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Abstract—A hurdle in the growth of model driven software
engineering is our ability to evaluate the quality of models auto-
matically. One perspective is that software quality is a function
of the existence, or lack thereof, of good and bad properties,
also known as patterns and antipatterns, respectively. In this
paper, we introduce the notion of using model clone detection
to detect model pattern and antipattern instances by looking
for models that are cross clones of pattern models. By detecting
patterns at the model level, analysis is accomplished earlier in
the engineering process, can be applied to primarily model-
based projects, and remains at the same level of abstraction that
engineers are used to. We outline the process of using model clone
detection for this purpose, including representing the patterns
and detection of instances. We present some Simulink examples
of pattern representations and discuss future work and research
in the area.

I. INTRODUCTION

Model-driven Engineering (MDE) is a relatively new ap-
proach to software development that entails higher-level ab-
stractions, or models, being used as the primary artifacts in
system development and management. This includes incorpo-
rating modeling in all four phases of Software Engineering:
requirements, design, implementation, and testing. By utilizing
artifacts at an abstraction level closer to the problem space
and hiding lower-level details, MDE can yield higher quality
systems, facilitate better communication among stakeholders,
and make project teams adaptable and flexible. MDE has
seen significant levels of adoption in many different domains,
including aviation, automotive, aerospace, and other high-
reliability embedded systems applications.

While MDE use is growing, and engineers and customers
are starting to experience the benefits of using model-based
techniques [1], there are still many obstacles to overcome.
One example is model quality evaluation, that is, the ability
to assess quality of the models and artifacts of interest across
the MDE life cycle [2], [3]. When it comes to more traditional
software engineering processes, such as those that center
around third generation programming languages, quality as-
surance is a well-researched and established area. In contrast,
much less is understood about quality assurance for models
in the MDE context. Improving our knowledge and making
it easier to reason about model quality is a necessary step in
continuing the growth of MDE.

One approach to assessing software quality involves detect-
ing the existence of design patterns [4] and antipatterns [5] in

projects. Design patterns and antipatterns describe good and
bad, respectively, ways of solving specific design questions in
software system development. Detecting them allows for sys-
tem analysts to automatically, or semi-automatically, identify
the presence or absence of desired and undesired properties
in their projects. They are typically based on pragmatic
experience and involve descriptions of when and where the
pattern/antipattern should be applied, implementation variants,
and justification. Often these patterns have an abstract repre-
sentation in model form [6], however, detection is generally
accomplished by evaluating code [7] or, in some cases, by
writing complex textual rules to evaluate models [8].

In this paper we argue that detection of pattern and an-
tipattern instances in models can be achieved using a special-
ized form of model comparison [9] known as model clone
detection [10]. Model comparison involves comparing models
and explicating both similarities and differences. Model clone
detection (MCD) involves identifying sets of models that are
similar within a given difference threshold. Traditional pattern-
detection approaches can be cumbersome, requiring system
analysts to switch between abstraction levels, and to delay
pattern and antipattern detection until late in the engineering
process. By using model clone detection, detection of model
patterns and antipatterns (1) can be done earlier in the software
life cycle, (2) can be applied to projects that are primarily or
purely model-based, and (3) stays at the same (model) level
of abstraction that the patterns and systems are defined in.

This paper presents our initial ideas on using MCD for
realizing detection of model patterns and antipatterns. Specif-
ically, we look at existing MCD approaches and how they can
be employed to detect patterns and antipatterns. Ideally, the
notions discussed in this paper will inspire further research into
using MCD or MCD-like approaches to improve the quality
of MDE software through direct detection of patterns and
antipatterns in models.

We begin by providing background information and related
work in the areas of model comparison, model clone detection,
and design patterns and antipatterns in Section II. We outline
the process of using MCD for the purposes of model design
pattern and antipattern detection in Section III, using Simulink
antipatterns as an example. Section IV highlights some future
work and research areas that are within our sights. The paper
is then concluded in Section V.



II. BACKGROUND AND RELATED WORK

A. Model Comparison and Model Clone Detection
Model comparison involves comparing and contrasting two

or more models in order to identify similarities and differences.
There are many tools and techniques for accomplishing model
comparison [11], but not all are well suited to assessing model
quality through model pattern detection.

