
How is ATL Really Used? Language Feature Use in the ATL Zoo

Gehan M. K. Selim
McMaster University, Hamilton, ON, Canada

Cairo University, Cairo, Egypt
Email: selimg@mcmaster.ca

James R. Cordy
Queen’s University

Kingston, ON, Canada
Email: cordy@cs.queensu.ca

Juergen Dingel
Queen’s University

Kingston, ON, Canada
Email: dingel@cs.queensu.ca

Abstract—Studies of code repositories have long been used to

understand the use of programming languages and to provide

insight into how they should evolve. Such studies can highlight

features that are rarely used and can safely be removed to

simplify the language. Conversely, combinations of features

that are frequently used together can be identified and possibly

replaced with new features to improve the user experience.

Unfortunately, this kind of research has not been as popular

in Model Driven Development (MDD). More specifically, using

repositories of model transformations (in any language) to

understand how the features of these languages are used has

not been investigated much, despite its potential benefits. In

this paper, we study the use of the ATL model transformation

language in an ATL transformation repository. We identify

three research questions aimed at providing insight into how

ATL’s features are actually used. Using the TXL source trans-

formation language, we implement a parser-based analyzer to

extract information from the ATL Zoo. We use this information

to answer these research questions and provide additional

observations based on manual inspection of ATL artifacts.

Index Terms—Model transformations, MDD, ATL, TXL

1. Introduction

To deal with the increasing complexity of software and
its development, Model Driven Development (MDD) has
been proposed as an alternative to code-centric software
development. MDD is a software development methodol-
ogy where models (i.e., software abstractions) constitute
the main artifact of the software development process, and
model transformations are the programs that are used to map
between different models and from models to code.

While research interest in MDD has increased, some
MDD aspects are less commonly investigated despite their
potential benefits. For example, thousands of empirical stud-
ies on the use of programming languages have been con-
ducted, and they are commonly used to provide insight into
code-centric software development. By comparison, while
certainly some empirical analysis has been done on the use
of MDD, e.g., [1], [2], only a few studies [3], [4] have
targeted model transformations. In part this is due to the
limited availability of large model and model transformation
repositories, but not exclusively so. By contrast, many large
code repositories are publicly available, allowing extensive
empirical studies on programming languages and software

systems, e.g., [5], [6], [7], [8]. Our aim is to highlight the
importance of such studies for MDD in general and model
transformation in particular, by studying the use of transfor-
mation language features. Such studies help transformation
language developers to evolve languages by adding new
features, dropping obsolete features, and improving other
language artifacts (e.g., documentation and grammar).

To demonstrate the usefulness of such studies for trans-
formations, we investigate the use of features of the Atlas
model Transformation Language (ATL) [9], [10], a textual
model-to-model transformation language with imperative
and declarative constructs. We study an ATL model trans-
formation repository, the ATL Zoo [11], to understand how
language features are used. To do so, we build a parser-
based analyzer using the TXL source transformation lan-
guage [12], extract various features from the transformations
in the ATL Zoo, and discuss our findings. We choose ATL
as the subject of our study due to its wide use, its well
established community, and the public availability of an ATL
transformation repository (i.e., the ATL Zoo).

Our contribution in this study is a step towards under-
standing how ATL is actually used. We do so by structuring
our investigation around three main research questions:

RQ1: Which ATL features are used in the Zoo? This ques-
tion will help ATL developers identify how to evolve
ATL by keeping features that are heavily used and
deprecating ones that are rarely used.

RQ2: In which context are the ATL features used? Certain
ATL features are optional and can be used with
different constructs. Understanding where such fea-
tures are used will highlight whether some optional
language features are necessary or if they can be
deprecated to simplify the language.

RQ3: How often is the imperative subset of ATL used?
Many of the available model transformation verifi-
cation tools operate only on the declarative subset
of ATL, e.g., [13], [14], [15]. Identifying the fre-
quency of use of imperative ATL constructs will
help confirm whether there is a pressing need to
refactor popular imperative patterns to declarative
equivalents to enable verification using these tools.

This paper is organized as follows: Section 2 overviews
ATL’s features; Section 3 presents our data set (i.e., the
ATL Zoo) and the language used to analyze it (i.e., TXL);
Section 4 answers the three research questions by extracting

1 module modName;
2 create outM1:outMM1, ..., outMn:outMMn
3 [from|refining] inM1:inMM1, ..., inMm:inMMm ;

4 [uses libraryRef]*
5 [rulesAndHelpers]*

Listing 1. Syntax of a Module in ATL

features from the Zoo using TXL; Section 5 discusses
the threats to validity; Section 6 discusses additional ob-
servations; Section 7 surveys related work; and Section 8
concludes and presents future work.

2. The ATL Model Transformation Language

ATL specifications consist of units, which in turn contain
rules, to transform and create output model elements, and
helpers, which play a role similar to functions in program-
ming languages. ATL has both declarative and imperative
constructs, which can be mixed and matched depending
on the complexity of the transformation. The declarative
paradigm is preferable due to its simplicity and conciseness.
Imperative constructs support transformations that are too
complicated to implement in a purely declarative style. More
information on ATL can be found in [9], [10].

2.1. ATL Units

ATL has three kinds of units: modules, libraries, and
queries, each defined in a separate file. Modules can contain
both rules and helpers, whereas libraries and queries can
contain only helpers.

Modules: A module corresponds to an ATL transforma-
tion, and we use the two terms interchangeably in this study.
Thus, an ATL module generates output model elements
(conforming to some target metamodel) from input model
elements (conforming to some source metamodel).

A module has four sections: a header, an import section,
a set of helpers (if any), and (one or more) rules (Listing 1).
Line 1 defines the module’s name (modName). Lines 2-
3 define the output models to create (outMi), the target
metamodels to which the output models conform (outMMi),
the input models (inMj), and the source metamodels to
which the input models conform (inMMj). Line 3 also
defines the execution mode as either normal (denoted by
keyword from) or refining (denoted by refining). Normal
mode is intended for exogenous transformations (those with
different source and target metamodels) [16]. In this mode
output models only contain elements that are explicitly
created by transformation rules. Refining mode, by contrast,
is intended for endogenous transformations (those using the
same source and target metamodel) [16]. In this mode any
input model elements not matched by transformation rules
are automatically copied to the output model. Normal mode
can also be used to build endogenous transformations, but
any input model elements to be preserved must be explicitly
copied. We refer to modules that use the from and refining

keywords as regular and refining modules respectively.
The import section (line 4) of the module header speci-

fies the libraries to be imported and used in the module. Any
number of libraries can be imported using uses statements.

1 rule ruleName {
2 from inElem : inType [in modelin]? [(condition)]?

3 [using { localVariables }]?

4 to

5 outElem1 : outType1 [in modelout1]? (bindings1),
6 ...
7 outElemN : outTypeN [in modeloutN]? (bindingsN)

8 [do { imperativeStatements }]? }

Listing 2. Syntax of Matched Rules in ATL

A set of one or more rules (Section 2.2) and zero or
more helpers (Section 2.3) follows the import section.

Libraries: A library defines a set of helpers. A library
cannot be executed independently, but can be imported into
other units (modules, queries, and other libraries) that can
reuse the helpers in the library.

