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Abstract

In this paper we present a source transformation-based framework to support uni-
form testing and model checking of implicit-invocation software systems. The frame-
work includes a new domain-specific programming language, the Implicit-Invocation
Language (IIL), explicitly designed for directly expressing implicit-invocation soft-
ware systems, and a set of formal rule-based source transformation tools that al-
low automatic generation of both executable and formal verification artifacts. We
provide details of these transformation tools, evaluate the framework in practice,
and discuss the benefits of formal automatic transformation in this context. Our
approach is designed not only to advance the state-of-the-art in validating implicit-
invocation systems, but also to further explore the use of automated source trans-
formation as a uniform vehicle to assist in the implementation, validation and ver-
ification of programming languages and software systems in general.
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1 Introduction

With the growing size and complexity of software systems, software verifica-
tion and validation techniques such as testing and model checking are increas-
ingly important. While testing focuses on the actual behaviour of the pro-
gram, model checking focuses on its mathematical model. Testing and model
checking are complementary: testing is lightweight but incomplete while model
checking is heavyweight but complete.
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A major problem with testing and model checking is that they require different
software artifacts. In fact, there is often a big semantic gap between the code
artifacts that can be executed and tested and the modelling artifacts that can
be verified using model checkers. This gap must typically be bridged by hand
with little tool support, leading to a real possibility of errors and spurious
results when the finite-state model does not correspond exactly to the imple-
mented software system. Corbett, Dwyer, et al. note that hand-constructed
models are “expensive, prone to errors, and difficult to optimize” [1]. The time
required to convert artifacts by hand and the possibility of spurious results
can be greatly reduced using automated transformations.

One kind of software system which is particularly difficult to validate is implicit
invocation (II) or publish-subscribe systems, which are increasingly popular as
an integration mechanism for loosely coupled components in software systems.
II systems feature a lot of non-determinism due to concurrent execution of
components. This high degree of non-determinism makes them particularly
challenging to certify and hence a good proving ground for comparing and
combining software verification and validation methods such as testing and
model checking.

In previous work we proposed a framework for the uniform testing and model
checking of II systems [2,3] based on an II model checking system originally
developed by Garlan and Khersonsky [4,5] and extended by Bradbury and
Dingel [6]. Our framework leverages Garlan and Khersonsky’s XML interme-
diate representation for II systems and its automated translation to finite state
models checkable by the Cadence SMV model checker [7], a tool for explor-
ing the state space of a program to check formal properties such as freedom
from deadlock. Our previous short paper focussed on the testing and model-
checking framework itself. In this paper we concentrate on the details of its
implementation using source transformations.

At the core of our framework is the Implicit-Invocation Language (IIL), a
new special purpose language specifically designed for expressing verifiable
software systems that use the II architectural style. IIL is designed to address
several problems: the lack of explicit features for II in existing programming
languages, leading to code that does not well express its real semantics; the
large gap between II code and its hand-created modelling representation, for
example as Garlan and Khersonsky’s XML representation; the lack of any
convenient simulation and testing framework for II systems; the lack of the
ability to both test and model check II systems in a uniform and consistent
manner; and the lack of automated tools to assist in these processes.

We have chosen to implement IIL entirely using formal source transforma-
tions, both as an experiment in that technique and in order to allow for the
future possibility of formal verification of the translations to execution and
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Fig. 1. Our transformational framework

modelling artifacts themselves. One set of transformations provides the abil-
ity to execute and test IIL programs by translation to the existing general
concurrent programming language Turing Plus [8], while another set provides
the ability to verify and model check IIL programs by translation to the XML
intermediate representation of Garlan and Khersonsky’s II modelling method
(Figure 1).

In the remainder of this paper, we provide a quick overview of the II architec-
tural style in Section 2 and introduce the Implicit-Invocation Language (IIL)
in Section 3. Section 4 discusses the programming, execution, and verification
artifacts of our transformational framework. In section 5 we present the details
of our automated source transformations to both execution and modelling ar-
tifacts. We describe experience using our system to both test and model check
three II examples as well as discuss future directions for exploring the comple-
mentary relationship between testing and model checking in Section 6. Finally,
we discuss related work and draw conclusions in Sections 7 and 8.

2 II Systems

II systems are characterized by six parameters: components, events, event-
method bindings, an event delivery policy, a shared state, and a concurrency
model. Components in the system can announce events, which are the primary
method of communication between components. Upon receiving events from
the components, the event dispatcher sends the events out to all subscriber
components that have requested to receive that particular type of event.

The correspondence between announced events and the methods to be invoked
in response to these announcements is defined in the event-method bindings.
Event-method bindings instruct the dispatcher where to send events. The
event delivery policy, a set of conditional delivery rules, instructs the dis-
patcher on when and how to send them.

II systems we have studied include [6]: a Set-Counter example in which one
component stores elements in a set and another keeps count of the number
of elements; the Active Badge Location System (ABLS), an electronic tagging
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alternative to pagers, in which different components issue requests, store in-
formation, and announce the location of users; and the Unmanned Vehicle
Control System (UVCS), in which vehicle components announce information
such as their movement plan, and other components monitor the movement to
ensure vehicles reach their destinations without collision. All of these systems
are specified and integrated using implicit invocation.

3 The Implicit-Invocation Language IIL

To help bridge the gaps between coding, testing and verifying implicit-invocation
systems we have designed the special-purpose programming language IIL. IIL
is explicitly designed to allow for direct expression of implicit-invocation se-
mantics using custom syntax for II features and concepts on top of a Java-like
core. In order to guarantee that all programs can be executed and tested,
only features that can be directly implemented or transformed to simulated
concurrent execution are included. In order to guarantee that all programs
can be modelled, only language features that can be directly represented or
transformed to Garlan and Kershonsky’s XML intermediate modelling lan-
guage are included. And to attach verification closely to code, properties to
be verified are directly expressed as part of the program.

As an illustrative example, Figure 2 shows a standard implicit-invocation ex-
ample, the Set-Counter system [9] expressed in IIL. In order to directly ex-
press verifiable II systems, IIL includes the following special features: compo-
nent declarations, event declarations, announcement statements, a dispatcher
declaration, delivery statements, event-method bindings, and property decla-
rations.

The Set-Counter system declares two components: a Set and a Counter. The
Set component contains a set of objects and the Counter component keeps
count of the objects in the set. Figure 2 shows the IIL representation of both
the Set and Counter components. All components in IIL can contain variables
and methods.

The Set-Counter example declares four events. EnvAdd and EnvRemove are
external or environment events, which represent external behaviour affecting
the II system. Their declarations give the event name and its announcement
properties. The other declared events Insert and Delete are local events
which give the event name and optional data. Components in IIL use announce
statements to send local events to the dispatcher. For example, an Insert

event is announced in the Add method of the Set component.

As well as components and events, an event dispatcher is declared. The dis-
patcher is responsible for event delivery and defines the delivery policy. En-
vironment events are delivered immediately, while local events are delivered
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system SetAndCounter { 
    external event EnvAdd {1..N}, 
        EnvRemove {1..N}; 
    event Insert(int {1..2} numElements); 
    event Delete(int {1..2} numElements); 

    dispatcher delivers Insert, Delete { 
        if (Insert.count > Delete.count) { 
            deliver Immediate Insert; 
            deliver Random Delete; 
        } else { 
            deliver Random Insert; 
            deliver Immediate Delete; 
        } 
    }

    int {0..3} setSize; 

    SetAndCounter() { 
        Set s = new Set(); 
        Counter c = new Counter(); 

        bind EnvAdd to s.Add(); 
        bind EnvRemove to s.Remove(); 
        bind Insert to 
            c.CountIns(Insert.numElements); 
        bind Delete to 
            c.CountDel(Delete.numElements); 

        property AlwaysCatchesUp = 
            (G F (setSize = c.counter)); 
        property ... 
    } 

    component Set 
        announces Insert, Delete 
        accepts EnvAdd, EnvRemove { 
        int {0..2} value; 

        Add() { 
            value = {1,2};  // nondeterministic 
            if ((setSize + value) < 4) { 
                setSize = setSize + value; 
                announce Insert(value); 
            } 
        } 

        Remove() { 
            ... 
        } 
    } 
    
    component Counter 
        accepts Insert, Delete { 
            int {0..3} counter = 0; 

            CountIns(int {1..2} number) { 
                counter = counter + number; 
            } 
    
            CountDel(int {1..2} number) {
                ... 
            } 
    }
} 

Fig. 2. The Set-Counter example in IIL (slightly elided due to space constraints)

according to the policy using deliver statements. In our Set-Counter example
the delivery policy says that if there are more Insert events waiting to be
delivered than Delete events, then an Insert event is delivered immediately
and a Delete event is delivered randomly, otherwise the opposite occurs.