For the purposes of this paper, we are concerned with the
first phase of model comparison, calculation. Calculation con-
sists of analyzing models to retrieve the information desired by
a particular comparison algorithm. For example, ascertaining
which elements are present in one model that are not present
in another, and vice versa. Kolovos et. al identify four different
categories of calculation, or matching, in model comparison
approaches [12]. The one most relevant and useful for de-
tecting model-based patterns in MDE projects is similarity-
based matching, which is accomplished by composing the
similarity of an element’s features with another element in
another model. The other categories of calculation would not
be ideal for model pattern detection, as they rely on unique
element identifiers, static properties/features of models, and/or
user pre-calculation configuration.

An example family of similarity-based matching model
comparison approaches that is on the rise is model clone
detection (MCD) [10]. MCD involves identifying clone pairs
or classes of models within an MDE project that are similar
up to a specific threshold. There are generally three types
of model clones[13]: Type 1, or exact clones, Type 2, or
renamed clones, and Type 3, or near-miss clones. MCD can
applied to various kinds of models and domains, with the most
mature MCD target being Simulink data-flow models [10],
[13], [14]. However, recently, there has been advancements in
MCD for other model types including various types of UML
models [15], [16], Stateflow models [17], [18], and others.
Similarly to model comparison approaches, MCD can be real-
ized using a variety of graph-based and text-based approaches,
each with their own unique advantages and disadvantages [11].

B. Design Patterns and Antipatterns
Design patterns express generic solutions for common prob-

lems or properties in software engineering and design, while
anti-patterns encode generic examples of bad practices or
properties that we want to avoid. Both can be used in many
domains for many different purposes, such as performance
prediction [19], multi-agent systems [20], Java enterprise sys-
tems [21], and many more. Each pattern or antipattern includes
a problem description and an abstraction of the solution that
allows it to be reused in various settings.

It is also generally accepted that the existence of patterns
and absence of antipatterns can be used as metrics in evalu-
ating the quality of a system [22]. Techniques for pattern and
antipattern detection often involve textual rules, for example
in Prolog, that investigate systems at either the code level [23],
[7], [24], [25] or the design level [26].

Consider the template design pattern [4] in Figure 1. This
pattern involves describing an algorithm in a more general

Fig. 1. Template Design Pattern [4]

way, while deferring some specific aspects of the algorithm
to subclasses or ’implementers’. As is done in many cases,
this design pattern is described and represented at the model
level. However, detection is most often done at the textual code
level. Some approaches [23], [24] extract textual metadata
from C++ classes and compare that metadata to the expected
metadata for the template design pattern. One architecture for
accomplishing this is presented in Figure 2. In this example,
Kramer and Prechelt [23] convert the design patterns into
Prolog rules and consider the C++ metadata as Prolog facts.
The rules are run as Prolog queries on the extracted facts and
instance candidates are presented to the user. Stoianov and
Sora [7] also use Prolog rules to analyze code and compare
the result to the expected design pattern. These approaches
differ from what we propose in this paper in that they use
textual rules and work on source code.

Another technique that performs “guideline” checks using
codified rule analysis is the Mate Project [27]. Rather than
using Prolog rules, they use visual model analysis rules and
UML activity diagrams to control the application of the
analysis to generate a Java implementation of the rules. Again,
this process involves textual analysis, whereas what we are
proposing in this paper is strictly model-based.

To detect design patterns, Tsantalis et al. [25] reverse
engineer code-based projects and develop a matrix represent-
ing the properties they are looking for. These matrices are
compared to a graph-based version of the code. They note
that the “convergence of the similarity algorithm depends on
the system graph size” and that “the time needed for the
calculation of similarity scores . . . can be prohibitive for large
systems.” Similarly, we conducted research using framework-
specific models [28] where we expressed Java Enterprise
Edition (J2EE) antipatterns as a framework specific model
(FSM) and checked for antipattern instances in specific J2EE
framework instances obtained through reverse engineering
code to obtain a model. In contrast to what we propose in
this paper, both these approaches reverse engineer the code,
and use a textual codification of the patterns or antipatterns.
The FSM approach works only with software frameworks.