Queries: A query has an import section, a mandatory
query element, and optional helpers. A query element spec-
ifies a transformation from one (or more) input model(s) to
any OCL type, often a primitive data type such as a string
or boolean value. In the ATL Zoo [11], queries are mainly
used to implement transformations from input models to
code, XML, or other textual output documents.

2.2. ATL Rules

There are four kinds of rules in ATL: matched rules,
lazy rules, unique lazy rules, and called rules.

Matched Rules: These specify how an input model ele-
ment is transformed to one or more output model elements.
Matched rules have four sections: a source pattern, a target
pattern, a local variables section, and an imperative block.
Only the source and target patterns are mandatory; the local
variables and imperative block are optional [17]. The syntax
of matched rules is shown in Listing 2.

After declaring the rule’s name as ruleName (line 1),
the from keyword specifies a source pattern (line 2), which
consists of the type of element (inType) to match in the
input model (modelin), the variable to which the matched
element is bound (inElem), and a boolean condition or filter
on the matched element. The using keyword specifies the
local variables section (line 3), where variables that are local
to the rule are defined and initialized.

The to keyword specifies the target pattern (lines 4-7)
which consists of simple and/or iterative target pattern ele-
ments. Target pattern elements are output elements to create
when the source pattern is matched in the input. In Listing 2,
the target pattern contains N simple target pattern elements
(outElem1 . . . outElemN). Each simple target pattern element
has the type of element (outTypeI) to create in the output
model (modeloutI), the variable to which the created element
is bound (outElemI), and bindings (bindingsI) to initialize
the output elements from input elements and local variables.
While simple target pattern elements allow creating one out-
put element at a time, iterative target pattern elements allow
creating several elements of the same type at a time. While
still supported by ATL, iterative target pattern elements have
been deprecated since they break traceability links [17].

The do keyword specifies the imperative block (line 8)
and can be used to specify any additional computation to be

1 rule ruleName (parameters) {
2 [using { localVariables }]?

3 [to
4 outElem1 : outType1 [in modelout1]? (bindings1),
5 ...
6 outElemN : outTypeN [in modeloutN]? (bindingsN)]?

7 [do { imperativeStatements }]? }

Listing 3. Syntax of Called Rules in ATL

performed on the local variables or the target pattern using
ATL’s imperative constructs (Section 2.4).

Matched rules in a module are automatically executed
without being called. For practical reasons they are normally
executed in order, although this is not guaranteed.

For each matched rule, the input model is traversed
and for every element in the input that matches the source
pattern, a corresponding target pattern is produced in the
output (i.e., one cannot run a matched rule on selective
matching elements). Hence, a matched rule is executed only
once for any matching element in the input.

Lazy Rules: Unlike matched rules, lazy rules are rules
that are executed only when invoked for a specific matching
element in the input model (as opposed to being automati-
cally executed for all matches), and can be invoked multiple
times for that element. Their syntax is similar to matched
rules, but using the keywords lazy rule.

Unique Lazy Rules: Like lazy rules, these are executed
only when invoked for a specific matching element, and
can be invoked multiple times for that element. Unlike lazy
rules, which recompute the target element each time they
are invoked, unique lazy rules always return the same target
element for each matching element. Unique lazy rules are
declared using the keywords unique lazy rule.

Called Rules: These are used to create output elements
without matching a source pattern. They are the only rules
that can take parameters and can only be invoked in an im-
perative block. Called rules are executed only when invoked,
unlike matched rules which are automatically executed for
any matching input element. The syntax of called rules is
shown in Listing 3. Called rules do not have a source pattern;
they only have an optional local variable section (line 2), an
optional target pattern (lines 3-6), and an optional imperative
block (line 7). In other words, a called rule can have only a
target pattern or only an imperative block, with the option
of using local variables. The local variables section, target
patterns, and imperative blocks in called rules have the same
syntax and semantics as their equivalents in matched rules.

Two special cases of called rules are entrypoint and
endpoint called rules. While a module can have many called
rules, it can have a maximum of one entrypoint and one
endpoint called rules. As opposed to called rules, entrypoint
and endpoint called rules are implicitly invoked at the begin-
ning and end of the transformation execution, respectively.
Entrypoint and endpoint called rules are declared using
the keywords entrypoint and endpoint. To differentiate
between the three called rule types, we will refer to them
as regular, entrypoint, and endpoint called rules.
2.2.1. Rule Inheritance. ATL supports inheritance between
matched, lazy, and unique lazy rules, denoted by the key-

1 helper [context cType]? def : hName (params) : returnType
= declarativeExp;

Listing 4. Syntax of Functional Helpers in ATL

word extends, as in rule A extends B { . . . }. Rules inherit
from super-rules (e.g., B in the example), which can be
either abstract (denoted by the keyword abstract), which
means a non-executable placeholder whose sole purpose is
to be inherited from, or simply another executable rule. The
set of rules that inherit from one another form a hierarchy.
Rule inheritance works by first matching the super-rule, and
then matching the sub-rules on the input that was matched
by the super-rule. The deepest match in the inheritance
hierarchy is the rule applied. While original ATL allows
for only one extends clause per rule, EMFTVM [18] adds
support for multiple inheritance.

2.3. ATL Helpers

ATL has functional and attribute helpers. Functional
helpers are declarative methods which take parameters, have
return values, and can be invoked at any point in the module.
The syntax of functional helpers is shown in Listing 4.

A functional helper has a name (e.g., hName), param-
eters (e.g., params), a return type (e.g., returnType), a
context (i.e., the type of element from which this helper
can be called, e.g., cType), and its declarative body (e.g.,
declarativeExp). Since functional helpers take parameters,
their value can change in the same context based on the
parameters passed. Hence, functional helpers are reevaluated
each time they are called.

Attribute helpers are declarative attributes or functions
that do not take parameters, i.e., their values are constant
in a specific context. They are normally evaluated only the
first time they are invoked, but this is not guaranteed. The
syntax of attribute helpers is similar to that of functional
helpers, except that they do not take parameters. The main
use of attribute helpers in the ATL Zoo [11] is similar to the
use of global variables in programming languages. Attribute
helpers can be used to compute a global constant once to be
available to all transformation rules, or it can be used as a
global variable that can be updated (reassigned to) by rules.

2.4. Declarative Vs. Imperative ATL

In ATL, functional and attribute helpers are completely
declarative. Based on the ATL documentation [17], matched,
lazy, and unique lazy rules are considered declarative and
can optionally have an imperative block (denoted by the
keyword do). All called rule types (regular, entrypoint, and
endpoint) are considered imperative.

In this study, we only consider a rule to be imperative
if it has an imperative block, and can thus have global side
effects. Thus, we consider a regular called rule with a target
pattern and a local variables section to be declarative, since
it does not have an imperative block. Whereas a matched
rule with an imperative block is considered imperative.

ATL has declarative expressions that can be used in the
declarative body of helpers and rules. Declarative ATL ex-
pressions include if expressions, let expressions, constants,

Transformation scenarios 99
ATL files 288
ATL rules 3,213
Total LOC 82,100

TABLE 1. OVERVIEW OF THE CLEANED ATL ZOO DATA SET

Scenario size ATL files ATL rules LOC

Largest 20 203 4,909
Smallest 1 2 24
Average 3 32 829

TABLE 2. SIZE OF THE CLEANED ATL ZOO DATA SET

functional and attribute helper call expressions, operation
calls on ATL data types, and iterate expressions on col-
lection data types [17]. ATL also offers three imperative
statements that can be used in imperative blocks of all
rules: assignment statements, conditional if statements, and
for statements. Details on declarative and imperative ATL
constructs can be found in the ATL documentation [17].