Event-method bindings are needed to register the methods to the events for
event delivery. For example, in the Set-Counter example the EnvAdd event is
bound to the Add method in the Set component s. That is, when an EnvAdd

event is announced the Add method in s will be invoked.

IIL also allows for direct expression of the temporal logic property declarations
to be verified for the program using the model checking process. For example
the property AlwaysCatchesUp in the Set-Counter example says that global
variable setSize will always eventually equal the counter variable in the
Counter component c.

4 II Framework Artifacts

Our transformational framework for running, testing and verifying IIL consists
of three main types of artifacts:

• Programming/specification artifacts in IIL itself
• Execution/testing artifacts in the Turing Plus language
• Verification artifacts in the XML intermediate language and the SMV mod-

elling language
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Programs are expressed entirely in IIL, then automatically transformed to
Turing Plus [8] for execution and testing and to the XML intermediate rep-
resentation for modelling and SMV for verification. Because it is explicitly
designed to express II systems, IIL programs are very concise – up to ten
times smaller than both the corresponding Turing Plus implementations used
for testing and the XML and SMV representations used for model checking.

4.1 Execution Artifacts in Turing Plus

Execution and testing artifacts are derived from IIL using a formal source
transformation to Turing Plus [8], a general-purpose concurrent extension of
the programming language Turing [10]. We decided to target Turing Plus for
execution of II systems because of its simple, general concurrency model and
randomized simulation scheduling framework, which allows for lightweight,
realistic testing of concurrent programs.

A critical part of our transformation from IIL to Turing Plus is the design of
a representation for implicit method invocation and component concurrency
in Turing Plus that accurately reflects IIL semantics. In designing these, we
used as a reference semantics for IIL the corresponding features of Garlan and
Kershonsky’s XML notation for II systems [4,5].

Turing Plus does not support implicit method invocation directly, so in our
Turing Plus model we used explicit invocation to implement implicit-invocation.
Thus the Turing Plus implementation uses explicit method calls in event an-
nouncement, in event delivery, and in components to invoke bound methods
when a delivered event is received.

The concurrency model determines how to assign and manage threads in the
system. Based on the Garlan and Kershonsky modelling semantics, our imple-
mentation fixes the concurrency model to use a separate Turing Plus thread
for each component, the event dispatcher, and the system itself. To ensure
that the execution semantics of an IIL program in Turing Plus matches its
model checking semantics in SMV, all of the threads in the Turing Plus im-
plementation of an II system are synchronized using barrier synchronization.

Structurally, the Turing Plus implementation consists of a module and nested
monitor for each component declaration and the dispatcher, and a main pro-
cedure that handles environment event generation. These vary with system
and are derived from the IIL program by source transformation.

The Turing Plus implementation is based on a set of common definitions
for the underlying mechanisms of II that are program independent, such as
type definitions for events, event queues, and event warehouses (collections
of event queues), as well as modules to manage the system event warehouse,
component event warehouses, and thread synchronization. These modules are
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Fig. 3. Diagram showing how the parts of an IIL program are used in generating
the corresponding Turing Plus program and SMV model

independent of the IIL program being transformed and are included from a
library using generated include directives in each transformed result.

4.2 Verification Artifacts in SMV

To model check systems written in IIL, we use the approach previously pre-
sented in [6,4,5]. This approach focuses on the automatic analysis of II by
representing an II system in an XML intermediate representation and using
an existing Java tool to transform it into an SMV model accepted by the
Cadence SMV model checker. The challenge therefore was to create a source
transformation for IIL programs to the limited features of the XML modelling
representation.

The SMV model for an IIL program represents each component and the dis-
patcher as an SMV module. There is also a main module which instantiates
the other components. Modules in SMV have input and output parameters
which are used for event announcement. For example, in the Set-Counter ex-
ample an output parameter of the Set component is connected to an input
parameter of the Dispatcher for the announcement of an Add event, and an
output parameter of the Dispatcher is connected to an input parameter of the
Counter component for delivery of the event. The model checking semantics
of the SMV program is (by design) identical to the execution semantics of the
Turing Plus program outlined above.
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5 Transformations in the II Framework

Now that we have introduced the artifacts involved in our framework, we can
discuss TXL and our automated transformation tools for artifact conversion.
Figure 3 shows an overall summary of how the parts of an IIL program are
used to automatically transform IIL programs into a Turing Plus program for
execution and an SMV model for verification.

5.1 Source Transformation using TXL

TXL [11] is a programming language designed to support source transforma-
tion tasks. It combines features of both functional and rule-based program-
ming, and supports unification, implied iteration and deep pattern match. A
TXL program consists of two parts: a context-free, possibly ambiguous gram-
mar describing the syntactic structure of the artifacts to be transformed, and
a set of by-example formal transformation rules that use pattern-replacement
pairs to describe the desired transformations. TXL has been used in a range
of applications from software design recovery to artificial intelligence, in both
academic and industrial contexts [12]. Although we use TXL to express the
source transformations in our framework, our method does not depend on
any particular tool and other source transformation languages and systems
such as Stratego [13], ASF+SDF [14], ANTLR [15] and others have their own
advantages and could serve as well.

5.2 Transformation to Execution Artifacts

Our automated tool for transforming IIL to Turing Plus consists of a set
of transformation rules written in TXL. The structure and syntax of Turing
Plus programs is very different from IIL – some of these differences have been
discussed in Section 4.1. The transformation to Turing Plus is divided into
four steps: component transformation, dispatcher transformation, system and
environment setup generation, and restructuring of the resulting system body.

The fours steps form a tightly coupled transformation: each must be com-
pletely consistent with the other for the combined result to be correct. In or-
der to facilitate this consistency, each of the steps is derived by formal source
transformation from the same source artifact: the entire IIL source program
itself. This demonstrates the advantages of the main design goal of IIL: to
capture all aspects of the II system in one uniform source artifact. Each step
takes as input the entire source program in IIL, using different parts of the
source as needed to transform or generate its result.

Step 1: Component transformation. Component transformation combines
information from the event declarations, component declarations, and con-
structors in the IIL program. In Turing Plus components are represented as
modules and the component transformation occurs in 5 parts. To clarify the
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 1 module Set 
 2    export Fork, receiveEvent 
 3    include "queueManager.i" 
 4    queueManager.createEventQueue ("EnvAdd") 
 5    queueManager.createEventQueue ("EnvRemove") 
 6    var value : int 
 7 
 8    monitor SetMonitor 
 9       export receiveEvent, getCount, 
                Remove, Add 
10       procedure Add 
11          var e : event 
12          queueManager.getEvent ("EnvAdd", e) 
13          var Arr : 
               array 1..2 of int := init (1, 2) 
14          var Sel : int 
15          randint (Sel, 1, 2) 
16          value := Arr (Sel) 
17          if ((setSize + value) < 4) then 
18             setSize := setSize + value 
19             var etba Insert : event 
20             etba Insert.name := "Insert" 
21             etba Insert.param (1).intPara := 
                  value 
22             announce (etba Insert) 
23          end if 
24       end Add 
25 
26       procedure Remove 
27          ... 
28       end Remove 

29       function getCount (ename : string) : int 
30          result queueManager.getCount (ename) 
31       end getCount 
32 
33       procedure receiveEvent (e : event) 
34          queueManager.receiveEvent (e) 
35       end receiveEvent 
36    end SetMonitor 
37 
38    procedure receiveEvent (e : event) 
39       SetMonitor.receiveEvent (e) 
40    end receiveEvent 
41 
42    process run : 100000 
43       for l : 1..999999999 
44          Rendezvous.readySetGo 
45          if SetMonitor.getCount ("EnvRemove") 
                  > 0 then 
46             SetMonitor.Remove 
47          elsif SetMonitor.getCount ("EnvAdd") 
                  > 0 then 
48             SetMonitor.Add 
49          end if 
50       end for 
51    end run 
52 
53    procedure Fork 
54       fork run 
55    end Fork 
56 end Set 

Fig. 4. Generated Turing Plus module/monitor for the Set component of the Set–
Counter example

component transformation we refer to the Turing Plus implementation of the
Set component in Figure 4, which was automatically transformed from the
Set-Counter IIL example in Figure 2. For each part of the transformation we
make reference o the corresponding parts of Figure 4.

