to the module 
source.  Potentially Year 2000 sensitive operations in the source 
were marked as hot by a set of TXL rules using source patterns 
guarded by matches of the source facts.  Figure 19 shows one 
such markup rule.

Hot spot transform then took as input the marked-up source 
and used a set of TXL source transformation rules to search for 
marked hot spots that were instances of a large set of 
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Figure 18.  The LS/2000 Process Architecture.

Software system source files are first uniquely renamed and normalized to factor out irrelevant formatting and syntactic 
details.  The normalized source files are then analyzed using design recovery to produce a detailed design database.  
Under guidance of a human analyst, design analysis identifies those design entities which are of interest in the context of 
the particular maintenance task.  Hot spot markup then uses the results of the design analysis to identify sections of code 
that may need to be changed (“hot spots”), which hot spot transform automatically reprograms using a set of 
transformation patterns.  Finally, version integration restores original source formatting, naming and syntactic details to 
the reprogrammed source and report generation summarizes the changes.  All phases of LS/2000, with the exception of 
version integration and report generation, were implemented using TXL source transformations.

rule markupDateLessThanYYMMDD
   import DateFacts [repeat fact]

   replace $ [condition]
      LeftOperand [name] < RightOperand [name]

   deconstruct * DateFacts
      Date ( LeftOperand, “YYMMDD” )

   deconstruct * DateFacts
      Date ( RightOperand, “YYMMDD” )

   by
      {DATE-INEQUALITY-YYMMDD  
        LeftOperand < RightOperand  
      }DATE-INEQUALITY-YYMMDD

end rule

Figure 19.  Example LS/2000 Hot Spot Markup Rule.

Each hot spot markup rule searches for a particular pattern, in 
this case a condition using the operator “<”, which involves 
something classified by design analysis as interesting, in this 
case operands known to represent dates of type “YYMMDD”. 
Interesting instances of the pattern are marked up using hot 
spot brackets, in this case“{DATE-INEQUALITY-YYMMDD” 
and “}DATE-INEQUALITY-YYMMDD”.  “DateFacts” above 
refers to the Prolog source facts for the result of design 
analysis.    The deconstruct statements in the rule use source 
pattern matching to query the source facts for “Date” facts 
about the operands.  This rule has been simplified for 
presentation in this paper.  In practice hot spot markup rules 
are much more general than this one.



reprogramming templates based on a “windowing” solution to 
Year 2000.  Because the hot spot markup phase had explicated 
the kind of potential risk in the markup label of each hot spot, 
these templates could be applied very efficiently.  Figure 20 
shows an example of a TXL hot spot transform rule for 
reprogramming one kind of Year 2000 hot spot.

The ideas behind LS/2000 have been generalized and 
codified in the LS/AMT automated maintenance system 
discussed in [13].  By customizing the hot spot markup and 
transform phases to a range of other large scale software 
maintenance problems, LS/AMT has already been used to 
process more and one and a half billion lines of additional code 
in addressing problems such as IT mergers, database migrations, 
web migrations and other large scale maintenance tasks.

4. Summary

TXL is a general and flexible source transformation 
language and rapid prototyping system which has been used in a 
wide range of software engineering and maintenance 
applications.  This short paper has given a quick introduction to 
the flavor of TXL and our experience in its application to a 
range of software maintenance activities.  We observed that 
most automatable software engineering applications can be 
modeled as source to source transformations, and showed how 
TXL can be used to implement some of these models in practice.

TXL has been used in hundreds of projects in industry and 
academia all over the world, including several other software 
engineering applications such as implementation of the HSML 
design-directed source code mining system [13] and the reverse 
engineering facilities of the commercial Graphical Designer 
CASE tool [14].  With the move towards XML [15] based 
software representations such as GXL [16], we expect that 
source to source transformation will be playing an even greater 
role in software engineering in the future.

5. Related Work

The important role of transformation in software engineering 
has been pointed out by several other researchers.  Perhaps the 
most eloquent spokespersons for transformation in software 
engineering are Ira Baxter and Christopher Pidgeon of Semantic 
Designs, who have proposed a design-directed transformational 
model for the entire software life cycle [19].  Other source 
transformation tools have been used to implement software 
engineering tasks of various kinds.  Of particular note are Gentle 
[20], FermaT [21] and NewYacc [22], any of which could be 
used to implement most of the techniques described in this 
paper.  TXL is distinguished from these systems in its use of by-
example patterns and replacements, which simplify the 
specification of practical transformation tasks by shielding the 
user from direct manipulation of internal abstract structures.

rule transformLessThanYYMMDD
   replace $ [repeat statement]
       IF {DATE-INEQUALITY-YYMMDD
              LeftOperand [name] < RightOperand [name] 
          }DATE-INEQUALITY-YYMMDD
         ThenStatements [repeat statement]
         OptElse [opt else_clause]
       END-IF
       MoreStatements [repeat statement]

   construct RolledLeftOperand [name]
LeftOperand [appendName “-ROLLED”]

   construct RolledRightOperand [name]
RightOperand [appendName “-ROLLED”]

   by
       {TRANSFORM-INSERTED-CODE
       ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledLeftOperand 
       ADD LeftOperand ROLLDIFF-YYMMDD GIVING RolledRightOperand 
       }TRANSFORM-INSERTED-CODE
       IF {TRANSFORMED-DATE-INEQUALITY-YYMMDD
             RolledLeftOperand < RolledRightOperand
          }TRANSFORMED-DATE-INEQUALITY-YYMMDD
         ThenStatements
         OptElse
       END-IF
       MoreStatements

end rule

Figure 20.  Example LS/2000 Hot Spot Transform Rule.

Each hot spot transform rule implements the reprogramming template for a particular kind of hot spot.  In this case the 
rule searches for IF statements whose condition has been marked as DATE-INEQUALITY-YYMMDD.   When one is 
found, it is replaced by  a copy of the statement in which the inequality operands have been replaced by new operands 
whose value is computed by ADD statements inserted to implement the Year 2000 windowing computation.  A separate 
transformation rule later inserts declarations for the new operands.  This rule has been simplified for presentation in this 
paper.  In practice, most hot spot transform rules are much more general than this one, covering many cases in one rule.
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