3. Methodology

We discuss the data set used in this study (Section 3.1),
and the language used to analyze it (Section 3.2).

3.1. Data Set

We used the ATL Zoo [11] to analyze the usage of ATL’s
features. The ATL Zoo is an ATL repository containing
103 transformation scenarios. A scenario can contain one
or more modules (i.e., transformations, Section 2.1), their
source and target metamodels, sample input and output mod-
els, and optional queries and libraries. Thus, some scenarios
contain the files pertaining to one transformation, while
others contain the files of transformation chains or versions
of the same transformation. We refer to the transformation
scenarios by their names as they appear in the ATL Zoo [11].

Data Cleaning. After manually inspecting the scenarios
in the Zoo, we identified some necessary data cleaning steps.

Removing Duplicates: The CatalogueModelTransfor-
mations scenario consists only of duplicates of 14 other
existing scenarios. Thus, this scenario was deleted from our
data set. Further, the UML2MOF and MOF2UML scenarios
both consist of the same two transformations: a transfor-
mation from MOF to UML, and its inverse. Thus, in the
MOF2UML scenario we only kept the transformation from
MOF to UML, and the inverse transformation was deleted.
Similarly, in the UML2MOF scenario we only kept the
transformation from UML to MOF.

Syntax Errors: The KM32CONFATL scenario has syntax
errors that prevent it from being parsed by the system we
use for analysis (i.e., TXL, Section 3.2). In particular, it uses
the ATL keyword uses as a variable name. We renamed the
variable to ‘uses ’ to resolve the error.

Non-existent Files: Two scenarios in the Zoo, Open-
BlueLab2UML and SimplePDL2Tina, are empty. Further, the
QVT2ATLVM scenario has no ATL files; it consists only
of an Ant script that runs a compiled transformation file.
Since our analysis processes ATL source units only, these
scenarios were removed from our data set.

1 define module
2 ’module [identifier] ; [NL]
3 ’create [list oclModel+] [refining_or_from]
4 [list oclModel+] ;
5 [libraryRef*]
6 [moduleElement*]
7 end define

8 define refining_or_from
9 ’refining | ’from

10 end define

11 define moduleElement
12 [attributeHelper] | [functionalHelper] | [rule_]
13 end define

Listing 5. A snippet of the TXL grammar for ATL [20] showing the syntax
of ATL modules

Overview of the Cleaned Data Set: Tables 1 and 2
summarize the final, cleaned data set. As Table 1 shows,
the data set has 99 scenarios, comprising 288 ‘.atl’ files with
3,213 rules and 82,100 pretty-printed lines of code (LOC).
Table 2 shows the size range of the scenarios, where size
is measured in number of files, number of rules, and LOC.
As Table 2 shows, the scenarios in the cleaned ATL Zoo
vary from one to 20 files, with an average of three files. The
scenarios range in size from two rules (comprising 24 LOC)
to 203 rules (4,909 LOC), with an average of 32 rules (829
LOC) per scenario. We use this cleaned ATL Zoo (available
at [19]) to analyze the usage of ATL’s features in Section 4.

3.2. Feature Extraction Using TXL

Our analysis is based on a precise ATL parser imple-
mented in the TXL source transformation language [12].
The parser is based on an ATL grammar adapted for
TXL [20] from the Eclipse ATL syntax [21]. Listing 5
shows a snippet of the ATL grammar adapted for TXL,
demonstrating the syntax of modules. We verified that the
grammar and the ATL Zoo are consistent by ensuring that
all 288 files in the 99 scenarios of the Zoo parse correctly
using the grammar.

Our ATL analyzer uses the parser to perform feature
extraction on two levels. At the first level, we extract high
level ATL features, such as the frequency of using different
constructs (e.g., different rule and helper types), deprecated
constructs (e.g., iterative target patterns), assignments, and
inheritance. At the second level, we use cascaded feature
extraction to extract more detailed information from the
high level ATL features extracted at the first level. List-
ing 6 shows a snippet of the multi-level feature extraction
performed by our analyzer. Lines 2-3 show how we perform
feature extraction at the first level by, for example, extracting
all regular called rules (denoted by RegCallRules) from the
ATL program (denoted by P). The TXL extract function [ˆ]
extracts a list of all of the instances of the target nonterminal
type (in this case [calledRule]) in the parameter parse (in
this case the ATL program P). Lines 4-5 count the number
of extracted regular called rules (NumRegCallRules), using
the TXL [length] function to count the number of items in
the extracted list. The remainder of Listing 6 shows how we
perform feature extraction at the second level. For example,
lines 7-8 extract the local variables sections (denoted by

1 % Extract & Count Regular Called Rules

2 construct RegCallRules [calledRule*]
3 _ [ˆ P]
4 construct NumRegCallRules [number]
5 _ [length RegCallRules] [putp "NumRegCallRules"]

6 % Extract & Count Using Clauses in Called Rules

7 construct UsingRegCallRules [using_clause*]
8 _ [ˆ RegCallRules]
9 construct NumUsingRegCallRules [number]

10 _[length UsingRegCallRules][putp"NumUsingRegCallRules"]

11 % Extract & Count Target Patterns in Called Rules

12 construct ToRegCallRules [outPattern*]
13 _ [ˆ RegCallRules]
14 construct NumToRegCallRules [number]
15 _ [length ToRegCallRules][putp "NumToRegCallRules"]

16 % Extract & Count Imperative Blocks in Called Rules

17 construct DoRegCallRules [actionBlock*]
18 _ [ˆ RegCallRules]
19 construct NumDoRegCallRules [number]
20 _ [length DoRegCallRules][putp "NumDoRegCallRules"]

Listing 6. A snippet of our TXL analyzer using the ATL grammar

UsingRegCallRules) from the list of regular called rules ex-
tracted at the first level. Lines 9-10 then count the number of
extracted local variables sections (using clauses) in regular
called rules (NumUsingRegCallRules). Similarly, lines 12-15
extract and count the number of target patterns, and lines 17-
20 the number of imperative blocks, in regular called rules.
Due to space limitations, we do not show more complicated
TXL functions used to extract more detailed features such
as the number of functional helpers using attribute helpers
that are reassigned.

4. Analysis

We explore the research questions introduced in Sec-
tion 1 by executing our TXL-based ATL analyzer on the
99 scenarios in our cleaned data set. Fig. 1 summarizes
our analysis of the use of different ATL features at two
levels. At the first level, Fig. 1 shows the percentage of
modules, libraries, and queries that contain at least one
instance of each feature on the y-axis. Since all features
in Fig. 1 (except for library imports, and functional and
attribute helpers) can only occur in modules, Fig. 1 shows
the percentage of the 225 modules in the Zoo that have
at least one instance of these features. Library imports and
functional and attribute helpers can occur in all ATL units,
according to ATL’s grammar [21]. Thus, Fig. 1 shows the
percentage of modules, libraries, and queries that have at
least one instance of each of these three features. At the
second level, Fig. 1 shows the percentage of the 99 scenarios
that have at least one instance of each of the features.