First, module and monitor names for components in the Turing Plus program
are generated from the component names in IIL (lines 1,8 ). Second, an event
warehouse (a collection of event queues) is created for each type of event that a
component accepts (lines 4,5 ). Third, each method in a component is added
to the export list for its monitor (line 9 ). This makes the methods public,
so that they can be called from outside the monitor, for example in the run
process (line 48 ).

Fourth, the method bodies for each component are generated. In addition to
the syntactic transformation of the method bodies from IIL to Turing Plus, the
invoking event must be retrieved (lines 45-48 ). A method requires the retrieval
of the invoking event in order to use data contained in the event. Since the
information about the invoking event is not included in the method body of
the IIL program, we must extract this information from the remote component
instantiations and the event-method bindings during transformation.

Fifth, the run process (lines 42-51 ) needs to check each event queue and in-
voke the appropriate bound method if the event queue is not empty. During
transformation, the accepts statements in the IIL program are used to gen-
erate the conditional expression of the if statement in the run process, and
event-method binding information is used to generate the method call.
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rule tr_component Bindings [repeat event_binding] 
                  Events [list event_declarator]
  replace [component_declaration]
     'component CompName[id] 
                EventAnn [opt event_announces] 
                EventAcc [opt event_accepts]
     '{ 
         Body [repeat var_res_met_declaration]
     '}

    % Translate variable declarations
    construct VarDecls [repeat variable_declaration]
       _ [gather_var_decl Body]
         [tr_var_decl]
    % Translate method declarations 
    construct MetDecls [repeat method_declaration]
       _ [gether_met_decl Body]
         [tr_met_decl Events Bindings CompName]
    % Method names to export
    construct ExportMets [list method_name]
       _ [get_list_method_name MetDecls]
    % Monitor name
    construct MonitorName [id]
       CompName [+ ‘Monitor]
    % First method to run
    deconstruct ExportMets
       FirstMet [id], RestMets [list method_name]
    % Event name for first method
    deconstruct * [event_binding] Bindings
       'bind FirstEvent [id] 'to CompNameId . 
             FirstMet '( _ [list expression]') ;
    construct QuotedFirstEvent [stringlit]
       _ [quote FirstEvent]
    % Rest of methods to run
    construct Elsifs [repeat elsif_inrun]
       _ [get_elsifs RestMets Bindings 
                     CompName MonitorName]

  by
    'module CompName
       'export Fork, receiveEvent
       'include "queueManager.i"
        EventAcc [tr_event_accepts]
        NewVarDecls
       'monitor MonitorName
          'export receiveEvent, getCount, ExportMets
           NewMetDecls
          'function getCount(ename: string): int
             ‘result queueManager.getCount(ename)
          'end getCount
          'procedure receiveEvent(e: event)
             queueManager.receiveEvent(e)
          'end receiveEvent
       'end MonitorName
       'procedure receiveEvent(e: event)
           MonitorName.receiveEvent(e)
       'end 'receiveEvent
       'process 'run: 100000
          'for : 1 .. 999999999
              Rendezvous.readySetGo
             'if MonitorName.getCount
                    (QuotedFirstEvent) > 0 'then
                 MonitorName '. FirstMet
              Elsifs
             'end 'if
          'end 'for
       'end run
       'procedure Fork
          ‘fork run
       'end Fork
    'end CompName
end rule

Fig. 5. Main TXL Rule for generation of the Turing Plus module/monitor structure
for an IIL component

As an example of the TXL transformation rules used in this step, Figure 5
shows the main rule used to generate the module and monitor structure from
an IIL component. As is evident in this example, TXL’s by-example concrete
syntactic patterns and functional decomposition style help make it convenient
to express and validate our source transformations.

Step 2: Dispatcher transformation. The dispatcher in Turing Plus is con-
structed using the event declarations, the dispatcher declaration, and the sys-
tem constructor of the IIL program. All of this remote information must be
combined using a global-to-local transformation to generate the result.

For each event in a system the dispatcher creates a queue in the system event
warehouse. Event queues are not represented in the IIL program and are gen-
erated using the same method as described for component queues above. The
event delivery policy is translated directly from the dispatcher body of the IIL
program into code for the Turing Plus dispatcher module. In order to complete
the event delivery transformation we also need to use information from the
component instantiations and the event-method bindings.

Figure 6 shows the result of generating the Dispatcher for the Set-Counter
example. Random delivery is simulated using the Turing Plus randint library
routine to flip a coin. The main TXL rule to generate the Dispatcher module
from the dispatcher section of the IIL program is similar in form to the rule
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module Dispatcher
 

  export Fork
 

  eventsManager.createEventQueue("EnvAdd")
  eventsManager.createEventQueue("EnvRemove")
  eventsManager.createEventQueue("Insert")
  eventsManager.createEventQueue("Delete")

  procedure deliverEvent
 

     % External events are always immediate
     if eventsManager.getCount("EnvAdd") > 0 then
        var e : event
        eventsManager.getEvent("EnvAdd", e)
        Set.receiveEvent(e)
     end if
 

     if eventsManager.getCount("EnvRemove") > 0 then
        var e : event
        eventsManager.getEvent("EnvRemove", e)
        Set.receiveEvent(e)
     end if
 

     % Delivery policy for internal events
     if eventsManager.getCount("Insert") > 
            eventsManager.getCount("Delete") then
        var e: event
        eventsManager.getEvent("Insert", e)
        Counter.receiveEvent(e)
        var flip: int
        randint(flip, 0, 1)
        if flip = 1 then
           if eventsManager.getCount("Delete") > 0 then
              eventsManager.getEvent("Delete", e)
              Counter.receiveEvent(e)
           end if
        end if

     elsif eventsManager.getCount("Delete") > 0 then
        var e: event
        eventsManager.getEvent("Delete", e)
        Counter.receiveEvent(e)
        var flip: int
        randint(flip, 0, 1)
        if flip = 1 then
           if eventsManager.getCount("Insert") > 0 then
              eventsManager.getEvent("Insert", e)
              Counter.receiveEvent(e)
           end if
        end if
     end if
  end deliverEvent

  % The actual process of the Dispatcher
  process run : 100000
     for l : 1 .. 999999999
        Rendezvous.readySetGo
        deliverEvent
     end for
  end run

  % Procedure to start up Dispatcher when appropriate
  procedure Fork
     fork run
  end Fork
end Dispatcher

Fig. 6. Generated Turing Plus Dispatcher module for the Set-Counter example

for components shown in Figure 5.

Step 3: System and environment setup. In this step we generate decla-
rations for global variables specified in the IIL program and initialize system
constants of the Turing Plus implementation. We incorporate the parts com-
mon to all systems (discussed in Section 4.1) by generating file includes such
as the include ”rendezvous.i”, which adds the module that handles barrier
synchronization. Finally, we generate statements at the end of the program to
fork a concurrent process for each of the component and dispatcher modules.