RQ1. Which ATL features are used in the ATL Zoo?
ATL Units: Fig. 2 shows the classification of the 288

files based on their ATL unit type. Only 5.6% of the files
(16 files) are queries, 16% (47 files) are libraries, and 78%
(225 files) are modules. Regular modules using the from

keyword comprise 70% (202) of the files, while 8.0% (23
files) are refining modules that use the refining keyword.
Thus, the majority of the ATL units are modules (i.e., trans-
formations), with regular modules being the most widely
used in the Zoo. Queries are the least used ATL units.

95.56

20.89

7.11

13.33

8.00

1.78

25.33

59.11

46.22

25.33

100.00

20.00

100.00

12.00

4.44

4.44

14.22

8.44

15.11

10.67

0.00

8.51

100.00

38.30

12.50

93.75

98.99

26.26

9.09

19.19

9.09

3.03

36.36

77.78

62.63

36.36

100.00

23.23

100.00

22.22

8.08

8.08

17.17

11.11

18.18

16.16

0.00

0 20 40 60 80 100

Matched Rules

Lazy Rules

Unq Lazy Rules

Regular Called Rules

Entrypoint Called Rules

EndpointCalled Rules

Library Imports

Functional Helpers

Attribute Helpers

Local Variables Section

Target Pattern

Imperative Blocks

Simple Target Pattern Elements

IterativeTarget Pattern Elements

Abstract Rules

Rules That Extend Other Rules

If Statements

For Statements

Assignment Statemments

Assignments to Att. Helpers

Func. Helpers containing Att. Helpers
used in Assignments

% Transformation
Scenarios (99)
% Queries (16)

% Libraries (47)

% Modules (225)

Figure 1. Percentage of modules, libraries, queries, and scenarios (x-axis)
that have atleast one instance of different ATL features (y-axis)

We further categorize the 225 modules as endogenous,
exogenous, or both. Endogenous modules are transforma-
tions between models that conform to the same metamodel,
i.e., the source and target metamodels are identical [16].
Endogenous transformations can be either refining modules
(i.e., modules that use the refining keyword) or regular
modules (i.e., modules that use the from keyword) that
manipulate the same source and target metamodels. Ex-
ogenous modules are regular modules or transformations
between models that conform to different source and target
metamodels [16]. In this study, we identify a third type
of modules; those that are simultaneously endogenous and
exogenous. The ATL Zoo has endogenous, refining modules
that have one or more output models conforming to the
source metamodel, as well as one or more output mod-
els that conform to a different metamodel. Based on our
correspondence with AtlanMod’s team, it is clear that the
ATL semantics allows for endogenous, refining modules

47, 16.32%

16, 5.56% 202,
70.14%

23, 7.99%

225, 78.13%

Libraries

Queries

Regular Modules

Refining Modules

Figure 2. Classification of the 288 ATL Zoo files by ATL unit type

with additional side-effect output models that conform to
a metamodel other than the source metamodel. As shown in
Fig. 3, 82% of the modules (184 files) are exogenous and
17% of the modules (39 files) are endogenous. Thus, most
transformations in the Zoo are exogenous, i.e., regular mod-
ules that use different source and target metamodels. Only
two modules (0.89%) are both endogenous and exogenous,
and exist in one scenario (ATL2Tracer).

Summary: The majority (70%) of the units in the Zoo
are regular modules and a minority (5.6%) are queries. The
majority of modules (82%) are exogenous.

ATL Rules: The 225 modules contain a total of 3,213
rules of all types. As shown in Fig. 4, most (87%) of the
rules in the Zoo are matched rules, with other rule types used
much less frequently. Lazy rules are the second most widely
used (4.8%), followed by called rules (4.6%), and unique
lazy rules (3.7%). Regular called rules are the most widely
used called rules (comprising 3.9% of all rules), followed
by entrypoint (0.56%), and endpoint called rules (0.12%).

Since modules are the only units that can contain rules,
we investigate how widespread the use of each rule type is
by extracting them from the 225 modules, while ignoring
libraries and queries. As shown in Fig. 1, the majority (96%)
of the 225 modules have at least one matched rule, making
them the most widespread rule type in the Zoo. Other rule
types are used much less commonly. Lazy rules are the
second most widely used rule type, with 21% of the 225
modules having at least one lazy rule. Regular called rules
follow, where 13% of the 225 modules have at least one
regular called rule. Less than 10% of the modules have at
least one entrypoint called rule, unique lazy rule, or endpoint
called rule. Endpoint called rules are the least used rules,
appearing in only 1.8% of modules.

Fig. 1 also shows the percentage of the 99 scenarios
that have at least one instance of each rule type, showing a
similar trend to modules. Most scenarios (99%) have at least
one matched rule. Lazy rules are the second most widely
used in scenarios (26%), followed by regular called rules
(19%), entrypoint called rules (9.1%), unique lazy rules
(9.1%), and endpoint called rules (3.0%).

Summary: The majority (87%) of rules in the Zoo are
matched rules and the minority (0.12%) are endpoint called
rules. Matched rules are also the most widespread rule
type in both modules and scenarios, with over 95% of each
having at least one matched rule. Endpoint called rules are
the least widespread, with less than 4%.

Helpers and Library Imports: Since functional helpers,
attribute helpers, and library imports can occur in all ATL

2, 0.89%
39, 17.33%

184, 81.78%

Endo/Exogenous
Endogenous
Exogenous

Figure 3. Classification of the 225 ATL Zoo modules as endogenous,
exogenous, or both

2794,
86.96%

154, 4.79%
118, 3.67%

125,
3.89%

18, 0.56%

4, 0.12%

147, 4.58%

Matched Rules

Lazy Rules

Unique Lazy Rules

Regular Called Rules

Entrypoint Called Rules

Endpoint Called Rules

Figure 4. Classification of the 3,213 rules in the Zoo based on their type

units, we extract these three features from modules, libraries,
and queries. The 288 ATL units (i.e., modules, libraries,
and queries) in the Zoo contain a total of 1,876 functional
helpers, 595 attribute helpers, and 86 library imports.

As Fig. 1 shows, a large percentage of modules (59%),
libraries (100%), and queries (94%) contain at least one
functional helper. A smaller percentage of modules (46%)
and libraries (38%) contain at least one attribute helper,
whereas none of the queries contain an attribute helper. An
even smaller percentage of modules (25%), libraries (8.5%),
and queries (13%) import at least one library. Fig. 1 shows a
similar trend at the level of transformation scenarios, where
78% of the scenarios have at least one functional helper,
63% of the scenarios have at least one attribute helper, and
only 36% of the scenarios import at least one library. The
high usage of functional helpers indicates that developers
often adopt good development practices, such as modular-
izing their transformations, to improve maintainability and
promote code reuse.

Summary: Functional helpers are more widespread
across all units and scenarios than attribute helpers,
whereas library imports are rarely used in the ATL Zoo.

RQ2. In which context are the ATL features used?
Many ATL features can be used with any rule type.

These features include optional rule sections (i.e., local
variables section, target pattern, imperative block), kinds
of target pattern elements (i.e., simple and iterative), and
inheritance features (i.e., abstract rules and rules that extend
other rules). We use Fig. 5 to identify the percentage of rules
of each rule type that use these features.

Optional Rule Sections: Fig. 5 shows the percentage of
each rule type that has a local variables section, a target
pattern, and an imperative block. We do not count the
percentage of rules that have a source pattern, since source
patterns are mandatory in three rule types (matched, lazy,
and unique lazy rules), and are not present in three rule
types (regular, entrypoint, and endpoint called rules).

2.51

99.89

4.90

99.86

1.57 0.82 2.86
7.14

100.00

8.44

100.00

0
0 00

100.00

0

100.00

0 0.85 0.854.00

92.00

77.60

92.00

0 0 0

44.44

83.33
88.89

83.33

0
0

00

25.00

75.00

25.00

0 0 0
0

10

20

30

40

50

60

70

80

90

100

Local Variables Section Target Pattern Imperative Block Simple Target Pattern
Elements

Iterative Target Pattern
Elements

Abstract Rules Rules That Extend Other
Rules

% Matched Rules (2794)

% Lazy Rules (154)

% Unique Lazy Rules (118)

% Regular Called Rules (125)

% Entrypoint Called Rules (18)

% Endpoint Called Rules (4)

Figure 5. Percentage of each rule type (y-axis) that uses different ATL features (x-axis). Each rule type in the legend is followed by the number of rules
of that type in the Zoo.

As shown in Fig 5, 44% of entrypoint called rules (8 of
18) have a local variables section. The five other rule types
rarely use a local variables section. Only 7.1% of lazy rules
(11 of 154), 4.0% of regular called rules (5 of 125), and
2.5% of matched rules (70 of 2,794) have a local variables
section. None of the unique lazy rules or endpoint called
rules in the Zoo have a local variables section.

With respect to target patterns, almost all lazy rules
(100%), unique lazy rules (100%), and matched rules
(99.9%) in the Zoo have target patterns (Fig. 5). A large
percentage of the regular (92%) and entrypoint called rules
(83%) have a target pattern, while only 25% of endpoint
called rules have a target pattern.

Imperative blocks are rarely used in matched (4.9%) and
lazy rules (8.4%), and are not used at all in unique lazy rules.
Most of the regular (78%), entrypoint (89%), and endpoint
called rules (75%) use imperative blocks. Given that im-
perative blocks are mainly found in the called rule types
(i.e., regular/entrypoint/endpoint called rules), this finding is
consistent with the ATL documentation [17] which considers
all called rule types to be imperative, while matched, lazy,
and unique lazy rules are considered declarative.

Fig. 1 shows that all (100%) 225 modules and 99
scenarios in the Zoo have at least one target pattern. This is
not surprising since, as previously stated, target patterns are
mandatory in three rule types according to ATL’s documen-
tation [17]. Local variables and imperative blocks are used in
a smaller percentage of modules and scenarios. Specifically,
25% of the modules and 36% of the scenarios have at least
one local variables section. Similarly, 20% of the modules
and 23% of the scenarios have at least one imperative block.

Summary: While local variables are used in 44% of
entrypoint called rules, they are rarely used in other rule
types. For rules in which target patterns are optional, most
actually have target patterns, except endpoint called rules,
where only 25% have target patterns. Imperative blocks are
used in over 75% of all called rules, but are rarely used in
matched, lazy, and unique lazy rules.

Target Pattern Elements: Target patterns in rules can
have any number of simple or iterative target pattern ele-
ments. Iterative target pattern elements, which are allowed
only in matched rules, have been deprecated. Fig. 5 shows

the percentage of each rule type that has at least one simple
or one iterative target pattern element in their target patterns.
Almost all matched (99.9%), lazy (100%), and unique lazy
rules (100%) have at least one simple target pattern element.
The majority of regular called rules (92%) and entrypoint
called rules (83%) have at least one simple target pattern
element. Only 25% of endpoint called rules have at least
one simple target pattern.

Although iterative target patterns have been deprecated,
we found 121 of these elements. Specifically, 1.6% of
matched rules (44 of 2,794) have at least one iterative target
pattern element.

With respect to how widespread the use of target pattern
elements is, Fig. 1 shows that all 225 modules and 99
scenarios have at least one simple target pattern element,
while only 12% of the modules and 22% of the scenarios
have at least one iterative target pattern element. The use
of the deprecated iterative target pattern elements can be
avoided by explicitly not supporting them in ATL.

Summary: Simple target pattern elements are highly
used in all rule types, except for endpoint called rules (25%).
While iterative target patterns have been deprecated, they
are still used in 1.6% of matched rules in the Zoo.

Inheritance Features: According to the ATL gram-
mar [20], [21], regular, entrypoint, and endpoint called
rules do not support inheritance (i.e., use the abstract and
extends keywords). Thus, Fig. 5 shows that 0% of these
rules abstract or extend other rules. For the remaining rule
types, Fig. 5 shows that less than 3% of the matched and
unique lazy rules in the Zoo use inheritance, while none of
the lazy rules use inheritance.

Fig. 1 shows that inheritance is rarely used in the Zoo,
with only 4.4% of the 225 modules and 8.1% of the 99
scenarios containing at least one abstract or extended rule.
This could be for many reasons, e.g., transformations in the
Zoo may not require the use of inheritance or, it could be
that object-oriented concepts are still not widely adopted in
the model transformation community.

Summary: Inheritance is rarely used in the Zoo; less
than 3% of matched and unique lazy rules use inheritance.

RQ3. How often is the imperative subset of ATL used?

As mentioned in Section 1, this question is of interest
since many verification tools operate only on the declarative
subsets of transformation languages [13], [14], [15], [22],
[23]. This is mainly due to the complexity of verifying im-
perative languages in general. Thus, answering this question
can enable us to identify how pressing the need is to develop
verification tools that can manipulate imperative ATL code,
or to devise methods to automatically refactor imperative
ATL to its declarative equivalents to facilitate verification.

In this paper, we consider a rule to be imperative only
if it has an imperative block, where an imperative block
can have three imperative constructs: if, for, and assignment
statements (Section 2.4). As shown in Fig. 1, 20% of the
225 modules (45 modules) and 23% of the 99 scenarios (23
scenarios) have at least one imperative block.

With respect to imperative constructs, Fig. 1 shows
that assignments are the most widely used, where 15% of
the modules and 18% of the scenarios have at least one
assignment. if statements follow, where 14% of the modules
and 17% of the scenarios have at least one if statement. for

statements are the least used in the Zoo, where 8.4% of
modules and 11% of scenarios have at least one for.

We also identified how often functional helpers use
attribute helpers that are reassigned to in assignment state-
ments. In Section 2.3 we saw that the main use of attribute
helpers in the Zoo is similar to the use of global vari-
ables, where they can be reassigned to by any rule. While
functional helpers are declarative (Section 2.4), they can no
longer be considered as such if their code uses reassigned
attribute helpers, because they could return a different output
for the same input, depending on the current value of the
attribute helper. Since nothing in ATL prevents functional
helpers from using attribute helpers that are reassigned to,
we are interested in whether developers use this practice. As
Fig. 1 shows, while 11% of modules and 16% of scenarios
have at least one assignment to an attribute helper, none
of the modules (and hence, scenarios) contain functional
helpers that use attribute helpers that are reassigned.

Summary: Less than 24% of the modules and scenarios
are considered imperative, i.e., have at least one imperative
block. Assignments are the most widely used imperative
constructs, followed by if and for statements. Further, 11%
of the modules and 16% of the scenarios use attribute
helpers as global variables that are reassigned to by trans-
formation rules. However, none of the functional helpers
in the modules (and hence, scenarios) use such attribute
helpers, which reflects the desire of ATL developers to keep
their functional helpers truly declarative.