Environment setup generates a procedure using a method call for each ex-
ternal event. An example TXL function from this step is shown in Figure 7.
This function demonstrates the use of TXL’s functional control paradigm to
implement a source transformation that inherits global contextual information
to generate its result - in this case the list of events passed in from the main
system setup generation rule.

Step 4: System body re-ordering. Unlike IIL, Turing Plus is a declaration-
before-use language, and Turing Plus programs must follow a strict order and
structure of declaration. In order to separate concerns and avoid overly con-
straining transformation rules, the previous three transformation steps ignore
these constraints. This leaves the ordering problem to this last separate trans-
formation, which involves reordering the program elements to match the order
in Figure 3. In essence, this transformation is a topological sort of the program
into declaration-before-use dependency order. A simple TXL rule used in this
step is shown in Figure 8.
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function add_event_declaration 
         Events [list event_declarator]

   % List of external events
   construct ExtEventNames [list reference]
      _ [get_ext_event_name_declarator Events]

   % List of external event limits
   construct EndOfEvents [list reference]
      _ [build_endOfEvents ExtEventNames]

   % List of external event counters
   construct EventsCount [list reference]
      _ [build_eventsCount ExtEventNames]

   % Make the "randonEvent(...)" statements
   construct RandomEvents [repeat randomEvent]
      _ [build_randomEvent ExtEventNames 
                           EndOfEvents EventsCount]

   % Make the statement to print total events generated
   construct RandPuts [repeat randint_and_put]
      _ [build_randPut EndOfEvents ExtEventNames Events]

   replace * [repeat declaration_or_constructor]
      % Add to end of generated code

  by
     'procedure 'randomEvent (eventName : string, 
                 maxEventCount : int, 
                 var eventCount: int, frequency : int)
        ‘if eventCount < maxEventCount then
           ‘var flip: int
            randint (flip, 1, frequency)
           ‘if flip = 1 then
              ‘var e: event
               e.name := eventName
               announce(e)
               eventCount += 1
            'end' if
    'end 'if
     'end 'randomEvent

     'var EndOfEvents : int
     'var EventsCount := 0
     'var clockLimit: int

     ‘process run
        ‘for l : 1 .. clockLimit
            Rendezvous.readySetGo
           ‘put "main loop ", l
            RandomEvents
        'end 'for
     'end 'run

     'randomize

      RandPuts

     ‘put "Please input clockLimit: " ..
     ‘get clockLimit

end function

Fig. 7. TXL function to make the Turing Plus external event generator for an IIL
program

% In every scope, sort variable declarations 
% before anything else
rule var_decl_first
   replace $ [repeat declaration_or_constructor]
       Anything [declaration_or_constructor]
       VarDecl [variable_declaration]
       Rest [repeat declaration_or_constructor]
   deconstruct not Anything
       _ [variable_declaration]
   by
       VarDecl
       Anything
       Rest
end rule

Fig. 8. Example TXL rule used in reordering generated Turing Plus code

5.3 Transformation to Verification Artifacts

A major drawback to the model checking work we presented in [6] was that it
was not completely automated, since user interaction was required to develop
the XML modelling representation for the program. Our current approach
overcomes this deficiency and bridges the gap between artifacts by completely
automating the process of generating finite state models for software systems
written in IIL.

The transformation from IIL to SMV finite state models involves three steps:
program restructuring, conversion to XML, and finite state machine transla-
tion. The first two steps convert IIL into the XML modelling notation using
cascaded TXL source transformations of the IIL program. The third step uses
an existing Java tool to transform the XML representation to a set of finite
state machine models in SMV that can then be verified using the Cadence
SMV model checker.
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Step 1: Program restructuring. The original goal of the IIL language was
as a convenient replacement for the verbose XML representation that would
be easier to read, write and understand. In the end, IIL has evolved into a full
special-purpose language that includes many other notational conveniences,
such as true global variables, local variables in methods, for loops and switch

statements, none of which are in the XML intermediate language. In this
first step of our modeling transformation, these notational conveniences are
resolved, in essence by compiling and reordering the IIL program using source
transformation. The result is a simplified IIL program which is isomorphic to
its XML modelling language equivalent, but not yet in XML notation.

Three main language features of IIL are not present in the XML representation
and must be converted. First, global variable access is transformed to match
the indirect global variable access of the XML representation. IIL components
have direct access to globals, while the XML representation uses the SMV
model, in which global variables must be accessed indirectly through special
local input/output variables.

Second, IIL supports variable declaration at both the component and method
level while the XML modelling representation allows variables at the com-
ponent level only. This step involves moving all method level variables to
the component level. To avoid potential name clashes, method variables are
uniquely renamed using the method name as a prefix.

Third, IIL allows the convenience of switch statements in the dispatcher
and both switch statements and for loops in component methods, while the
XML modelling representation has only if-then-else statements in order to
simplify its modelling task. The transformation therefore transforms switch

statements into if-then-else and unrolls for loops into statement sequences,
using classic transformations borrowed from the compiler community.

Recall that by design IIL is restricted to expressing programs that have a mod-
elling language equivalent - thus because the XML modelling representation
does not have loops, IIL for loops are constant bounded and can always be
unrolled. Similarly, although the XML modelling representation has no switch
statement, the transformation can convert them to their if-then-else equiv-
alents. The TXL rule for converting switch statements used in this stage is
shown in Figure 9.

Finally, the program is restructured into the strict order required by the XML
modelling representation. In IIL there are no restrictions on ordering, but
the XML representation must be strictly structured according to its schema.
As in the transformation to Turing Plus, we simplify the previous steps by
implementing the ordering constraints as a separate source transformation on
the result.
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Following this step the IIL program has been restructured into a statement-
by-statement match to the target XML modelling representation, but has not
yet been converted to XML. Again, rather than convert to XML tag notation
while restructuring the IIL program, we have separated the conversion to
XML tags into a separate cascaded source transformation in order to separate
concerns. This cascaded transformation style is characteristic of complex TXL
transformations and has served us well in this project as in others.

rule tr_switch_statement

   replace [statement]
      'switch '( Exp1 [expression] ')
      '{
         'case Exp2 [expression] ':
             CaseBlock [repeat declaration_or_statement]
          Rest [repeat switch_alternative]
      '}

   deconstruct Exp1
      Exp1RE [relational_expression]

   deconstruct Exp2
      Exp2RE [relational_expression]

   construct IfBlock [block]
      '{ CaseBlock [remove_break] '}

   construct ElseClause [opt else_clause]
      _ [tr_switch_alternative_1 Exp1RE Rest]
        [tr_switch_alternative_2 Rest]

   by
      'if '( Exp1RE == Exp2RE ')
         IfBlock
       ElseClause
end rule

Fig. 9. TXL rule to convert ILL switch
statements to if-then-else form

rule tr_event_binding 
   replace [event_binding] 
      ’bind EventName [reference] 
         ’to ListMethods [list method_invocation]; 
   construct QuotedEventName [stringlit] 
      _ [quote EventName] 
   construct RepMethods [repeat method binding] 
      _ [construct_method_binding ListMethods] 
   by 
      <event-binding event-name=QuotedEventName> 
         RepMethods 
      </event-binding> 
end rule 

Fig. 10. TXL rule to convert bind state-
ments to XML markup form

Step 2: Conversion to XML mark-up. The second step of the modeling
transformation involves the syntactic mapping of the simplified and reordered
IIL program to XML notation. For example consider an event-method binding,
defined in a bind statement, from Figure 2:

bind Insert to c.CountIns(Insert.numElements);

The bind statement causes an Insert event to invoke the CountIns method
in the instance c of the Counter component. In the XML intermediate repre-
sentation the bind statement is transformed into:

<event-binding event-name="Insert">
<method-binding instance-name="c" method-name="CountIns"/>