5. Threats To Validity

We identify four threats to the validity of our study. First,
due to its broad range of applications and public availability,
we conducted our study on the ATL Zoo. While the transfor-
mations in the Zoo vary widely in size and purpose (Tables 1
and 2), many of these transformations are notably old which
might affect why, for example, deprecated iterative patterns
where still used in these transformations. The Zoo is also

not intended to be a repository of ATL practice, rather
a demonstrative catalogue of example applications. Thus,
we cannot say if the transformations in the Zoo are truly
representative of current, typical use of ATL in industry
or academia. This is a general problem for empirical work
and can be solved either by the creation of an open source
repository similar to those available for many programming
languages, or by obtaining a more representative set of
ATL transformations, for instance, by querying ATL projects
from repositories such as GitHub. Second, we manually
identified and removed duplicate scenarios and units from
the Zoo. Since this step was not automated, it is possible that
some duplicates were missed. Third, we classified modules
as endogenous or exogenous based only on the names of
the source and target metamodels. Later manual inspection
indicated that in some cases, the target metamodel is simply
a renamed version of the source, so perhaps these transfor-
mations should be categorized as endogenous rather than
exongenous. Finally, our study is syntactic, analyzing only
the elements of ATL files. Combining it with a semantic or
intentional analysis such as [24] might yield deeper insights.

6. Discussion

Based on our experience with ATL and on the findings of
this study, we discuss some high level findings that show ev-
idence of the wide applicability of ATL to different problems
(Section 6.1). Then, we discuss points that we believe can
enhance the experience of ATL users based on our manual
inspection of ATL’s artifacts, e.g., ATL’s grammar and the
documentation of the scenarios (Sections 6.2 and 6.3).

6.1. Applicability of ATL

In addition to being used to develop model-to-model
(M2M) transformations, ATL has been used in several sce-
narios to implement transformations that involve text as
input or output. For example, the scenario MicrosoftOffice-
ExcelExtractor uses a query to implement a model-to-text
(M2T) transformation from Excel XML models to Excel
XML textual files that can be manipulated by Microsoft
Excel. In fact, we found that the main use of queries in
the Zoo is to implement M2T transformations that generate
textual files (e.g., code or XML files) from models, as
opposed to generating a single value. For text-to-model
(T2M) transformations, some scenarios implemented them
using programs in other languages, and then manipulated the
output model using an ATL transformation. For example, the
scenario PathExp2PetriNet uses a TCS (Textual Concrete
Syntax) program to transform a textual path expression
into an equivalent path expression model conforming to
the TextualPathExp metamodel. The output path expression
model is then transformed into a Petri net model using ATL.

We also found scenarios that chain several modules
and/or queries to achieve a certain goal. For example,
the scenario MySQL2KM3 chains three modules; the first
preprocesses XML models by removing empty elements,
the second transforms the preprocessed XML models to
MySQL models, and the third transforms MySQL models

to KM3 models. Some of the chains we found to be non-
linear, i.e., the output of one transformation was used as the
input to several transformations, or the outputs of several
transformations were used as the inputs to one transfor-
mation. The scenario MeasuringModelRepositories is one
such non-linear transformation chain. The scenario contains
a transformation that generates a table model containing
measurement information of KM3 models, followed by three
transformations that convert the table model into models
representing different visual formats (i.e., SVG bar charts,
SVG pie charts, and tabular HTML forms). After manually
inspecting the scenarios and their documentation, we found
that 44 scenarios out of the 99 are transformation chains.
We only consider a scenario to be a transformation chain if
it chains ATL modules or queries. However, if a scenario
chains an ATL module with a plugin or a program in
another language, we do not consider it a chain in this study.
Moreover, 19 scenarios had several implementations of the
same transformation. These scenarios were not considered
transformation chains, since their constituent transforma-
tions are not meant to be executed sequentially.

Bidirectional transformation languages facilitate build-
ing transformations that can be executed in two directions;
from the input to the output, and vice versa [16]. ATL is
not inherently bidirectional, unlike triple graph grammars for
example [25]. Nevertheless, ATL has been used to manually
implement five bidirectional scenarios in the Zoo, i.e., these
scenarios had two transformations (or transformation chains)
to transform an input to an output, and vice versa. For ex-
ample, the scenario PathExp2Petrinet has six modules; three
are a forward transformation chain from textual definitions
of path expressions to their equivalent XML representation
of Petri nets, and three are the reverse transformation chain.

As shown in our previous discussion, ATL is a versatile
language and has been used to solve different transformation
problems. While originally designed to be a unidirectional
M2M transformation language, the scenarios in the Zoo have
used ATL to develop bidirectional transformations as well
as M2T or T2M transformations. Further, the language has
been used to solve complex transformation problems, that
span many intents, by chaining transformations together.

6.2. Consistency of Documentation and Grammar

After inspecting ATL’s documentation [17] and gram-
mar [21], we identified two inconsistencies between the ar-
tifacts. First, according to ATL’s documentation [17], source
and target patterns are mandatory in matched rules, while the
local variables section and the imperative block are optional.
Lazy and unique lazy rules are similar, but with the addition
of the keywords lazy rule or unique lazy rule to the rule’s
declaration. However, according to ATL’s grammar [21], the
target pattern is optional. Listing 7 shows a snippet of the
Eclipse ATL grammar [21], showing the syntax of the three
rule types, where they all appear to have an optional target
pattern (denoted by ‘outPattern?’). We observed in Section 4
(Fig. 5) that while 99.9% of the matched rules have target
patterns, not all of them do, confirming that target patterns
are optional in the ATL implementation.

1 matchedRule ::=
2 lazyMatchedRule | matchedRule_abstractContents;

3 lazyMatchedRule ::=
4 ’unique’? ’lazy’ ’abstract’? ’refining’?
5 ’rule’ IDENTIFIER (’extends’ IDENTIFIER)?
6 ’{’ inPattern
7 (’using’ ’{’ ruleVariableDeclaration* ’}’)?
8 outPattern? actionBlock?
9 ’}’;

10 matchedRule_abstractContents ::=
11 ’nodefault’? ’abstract’? ’refining’?
12 ’rule’ IDENTIFIER (’extends’ IDENTIFIER)?
13 ’{’ inPattern
14 (’using’ ’{’ ruleVariableDeclaration* ’}’)?
15 outPattern? actionBlock?
16 ’}’;

Listing 7. A snippet of the Eclipse ATL grammar showing the syntax of
three rule types, where the target pattern appears optional (denoted by ‘?’)

Second, the ATL documentation states that current ATL
supports the definition of attribute helpers in modules and
queries, but not in libraries [17]. However, the ATL gram-
mar [21] allows attribute helpers in all units (including
libraries), and in Section 4 (Fig. 1) we observed that 38%
of Zoo libraries contain at least one attribute helper.

While keeping the artifacts of a language (e.g., documen-
tation and grammar) consistent over time is not easy, doing
so is crucial to ensure that users can take full advantage
of the language features. Updating ATL’s documentation to
address these inconsistencies will enable more users to take
full advantage of the capabilities of ATL.

6.3. Features that Require Clarification

We found two aspects that we believe require clarifi-
cation in the ATL documentation. In Section 4, we dis-
cussed that modules can be simultaneously endogenous and
exogenous, i.e., ATL allows endogenous, refining modules,
with output models conforming to the source metamodel, to
additionally have side-effect output models that conform to a
different metamodel. We found this feature to be confusing.
The ATL documentation [17] says, “Obviously, refining
mode may only be used for endogenous transformations, i.e.
when source and target model share the same metamodel.”.
The fact that ATL supports simultaneously endogenous-
exogenous transformations is a significant advantage for
some transformation problems. However, only two modules
(in the same scenario) in the Zoo actually use this feature,
since it does not appear in the documentation and thus
developers are not aware of it. This feature needs to be
documented so that developers can take full advantage of it.

Another aspect that seems to require clarification is the
difference between declarative and imperative rule types.
The ATL documentation [17] says that matched, lazy, and
unique lazy rules are declarative, and that regular, entry-
point, and endpoint called rules are imperative. In Section 4
(Fig. 5), imperative blocks were mainly found in regular,
entrypoint, and endpoint called rules, consistent with the
documentation. However, while unique lazy rules had no
imperative blocks, a small percentage of both matched and
lazy rules were actually found to contain imperative blocks.
Thus, since ATL allows matched/lazy/unique lazy rules to

have imperative blocks, categorizing these rule types as
declarative in general is confusing to the user.

7. Related Work

Czarnecki and Helsen [26], [27] have proposed design
aspects for transformation languages (e.g., rule scoping,
directionality), and both Jouault [28] and Huber [29] have
evaluated ATL with respect to these aspects. Koch [30] pro-
posed similar design aspects for transformation approaches
relevant to UML-based web engineering.

To the best of our knowledge, transformation language
features have been studied only a couple of times. Tairas
and Cabot [31] describe an Eclipse-based framework for
analyzing domain-specific languages for feature occurrence,
co-occurrence, and clone detection, which they have used to
gather statistics on the use of features in the ATL Zoo. While
the quantitative analysis is somewhat similar to our own,
our work adds a qualitative analysis of the results, a more
refined in-context analysis of features rather than simple co-
occurrence, and a deeper analysis of the use of imperative
and declarative features to enable verification. While they
process only modules, we analyze all ATL units, including
libraries and queries, by processing the original ATL source
rather than its EMF representation. We also analyze feature
use at a higher level, comparing entire scenarios. Finally, we
document our data cleaning steps and publish the cleaned
data set [19] to allow replication of our study. Kusel et al. [3]
also employ the Zoo to determine how frequently different
reuse mechanisms are used in ATL. They find that functions
are the most frequently used mechanism, followed by rule
inheritance, transformation orchestration and higher-order
transformations. Our work is also concerned with syntactic
features directly supporting reuse (functions, inheritance)
with similar results. However, we do not consider ‘higher-
level’ reuse mechanisms (e.g., higher-order transformations,
transformation product lines), while [3] ignores features
not related to reuse. The work in [4] counts the use of
transformation patterns as identified in [32] in ATL, QVT-R,
and UML-RSDS transformations found in the literature. In
contrast to our work, language features are not considered.

Programming languages on the other hand have been
the subject of empirical studies of feature use much more
frequently. Several studies have analyzed and compared the
design of different programming languages [6], [7], [8],
and Uesbeck et al. [5] have surveyed empirical studies of
programming languages. Callaú et al. [33] analyzed the use
of dynamic features in Smalltalk, concluding that less than
2% of Smalltalk methods use dynamic features, and that the
two most popular are already supported in static languages.

Dyer et al. [34] examined the use of 18 Java features
in over 31,000 open source projects. They found that some
features were heavily used while others are rarely adopted,
e.g., in many cases new features could have been used, but
were not. Parnin et al. [35] used 40 open source Java projects
to investigate how readily new features such as generics
are adopted, which factors hamper adoption, and whether
the claimed benefits were realized, concluding that such

features are only rarely adopted into existing code. Kim et
al. [36] used 20 open source C# projects to extend the work
in [35] to investigate how readily generics are used in C#
in comparison to Java, with similar conclusions.

The use of build systems has also been studied. Martin
et al. [37] investigated how GNU Make features are used in
over 6,000 hand-written and automatically generated Make
files. They found that only the core features of Make are
necessary, that hand-written scripts are more likely to use ad-
vanced features, and that automatically generated Make files
are more likely to depend on undesirable/obsolete features.
Zadok [38] studied the complexity of build processes that
use conditional compilation and special-purpose macros.

Analysis of programming languages and systems has
been used to better understand how developers use lan-
guage features and thus inform language evolution. This
preliminary study is aimed at providing similar insights for
model transformation languages, beginning with ATL. We
hope that this first step will help kindle a broader interest in
empirical analysis of modelling and model transformation
languages, to provide better guidance for their evolution.

8. Conclusion and Future Work

We have investigated the use of various ATL features to
better understand how is ATL used and to identify aspects
that can help evolve the language. To do so, we formulated
three research questions that cover several aspects about the
use of ATL. Then, we developed an ATL parser using TXL,
and we ran the parser on a preprocessed version of the ATL
Zoo. Our results revealed several interesting findings with
respect to the popularity of different features, the context
in which the features are used, and how widespread the
use of the imperative subset of ATL is. We also discussed
additional observations based on our manual inspection of
the Zoo, ATL documentation, and ATL grammar.

We identify six lines of future work. First, adding in-
dustrial transformations in our study is crucial to be able
to generalize our findings. Second, it would be interesting
to determine if ATL could be made more user-friendly
through the introduction of high-level features that summa-
rize collections of jointly used lower-level features. Third,
identifying popular combinations of imperative features and
their declarative equivalents might facilitate the translation
and subsequent verification of imperative transformations.
Fourth, automatically translating iterative target patterns into
(unique) lazy rules could help avoid the use of deprecated
constructs. Fifth, the creation of a repository for transfor-
mations in different languages would facilitate the analysis
and comparison of other transformation languages. Finally,
determining if the use of language features is influenced by
the purpose or intent of the transformation [24] would add
a potentially useful semantic dimension to our analysis.

Acknowledgments

The authors would like to thank AtlanMod’s support
team for their prompt and useful responses to our questions.
This work is supported in part by NSERC grant number
CREATE-397879-2011.

References

[1] P. Mohagheghi, W. Gilani, A. Stefanescu, M. A. Fernández, B. Nord-
moen, and M. Fritzsche, “Where does Model-driven Engineering
Help? Experiences from Three Industrial Cases,” Software and System
Modeling (SoSym), vol. 12, no. 3, pp. 619–639, 2013.

[2] J. Whittle, J. E. Hutchinson, M. Rouncefield, H. Burden, and R. Hel-
dal, “A taxonomy of tool-related issues affecting the adoption of
model-driven engineering,” Software and System Modeling (SoSyM),
vol. 16, no. 2, pp. 313–331, 2017.

[3] A. Kusel, J. Schoenboeck, M. Wimmer, W. Retschitzegger,
W. Schwinger, and G. Kappel, “Reality Check for Model Transforma-
tion Reuse: The ATL Transformation Zoo Case Study,” in Workshop
on the Analysis of Model Transformations (AMT), 2013.

[4] K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, and M. Shar-
baf, “A survey of model transformation design pattern usage,” in Intl.
Conference on the Theory and Practice of Model Transformation
(ICMT). Springer, 2017, pp. 108–118.