</event-binding>

The TXL rule for the XML markup translation of bind statements is shown in
Figure 10. The rule matches every IIL bind statement and captures its event
name and list of method invocations. The event name is quoted so that it can
be used in the XML tag, and a sequence of XML method-binding tags for the
bound method invocations is generated by the subrule construct method binding.
The rule then replaces the bind statement by an XML tag with the event name
around the tagged sequence of method bindings.
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 1 typedef InsertType struct numberOfElements : 1..2; flag : boolean;  
 2 typedef DeleteType struct numberOfElements : 1..2; flag : boolean; 
 3  
 4 module Set(invoke_Remove_via_EnvRemove, invoke_Add_via_EnvAdd, setSizeCopy, announce_Insert, announce_Delete) 
 5  ...   
 6  
 7 module Counter(invoke_CounterDeleteMethod_via_Delete, invoke_CounterInsertMethod_via_Insert, setSizeCopy) 
 8  ...  
 9 
10 module EventDispatcher(Env_announce_EnvRemove, theSet_announce_Delete, theSet_announce_Insert, Env_announce_EnvAdd,  
11        deliver_EnvAdd, deliver_EnvRemove, deliver_Insert, deliver_Delete) 
12  ...  
13 
14 module main(EnvAdd, EnvRemove) 
15 
16  input EnvAdd : boolean; 
17  input EnvRemove : boolean; 
18 
19  theCounter_in_invoke_CounterInsertMethod_via_Insert : InsertType; 
20  evtDispatcher_in_theSet_announce_Delete : DeleteType; 
21  evtDispatcher_out_deliver_EnvAdd : boolean; 
22  theSet_in_invoke_Add_via_EnvAdd : boolean; 
23  evtDispatcher_in_theSet_announce_Insert : InsertType; 
24  theSet_in_invoke_Remove_via_EnvRemove : boolean; 
25  evtDispatcher_out_deliver_Delete : DeleteType; 
26  evtDispatcher_out_deliver_EnvRemove : boolean; 
27  theSet_out_setSizeCopy : 0..3; 
28  evtDispatcher_in_Env_announce_EnvAdd : boolean; 
29  theSet_out_announce_Delete : DeleteType; 
30  theCounter_in_setSizeCopy : 0..3; 
31  evtDispatcher_in_Env_announce_EnvRemove : boolean; 
32  copyOfSetSize : 0..3; 
33  theCounter_in_invoke_CounterDeleteMethod_via_Delete : DeleteType; 
34  evtDispatcher_out_deliver_Insert : InsertType; 
35  theSet_out_announce_Insert : InsertType; 
36 
37  evtDispatcher : EventDispatcher(evtDispatcher_in_Env_announce_EnvRemove, evtDispatcher in theSet announce Delete,     
38                                  evtDispatcher_in_theSet_announce_Insert, evtDispatcher_in_Env_announce_EnvAdd,  
39                                  evtDispatcher_out_deliver_EnvAdd, evtDispatcher_out_deliver_EnvRemove,  
40                                  evtDispatcher_out_deliver_Insert, evtDispatcher_out_deliver_Delete); 
41  theCounter : Counter(theCounter_in_invoke_CounterDeleteMethod_via_Delete,     
42                       theCounter_in_invoke_CounterInsertMethod_via_Insert, theCounter_in_setSizeCopy); 
43  theSet : Set(theSet_in_invoke_Remove_via_EnvRemove, theSet_in_invoke_Add_via_EnvAdd,     
44               theSet_out_setSizeCopy, theSet_out_announce_Insert, theSet_out_announce_Delete); 
45 
46  theCounter_in_invoke_CounterInsertMethod_via_Insert := evtDispatcher_out_deliver_Insert; 
47  evtDispatcher_in_theSet_announce_Delete := theSet_out_announce_Delete; 
48  theSet_in_invoke_Add_via_EnvAdd := evtDispatcher_out_deliver_EnvAdd; 
49  evtDispatcher_in_theSet_announce_Insert := theSet_out_announce_Insert; 
50  theSet_in_invoke_Remove_via_EnvRemove := evtDispatcher_out_deliver_EnvRemove; 
51  evtDispatcher_in_Env_announce_EnvAdd := EnvAdd; 
52  theCounter_in_setSizeCopy := copyOfSetSize; 
53  evtDispatcher_in_Env_announce_EnvRemove := EnvRemove; 
54  copyOfSetSize := theSet_out_setSizeCopy; 
55  theCounter_in_invoke_CounterDeleteMethod_via_Delete := evtDispatcher_out_deliver_Delete; 
56 
57  ComponentConsistency : assert( 
58      (F G (~evtDispatcher_in_Env_announce_EnvAdd)) & (F evtDispatcher_in_Env_announce_EnvAdd) &  
59      (F G (~evtDispatcher_in_Env_announce_EnvRemove)) & (F evtDispatcher_in_Env_announce_EnvRemove) &  
60      (G ((evtDispatcher.pending_Insert_Count > 0) -> F evtDispatcher_out_deliver_Insert.flag)) &  
61      (G ((evtDispatcher.pending_Delete_Count > 0) -> F evtDispatcher_out_deliver_Delete.flag)) &  
62      (G (evtDispatcher.restriction)) & (G (theSet.restriction)) & (G (theCounter.restriction))); 
63  assume ComponentConsistency; 
64 
65  AlwaysCatchesUp : assert(G F (theSet.setSize = theCounter.counter)); 
66  using ComponentConsistency prove AlwaysCatchesUp; 
67  ... 
 

Fig. 11. The Set-Counter example in SMV (components elided due to space con-
straints)

Step 3: Generation of finite state machines. Following the transforma-
tion from IIL to the XML modelling notation, we use the Java tool devel-
oped by Garlan and Khersonsky [4] (modified in [6]) to transform the XML
representation of the program into a set of finite state machines in SMV.
These can then be checked using the Cadence SMV model checker to ver-
ify the property constraints declared in the IIL program. Figure 11 shows an
abbreviated Set-Counter system in SMV. In the example we see the defini-
tions of the Insert and Delete event type (lines 1,2) as well as the defini-
tion of 4 modules: Set (lines 4,5) , Counter (lines 7,8), Dispatcher (lines
10-12), and main (lines 14-67). The Set and Counter components communi-
cate with the Dispatcher component using input and output parameters. For
example, announce Insert (line 4) is an output parameter of the Set com-
ponent. The main component serves 3 purposes. First, it is the source of all
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environment events. For example, the EnvAdd event and EnvRemove event an-
nouncement is defined by the ComponentConsistency assertion (lines 57-63)
which is assumed to be true. Specifically, ComponentConsistency described
the behavior of the environment events using temporal logic. For example,
it states that EnvAdd will eventually be announced by the Dispatcher and
eventually it will always not be announced. Second, the main module declares
all of the local variables required for component communication and maps
them to the corresponding modules through module instantiation. For ex-
ample, theSet out announce Insert is a local variable that is serves as an
output parameter of theSet (lines 43,44), an instantiation of the Set module.
The parameters of the instantiation modules are connected together via local
variable assignments. For example (line 49),

evtDispatcher_in_theSet_announce_Insert := theSet_out_announce_Insert

maps an output parameter of theSet module instance to an input parameter
of evtDispatcher. Third, the main module contains all of the properties that
we will verify using the Cadence SMV model checker (lines 65,66). Additional
details of this step can be found in [6,4,5].

5.4 Evaluation of Transformations

To evaluate our framework we used the three examples introduced in Section 2:
the Set-Counter System, the Active Badge Location System (ABLS) and the
Unmanned Vehicle Control System (UVCS). For each example, our evaluation
involved programming the system in the IIL language and verifying (by hand)
that our transformation tools from IIL to Turing Plus and from IIL to the XML
representation performed correctly. We demonstrated that semantics was well
preserved across all of the transformations by checking that the execution
behaviour and the model checking behaviour matched the original semantics
of the IIL programs. Finally, we verified that the specified properties of the IIL
programs held, both empirically and formally, by testing and model checking
the results of our transformations (described in Section 6.2). Up to this point
we have primarily described our transformations in the context of the simplest
example: the Set-Counter System. We will now provide more detail on the 2
real-world examples: ABLS and UVCS.