[5] P. M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, and P. Daleiden,
“An Empirical Study on the Impact of C++ Lambdas and Programmer
Experience,” in Intl. Conference on Software Engineering (ICSE).
ACM, 2016, pp. 760–771.

[6] S. Nanz and C. A. Furia, “A Comparative Study of Programming
Languages in Rosetta Code,” in Intl. Conference on Software Engi-
neering (ICSE). IEEE Press, 2015, pp. 778–788.

[7] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A Large Scale Study
of Programming Languages and Code Quality in Github,” in ACM
SIGSOFT Intl. Symposium on Foundations of Software Engineering.
ACM, 2014, pp. 155–165.

[8] A. Stefik and S. Siebert, “An Empirical Investigation Into Program-
ming Language Syntax,” ACM Transactions on Computing Education
(TOCE), vol. 13, no. 4, p. 19, 2013.

[9] Eclipse, “Atlas Transformation Language (ATL),” available online,
http://eclipse.org/atl/.

[10] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A Model
Transformation Tool,” Science of Computer Programming, vol. 72,
no. 1, pp. 31–39, 2008.

[11] Eclipse, “ATL Model Transformation Zoo,” available online, http:
//www.eclipse.org/atl/atlTransformations/.

[12] J. R. Cordy, “The TXL Source Transformation Language,” Science of
Computer Programming, vol. 61, no. 3, pp. 190–210, August 2006.

[13] F. Büttner, M. Egea, and J. Cabot, “On Verifying ATL Transfor-
mations Using ‘Off-the-Shelf’ SMT Solvers,” in Intl. Conference
on Model Driven Engineering Languages and Systems (MODELS).
Springer, 2012, pp. 432–448.

[14] F. Büttner, M. Egea, J. Cabot, and M. Gogolla, “Verification of
ATL Transformations Using Transformation Models and Model Find-
ers,” in Intl. Conference on Formal Engineering Methods (ICFEM).
Springer, 2012, pp. 198–213.

[15] F. Büttner, M. Egea, E. Guerra, and J. De Lara, “Checking Model
Transformation Refinement,” in Intl. Conference on Theory and Prac-
tice of Model Transformations. Springer, 2013, pp. 158–173.

[16] T. Mens and P. Van Gorp, “A Taxonomy of Model Transformation,”
Electronic Notes in Theoretical Computer Science (ENTCS), vol. 152,
pp. 125–142, 2006.

[17] Eclipse, “ATL User Guide,” available online, http://wiki.eclipse.org/
ATL/User Guide - Introduction.

[18] ——, “EMFTVM Documentation,” available online, https://wiki.
eclipse.org/ATL/EMFTVM.

[19] G. M. K. Selim, J. R. Cordy, and J. Dingel, “Prepro-
cessed ATL Zoo,” available online, https://github.com/gehanselim/
preprocessed-ATL-zoo.

[20] J. R. Cordy, “ATL Grammar for TXL,” 2016, available online, http:
//www.txl.ca/nresources.html.

[21] M. Tisi and F. Jouault, “ATL Grammar,” available online, https://wiki.
eclipse.org/M2M/ATL/Syntax.

[22] K. Anastasakis, B. Bordbar, and J. M. Küster, “Analysis of Model
Transformations via Alloy,” in Workshop on Model-Driven Engineer-
ing, Verification and Validation (MoDeVVa), 2007, pp. 47–56.

[23] J. Cabot, R. Clarisó, E. Guerra, and J. De Lara, “Verification and
Validation of Declarative Model-to-Model Transformations Through
Invariants,” Journal of Systems and Software, vol. 83, no. 2, pp. 283–
302, 2010.

[24] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G. M. Selim,
E. Syriani, and M. Wimmer, “Model Transformation Intents and Their
Properties,” Software & Systems Modeling (SoSyM), vol. 15, no. 3,
pp. 647–684, 2016.

[25] A. Schürr, “Specification of Graph Translators with Triple Graph
Grammars,” in Graph-Theoretic Concepts in Computer Science, ser.
LNCS. Springer, 1995, vol. 903, pp. 151–163.

[26] K. Czarnecki and S. Helsen, “Classification of Model Transformation
Approaches,” in OOPSLA Workshop on Generative Techniques in the
Context of the Model Driven Architecture, vol. 45, no. 3. USA,
2003, pp. 1–17.

[27] ——, “Feature-based survey of model transformation approaches,”
IBM Systems Journal, vol. 45, no. 3, pp. 621–645, 2006.

[28] F. Jouault and I. Kurtev, “Transforming Models with ATL,” in Intl.
Conference on Model Driven Engineering Languages and Systems
(MODELS’05). Springer, 2005, pp. 128–138.

[29] P. Huber, “The Model Transformation Language Jungle: An Evalua-
tion and Extension of Existing Approaches,” Master’s thesis, Vienna
University of Technology, 2008.

[30] N. Koch, “Classification of Model Transformation Techniques Used
in UML-Based Web Engineering,” IET Software, vol. 1, no. 3, pp.
98–111, 2007.

[31] R. Tairas and J. Cabot, “Corpus-Based Analysis of Domain-Specific
Languages,” Software & Systems Modeling (SoSyM), vol. 14, no. 2,
pp. 889–904, 2015.

[32] K. Lano and S. Kolahdouz-Rahimi, “Model-transformation design
patterns,” Trans. Software Eng., vol. 40, no. 12, pp. 1224–1259, Dec
2014.

[33] O. Callaú, R. Robbes, É. Tanter, and D. Röthlisberger, “How Devel-
opers Use the Dynamic Features of Programming Languages: The
Case of Smalltalk,” in Intl. Working Conference on Mining Software
Repositories (MSR), 2011.

[34] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen, “Mining
Billions of AST Nodes to Study Actual and Potential Usage of Java
Language Features,” in Intl. Conference on Software Engineering
(ICSE). ACM, 2014, pp. 779–790.

[35] C. Parnin, C. Bird, and E. Murphy-Hill, “Adoption and Use of Java
Generics,” Empirical Software Engineering, vol. 18, no. 6, pp. 1047–
1089, 2013.

[36] D. Kim, E. Murphy-Hill, C. Parnin, C. Bird, and R. Garcia, “The
Reaction of Open-Source Projects to New Language Features: An
Empirical Study of C# Generics,” Journal of Object Technology
(JOT), vol. 12, no. 4, 2013.

[37] D. H. Martin, J. R. Cordy, B. Adams, and G. Antoniol, “Make It
Simple: An Empirical Analysis of GNU Make Feature Use in Open
Source Projects,” in Intl. Conference on Program Comprehension
(ICPC). IEEE Press, 2015, pp. 207–217.

[38] E. Zadok, “Overhauling Amd for the’00s: A Case Study of GNU Au-
totools.” in USENIX Annual Technical Conference, FREENIX Track,
2002, pp. 287–297.

http://eclipse.org/atl/
http://www.eclipse.org/atl/atlTransformations/
http://www.eclipse.org/atl/atlTransformations/
http://wiki.eclipse.org/ATL/User_Guide_-_Introduction
http://wiki.eclipse.org/ATL/User_Guide_-_Introduction
https://wiki.eclipse.org/ATL/EMFTVM
https://wiki.eclipse.org/ATL/EMFTVM
http://www.txl.ca/nresources.html
http://www.txl.ca/nresources.html
https://wiki.eclipse.org/M2M/ATL/Syntax
https://wiki.eclipse.org/M2M/ATL/Syntax