ABLS. Our IIL program of the ABLS consists of three types of components:
request workstation(s), a main workstation, and sensor workstation(s) (see
Figure 12(b)). In addition to these components, the ABLS also interacts with
Active Badges which are carried by all people in range of the system. Active
Badges communicate directly with the sensor workstations via sensors and are
not considered part of the IIL program. The request workstations randomly
issue the following events: Find an Active Badge’s location, determine which
other badges an Active Badge is With, Look at one location and return all
of the badges that are there, Notify an Active Badge holder via an audible
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Fig. 12. System structure for example II systems

or vibration notification, and obtain a History location report of an Active
Badge. The main workstation has three primary responsibilities: information
retrieval, information storage, and command execution. Information about
the location of Active Badges is received by polling the sensor workstations
(sending a Poll event and receiving back PollRequest events from all sensor
workstations). Information received from sensor workstations on the current
and previous locations of Active Badges is stored in a database. Events from
the request workstations are received and fulfilled using information in the
database. For example, a FindResult event is sent in response to a receiving
a Find event. The sensor workstations are only responsible for sending polling
results to the main workstation whenever a polling event is received.

A partial example of the transformation of the ABLS IIL program is pre-
sented in Figure 13. In the example the request workstation is transformed
into Turing Plus using the TXL rules described in Step 1 of the IIL to Turing
Plus transformation (Section 5.2). This example is similar to the transforma-
tion of the Set component discussed previously. The request workstation is
also transformed into an SMV module using the TXL rules described in Sec-
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component RequestWorkstation
  announces Find
  accepts EnvFind, FindResult
{
  boolean displayFindResult = false;

  requestFind()
  {
     announce Find();
  }

  receiveFindResult()
  {
     displayFindResult = true;
  }
}

module RequestWorkstation
export Fork, receiveEvent
include "queueManager.i"

  queueManager.createEventQueue ("EnvFind")
  queueManager.createEventQueue ("FindResult")

var displayFindResult : boolean := false

monitor RequestWorkstationMonitor
export receiveEvent, getCount, requestFind,

receiveFindResult
procedure requestFind

var e : event
      queueManager.getEvent ("EnvFind", e)

var etba_Find : event
      etba_Find.name := "Find"
      announce (etba_Find)

end requestFind

procedure receiveFindResult
var e : event

      queueManager.getEvent ("FindResult", e)
      displayFindResult := true

end receiveFindResult

function getCount (ename : string) : int
      result queueManager.getCount (ename)

end getCount

 procedure receiveEvent (e : event)
      queueManager.receiveEvent (e)

 end receiveEvent
end RequestWorkstationMonitor

procedure receiveEvent (e : event)
    RequestWorkstationMonitor.receiveEvent (e)

end receiveEvent

process run : 100000
for l : 1..999999999

      Rendezvous.readySetGo
if

RequestWorkstationMonitor.getCount("EnvFind")>0
      then
        RequestWorkstationMonitor.requestFind

elsif RequestWorkstationMonitor.getCount
("FindResult") > 0 then

RequestWorkstationMonitor.receiveFindResult
end if

end for
end run

procedure Fork
fork run

end Fork
end RequestWorkstation

Module RequestWorkstation
  (invoke_receiveFindResult_via_FindResult,
   invoke_requestFind_via_EnvFind, announce_Find)
{

input invoke_receiveFindResult_via_FindResult :
        FindResultType;

input invoke_requestFind_via_EnvFind : boolean;
output announce_Find : FindType;

  displayFindResult : boolean;
  state : {none, requestFind, receiveFindResult};
  restriction : boolean;
  pending_requestFind_via_EnvFind : -1..3;
  pending_receiveFindResult_via_FindResult[1] :
        FindResultType;
  next_state : {none, requestFind, receiveFindResult};
  pending_receiveFindResult_via_FindResult_Count : -1..1;

init(state) := none;
init(displayFindResult) := 0;
init(pending_requestFind_via_EnvFind) := 0;
init(pending_receiveFindResult_via_FindResult[1].flag)

        := 0;
init(pending_receiveFindResult_via_FindResult_Count)

        := 0;
init(announce_Find.flag) := 0;

  restriction := (pending_requestFind_via_EnvFind ~= -1)
  &(pending_receiveFindResult_via_FindResult_Count ~= -1);

next(state) := next_state;

  next_state :=
case {

      (state = none)
      & (pending_requestFind_via_EnvFind>0):
            requestFind;
      (state = none)
      & pending_receiveFindResult_via_FindResult_Count>0):
            receiveFindResult;
      (state = requestFind)
      &(pending_receiveFindResult_via_FindResult_Count>0):
            receiveFindResult;
      (state = requestFind)
      & (pending_requestFind_via_EnvFind>0):
            requestFind;
      (state = receiveFindResult)
      & (pending_requestFind_via_EnvFind>0):
            requestFind;
      (state = receiveFindResult)
      &(pending_receiveFindResult_via_FindResult_Count>0):
            receiveFindResult;

default : none;
    };

next(displayFindResult) :=
      (state = receiveFindResult ? 1 : displayFindResult);

next(pending_requestFind_via_EnvFind) :=
case {

      invoke_requestFind_via_EnvFind
      & (next_state ~= requestFind)
      & pending_requestFind_via_EnvFind = 3):
            -1;
      invoke_requestFind_via_EnvFind
      & (next_state ~= requestFind) :
            pending_requestFind_via_EnvFind + 1;
      (~ invoke_requestFind_via_EnvFind)
      & (next_state = requestFind):
            pending_requestFind_via_EnvFind - 1;

default :
            pending_requestFind_via_EnvFind;
    };

next(announce_Find.flag) :=
case {

      state = requestFind : 1;
default : 0;

    };

  ...
}

IIL Component:

Turing Plus Component:

SMV Component:

IIL -> XML -> SMV
Transformation

IIL -> Turing Plus
Transformation

Fig. 13. Example transformation of Request Workstation component in ABLS from
IIL to Turing Plus and IIL to SMV
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tion 5.3 to go from IIL to XML and using our modified version of the Garlan
and Khersonsky Java tool to go from XML to SMV. In SMV the behaviour of
a component is modeled using case statements which define next values based
on the current state of the component. Due to space restrictions not all of the
SMV code for the request workstation is be shown in Figure 13.

UVCS. The UVCS IIL program contains four types of components: vehicle,
region, visualizer, and rules injector. Vehicle components contain information
including the identity, long-term goal, rule version, and position of the cor-
responding vehicle. A vehicle component is also responsible for transmitting
the identity, position, rule version, and short-term plan to other interested
components by announcing a VehicleInfo event. Region components collect
data on all vehicles in their region by receiving VehicleInfo events. This in-
formation is compiled to create a summary of information which is announced
as a RegionInfo event. The visualizer component gathers the summary in-
formation from all regions and displays it externally. The visualizer also has
the ability to zoom in on a region process by receiving events from vehicle
components. To avoid collisions the system supports a set of traffic rules to
govern the movement of vehicles. The version of the rules being used can be
updated by the rules injector component, which publishes new rules via event
announcement of the RulesInfo event. Vehicle components usually subscribe
to these events and listen for new versions of the traffic rules. To avoid rule
version conflict in the case of a possible collision, vehicles announce the version
of the rules they are using along with their short-term plan. If a collision is
possible, the traffic rules are used to decide which vehicle should wait. In case
vehicles are using different rule versions a default rule is used instead.

In our IIL representation of this system, there is only one visualizer component,
only one rules injector component, at least one region component, and possibly
multiple vehicle components. Figure 12(c) is a generalized representation of
the UVCS that shows the components of the system and their event-based
communication. The transformation of the IIL program to Turing Plus and
SMV was also used to evaluate our transformation framework. The UVCS
was over twice as large as either of the previously described examples which
unfortunately makes it infeasible to include any meaningful IIL, Turing Plus,
or SMV code.

6 Testing and Model Checking using the II Framework

We have discussed the programming, execution and verification artifacts and
the automated transformations used in our framework. We now detail how the
framework can be used in both testing and model checking.
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…
clock tick 3
EnvFind is being anounced
clock tick 4
Find is being anounced
clock tick 5
EnvPoll is being anounced
FindResult is being anounced
clock tick 6
FindResult is being received
Poll is being anounced
clock tick 7
EnvFind is being anounced
PollResult is being anounced
clock tick 8
EnvFind is being anounced
Find is being anounced
clock tick 9
EnvPoll is being anounced
Find is being anounced
FindResult is being anounced
clock tick 10
FindResult is being received
Poll is being anounced
...

…
clock tick 56
EnvRemove is being anounced
clock tick 57
setSize = 1
Delete is being anounced
clock tick 58
counter = 1
clock tick 59
clock tick 60
clock tick 61
EnvAdd is being anounced
clock tick 62
EnvRemove is being anounced
setSize = 3
Insert is being anounced
clock tick 63
counter = 3
setSize = 1
Delete is being anounced
clock tick 64
counter = 1
clock tick 65
clock tick 66
...

..
clock tick 2
clock tick 3
clock tick 4
clock tick 5
clock tick 6
clock tick 7
EnvRulesInfo is being anounced
clock tick 8
RulesInjector.ruleVersion = 3
RulesInfo1 is being anounced
RulesInfo2 is being anounced
RulesInfo3 is being anounced
RulesInfo4 is being anounced
RulesInfo5 is being anounced
clock tick 9
Vehicle1.ruleVersion = 3
Vehicle2.ruleVersion = 3
Vehicle3.ruleVersion = 3
Vehicle4.ruleVersion = 3
Vehicle5.ruleVersion = 3
clock tick 10
clock tick 11
clock tick 12
clock tick 13
...

(a) Set-Counter Execution (b) ABLS Execution (c) UVCS Execution

Fig. 14. Partial execution traces of Turing Plus code

6.1 Testing

Our first transformation converts an IIL program into a semantically equiva-
lent Turing Plus program which can then be compiled using the Turing Plus
compiler and concurrency library to an executable program. The result of ex-
ecuting this Turing Plus program is the production of an execution trace. For
purposes of validation, we used manual code instrumentation in the Turing
Plus program to output run-time information into the traces. For example, we
can see partial execution traces for each of our 3 examples in Figure 14.

In these examples we have as output the clock tick, the name of each an-
nounced event, and the new values of updated global and local variables.
Consider the Set-Counter trace in Figure 14(a) from clock tick 56 to clock tick
59. The trace shows an announcement of the EnvRemove event by the environ-
ment, which causes the number of elements in the set (the variable setSize)
to be decreased. The Set component then announces a Delete event which
is delivered to the Counter component causing the counter variable to be
decreased.

We have used execution traces to perform standard non-deterministic testing
on all three of our concurrent example II systems. Specifically, because Turing
Plus uses a randomized simulation scheduler, multiple executions of the same
program with the same inputs generally result in different execution traces, al-
lowing for bulk testing of many different concurrent executions. Moreover, our
Turing Plus programs are convenient for testing because the test harness for
environment events is generated automatically as part of our transformation.
We will discuss our testing results further in Section 6.2 when we compare
them to our model checking results.
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6.2 Model Checking

Our second automated transformation converts IIL programs to the XML
modelling representation and then to SMV finite state models for formal ver-
ification. We have verified a variety of liveness and safety properties in the
context of our IIL examples. IIL currently allows for expression of properties
written in Linear Temporal Logic (LTL) but we also have the ability to check
Computational Tree Logic (CTL). The LTL operators used in the expression
of properties are: X φ (in the next state φ holds), G φ (φ holds globally), F φ
(φ holds eventually), φ1 U φ2 (φ1 holds at least until φ2 does). Detailed results
of our model checking experiments are presented in a previous paper [6]. Next
we will highlight some of these results and explain them in the comparison to
our testing results.

Set-Counter model checking. In the Set-Counter System we verified 3
properties including AlwaysCatchesUp which determines if the number of
items in the set will eventually be equal to the value stored in the counter (G
F (setSize = c.counter)). We verified this property using several different
delivery policies including one in which all events are delivered immediately
(property verified to true), and others in which some event types are delivered
randomly. For a given Set-Counter System with a particular delivery policy,
we both verify the results and check them against all of the execution traces
of the Turing Plus program. For example, in Figure 14(a) we can see that
after each change in the value of the variable setSize the Insert or Delete
is announced by the Set component and delivered to the Counter compo-
nent where the variable counter is updated to reflect the change in the set.
In this case there does not appear to be any violations of the property Al-
waysCatchesUp. Note that the more execution traces we generate the higher
our confidence that the corresponding model checking result is correct.

ABLS model checking. In the ABLS the properties we verified include:

• Event Delivery Guarantees: We want to determine the number of transitions
required for the request workstation to receive a result from a command
such as Find. The FindCorrectnessImmediate property checks if the value
in the master workstation database is equivalent to the value received by
the request workstation in a FindResult event. Additionally, FindCorrect-
nessInNextState and FindCorrectnessInTwoStates test to see if the value
currently in the master workstation database is equivalent to the value re-
ceived by the request workstation in the next state and in two states.

• Multiple Event Correctness: The FindLookCorrectness property examines
the situation where the master workstation component sends the results of
a Find event in one state and then sends the results of a Look event in
the next state. Our property involves a Find on Badge 2 and a Look on
Location 1. We verify two specific cases to determine correctness: Badge 2
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Results Property Policy 1 Policy 2 
FindCorrectnessImmediate False False 

FindCorrectnessInNextState False True 
FindCorrectnessInTwoStates False False 

FindLookCorrectness False True 

Table 1
Analysis Results of ABLS System

is at Location 1 and no badge is at Location 1. In the case where Badge 2
is at Location 1 we verify that the location returned in the FindResult

event will be 1 and badgesAtLocation in the LookResult event will return
true indicating that at least one badge is in Location 1. In the case where no
badge is at Location 1 we verify that the FindResult event will not return
1 as the location for Badge 2 and badgesAtLocation will be false.

Table 1 presents analysis results for the above properties using two different
delivery policies. Policy 1 involves using immediate delivery for all events re-
lated to polling (Poll, PollResult) and using a random delivery for all events
related to command requests (Find, FindResult, Look, LookResult). Policy 2
is similar except polling events are delivered randomly and command requests
are delivered immediately. We are interested in these two policies to determine
a priority for event types. We achieve the same verification results for Policy
1 and Policy 2 except that Policy 2 can provide guarantees on the properties
FindCorrectnessInNextState and FindLookCorrectness. In our ABLS program
using Policy 2 it takes one state transition for the request workstation to re-
ceive the Find command results from the dispatcher. In other words, we can
guarantee that the location information received in a FindResult event is
equal to the location in the master workstation database exactly one state
ago. In Figure 14(b) we see partial execution trace that confirms that using
Policy 2 the FindResult event is received one clock tick after it is announced.
This execution trace also provides a counter example to the properties Find-
CorrectnessImmediate and FindCorrectnessInTwoStates. In conclusion, based
on the results of both model checking and testing Policy 2 provides a better
event type priority and is the appropriate choice for the ABLS system.

UVCS model checking. The properties that we verified for the UVCS in-
clude:

• ruleVersionCurrentandConsistentAlways: This property verifies that within
UVCS with 5 vehicles that all of the rules versions used by the vehicles are
equivalent to each other and equal to the current version.

• vehicleMovementCorrectness: This property is used to ensure that when a
vehicle moves from one region to another the change is handled correctly.
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Results Property Policy 1 Policy 2 Policy 3 
ruleVersionCurrentandConsistentAlways False False True 

vehicleMovementCorrectness True True True 
collisonAvoidanceGuaranteed False True False 

longTermGoalAchieved True True True 

Table 2
Analysis Results of UVCS System

• collisonAvoidanceGuaranteed: This safety property verifies that two vehicles
moving in the same region will never crash.

G (~(Vehicle1.currRegion = Vehicle2.currRegion)
| ~(Vehicle1.xpos = Vehicle2.xpos)
| ~(Vehicle1.ypos = Vehicle2.ypos))

• longTermGoalAchieved: This liveness property verifies that a vehicle will
reach its long term goal.

F ((Vehicle1.currRegion = Vehicle1.destRegion)
& (Vehicle1.xpos = Vehicle1.destxpos)
& (Vehicle1.ypos = Vehicle1.destypos))

We verified the above properties using three different delivery policies (see Ta-
ble 2 for verification results). The goal of this analysis was to determine which
of the delivery policies, when used, will cause the system properties to hold.
We use iterative model checking to determine an appropriate delivery pol-
icy. An interesting result of verifying the properties for the different delivery
policies is that it turned out that the properties collisionAvoidanceGuaran-
teed and ruleVersionCurrentandConsistentAlways conflict. Upon reaching a
conflict, using our Turing Plus test results is an ideal method to confirm our
analysis results. Figure 14(c) shows a partial execution trace instrumented to
output event announcement information and local variable values related to
our properties. The partial trace is related to Policy 3 and shows an instance
where the property ruleVersionCurrentandConsistentAlways is not violated.
Due to these analysis results, the requirements for the UVCS had to be weak-
ened. We discuss several solutions to this conflict in [6].

6.3 Future Directions

Although the design purpose of our IIL language and transformational frame-
work is the comparison and exploration of the synergy between testing and
verification, thus far we have primarily evaluated testing and model checking
independently. Next we plan to use our framework to explore the relation-
ship between testing and model checking. We believe that it provides a good
testbed for studying the synergies between these two verification and valida-
tion methods, and in particular can allow us to investigate questions such
as:
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To what extent can testing be used to increase confidence in model checking
results and in the correctness of the model checker? One possibility which
we have already been exploring is that for a given LTL or CTL property
we can generate and analyze execution traces to ensure that the traces do
not violate the property. This type of check would provide confidence that a
verified property does not conflict with the behavior of the real system.

Conversely, for a given execution trace we could represent the trace as a CTL
property and use model checking to verify that the trace is also possible in
the model. For example, we could represent the partial execution trace in
Figure 14(a) using the following CTL fragment. In the property fragment,
EXφ means that along at least one path, in the next state, φ holds.

...(EX EnvRemove & (EX SetSize=1
& (EX Delete & (EX counter=1
& (EX EnvAdd & (EnvRemove & ...

Might it be useful to integrate temporal logic properties into the testing effort
through, for instance, run-time safety analysis? One possibility would be to
use safety specifications of a program to automatically generate a run-time
monitor. For example, safety properties could be used to generate a monitor
that checks if a finite execution trace satisfies the property [16]. This type of
run-time monitor could also be used to increase confidence in model checking.

How can testing be used to simplify or optimize model checking? One of the
primary optimizations in model checking is decomposition. Testing could be
used to identify parts of the system which can safely be abstracted or removed
in the context of model checking a particular property. For example, if a
component is not used in a test trace it may be safe to remove it for the
verification. The abstraction would take place at the IIL level thus allowing for
us to check the testing and model checking results of the abstracted program
against the original testing results.

Can model checking be used to evaluate the coverage offered by a test suite?
Model checking could be used to guarantee output coverage in black box
testing. For a given variable we could verify that the variable will always take
on one of a set of values that covers the outputs. For example, if we wanted
to know if a variable output could be 10 when the program is done we could
analyze the system with respect to the following property to see if it is true.
In the property, EFφ means along at least one path, in some future state, φ
holds. Moreover, done is true if and only if the program has terminated.

EF (done & output=10)

Alternatively, we could model check the negation of the above property and
possibly get a counter example with information about input values that would
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cause the output variable to be 10 upon program termination.

Model checking could also provide guarantees in white box testing. For exam-
ple, if we wanted to provide statement coverage for an IIL program we could
instrument the program to include a program counter whose values would be
recorded in the execution trace produced by Turing Plus. If we noticed that
certain statements were not being covered we could determine that they are
unreachable. This could be done by using the model checker to verify that
the program counter is never set to the statements in question. If this is true
we can be more certain that we have statement coverage. If it is false and a
counter example is provided we can use the counter example to determine in-
put values that would cause the execution of the statements. Furthermore, we
could also use model checking for branch coverage. This would be similar to
statement coverage except that we would need to model check if it is possible
for the system to reach a state in which the program counter has a particular
value and a branch condition is true.

How good is model checking at finding program bugs in comparison to testing?
This question attempts to determine the difference between the quantity of
bugs found, the types of bugs found, and the efficiency of bug detection in
model checking vs. testing. One way to address this question is to use a tech-
nique such as mutation [17] to create versions of a program that each contain
a seeded syntactic fault. Mutation testing is a well known comparative tech-
nique for comparing different test suites and can be generalized to mutation
analysis where test suites can be compared to properties verified in formal
analysis tools such as model checkers.

Mutation analysis could be used to compare how good model checking is at
finding bugs in IIL programs in comparison to execution using Turing Plus.
For example, in the Remove() method of the Set component from our Set-
Counter System we could apply the following mutation:

if ((setSize-value) >= -1) // > has been changed to >=
{ ... }

We can then both test and model check the mutated version of the Set-Counter
System and compare the results to the original program to determine if any
differences were observed. A difference would indicate that the bug has been
detected. We are currently addressing this question in a separate research
project [18].

7 Related Work

Rapide[19] and Eventua[20] are other special-purpose languages for event-
based systems. Rapide is an executable architecture definition language in-
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tended for modeling the architectures of concurrent and distributed systems.
A Rapide program can include specification of different components within
the language or can be connected to implementations written in standard
programming languages. Eventua is an object-oriented language that includes
native support for events. Eventua programs can be transformed to the %$ς-
calculus for execution. Our work differs from these approaches in that we focus
on formal analysis in addition to execution traces.

As an alternative to using a special purpose language, it would be interest-
ing to explore using Java to represent event-based systems (e.g. using the
Message-Driven Thread API for Java[21], or publish/subscribe infrastructures
like Elvin[22] or Siena[23]). Our IIL work differs from this work because we
express implicit invocation semantics and verification conditions in custom
syntax rather than through library calls. Through the use of a single uniform
notation, the program, its execution and modelling are encoded much more
directly.

Furthermore, if we did explore using Java to represent event-based systems we
could leverage existing work on testing and model checking of Java programs.
On one hand, we could test the Java programs using an existing approach
to testing concurrent Java [24]. On the other hand, we could use the model
checker Bogor [25] (with the Bandera plugin [1]) to provide automatic transla-
tion and analysis. Our model checking approach differs in that we achieve all
our results using formal source transformation rules which at least in theory
allow for formal verification of the translations themselves.

Other existing work has proposed using formal source transformation to bridge
gaps between verification and practice. In our own previous research we have
used formal source transformation to extend the capabilities of the VeriSoft
C++ model checker to handle Java RMI verification [26], and at Microsoft
Research formal source transformation has been used to transform concur-
rent device drivers to sequential approximations that can be checked for some
concurrency properties using sequential model checking [27].

8 Conclusion

We have presented a uniform source transformation-based framework for spec-
ifying, testing, and model checking implicit-invocation (II) systems. It consists
of IIL, a special purpose high-level language for specifying II systems, and two
fully automatic, formally specified source translations: one to the Turing Plus
language for execution and testing, and one to the input language of a stan-
dard model checker for verification. The framework demonstrates how formal
source transformation can be used to combine the convenience of a special-
purpose language with the benefits of two complementary quality assurance
techniques: testing and model checking. Furthermore, it shows how the signif-
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icant gaps between artifacts can be bridged using transformation. Automatic
source translation makes the analysis in our framework less error prone, less
time consuming and more reliable.

The contribution of our work lies not only in the development of the trans-
formation framework but also in the opportunities for future research. The
framework provides an excellent testbed for exploring both automated trans-
formation and the synergies between testing and model checking.
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