The work of Wenzel and Kelter [29] relates most closely to
the techniques we propose in this paper. They also highlight
the issues with the translation of patterns into “non-familiar
formalisms” such as Prolog. To combat this, they employ
a form of similarity-based model comparison by defining



Fig. 2. Sample C++ Prolog Analyzer [23]

patterns as UML models and comparing those to existing
models, comparing the characteristics specific to the pattern
being detected. To do this, they convert all the models to
attributed type graphs and associate a weight to specific model
type properties, such as sharing the same package or super
class. They do not address antipatterns, but it is likely their
approach would still apply. While this work is an example of
detection of model-based patterns through model comparison,
it is defined for use on UML class models only; can see
notable performance hits when encountering heavily cyclic
graphs, which can appear in data-flow and behavioral models;
and can be accessed only within the FUJABA development
tool1. The MCD approaches we discuss in this paper have
been demonstrated for a variety of model types, can avoid
cyclic graph and sub-graph isomorphism issues [13], and can
have their results ’reported’ in a variety of formats to be used
by analysts using different tools.

For the remainder of the paper we use the terms pattern
and model pattern to refer to both model design patterns and
antipatterns, unless explicitly indicated.

III. USING MCD FOR MODEL DESIGN PATTERN AND
ANTIPATTERN DETECTION

Our proposed process involves defining and representing
each pattern of interest as a model or set of models, storing
those patterns in their own project and running a MCD tool
to detect cross clones between that pattern project and the
projects of interest. This follows a similar framework to our
DebCheck [30] tool, which uses cross cloning to find licensing
issues in code-based software systems. For our modelling
purposes, this can be accomplished using an appropriate and
validated similarity threshold and viewing cross-clones of
each respective pattern model as instances of that pattern.
This section summarizes that process and gives examples of
Simulink antipatterns and how they can be represented in
model form.

A. Design Pattern and Antipattern Model Representation

Similarly to Wenzel and Kelter’s [29] model comparison
method, using MCD to assess quality through model pattern
detection can be realized by expressing the patterns or antipat-
terns as a model to be compared to other models.

In order for this notion to be feasible, we first must consider
how the patterns will be represented. To do so, we require
a corpus of model representations for known patterns. This
is quite practical, as many patterns are defined and can be

1http://www.fujaba.de/

Fig. 3. Example of the Dredge Antipattern [31]

identified at the design/modeling level. Some patterns have
high-level general model definitions that cover all cases of the
respective pattern, while others are defined in an example-
driven manner. In the case of the former, a single, but
representative, instance of that general model can treated as
the model to compare to the system’s models and used for
detection and quality evaluation.

Consider the patterns defined in Gamma et al.’s design
pattern book [4]. In many cases patterns are presented using
a set of model instances rather than a a single generalized or
abstract model pattern. All that is required is to represent these
instances and their defining properties in the appropriate model
form for the specific MCD tool. In cases where the patterns
are defined using example models rather than a higher-level
general model, most of the work is already done.

For example, consider the “Dredge” J2EE antipattern [31] in
Figure 3. The general form of this antipattern involves a long
list of Enterprise Java Bean (EJB) entities contained within
deep graphs. The problem with this is that there will be many
database fetches. Figure 3 contains an example model adhering
to the general description of this antipattern, where we have
many EJB entities with relationships to others. The refactoring
of this antipattern, not shown, involves combining the EJBs
in the Figure into two “lighter” EJBs, “AddressLight” and
“CustomerLight”, in order to reduce fetches. From a MCD
perspective, the model representations for this antipattern can
be expressed as a set of models representing potential “bad
sizes” of lists of connected entities, or, alternatively, the
required similarity to one representative model can be tuned
to find potential antipattern instances.

B. Detecting Instances using MCD

Early model clone detection approaches [10], [16] may
not be useful in their current form as they can detect Type
1 (exact) clones only. This means that our defined pattern
models would have to be identical matches to potential pattern
instances. Although, as shown in the extension done by Al-
Batran et al. [32], it may be possible to use semantics-based



normalization techniques to establish a semantic correspon-
dence between known patterns and a normalized representation
of the models under study. For example, if we wanted to detect
the Composite Pattern[4] or other design patterns, we could
represent the pattern in a normalized form and look for both
syntactic or semantic matches in our models.

On the other hand, newer model clone detection approaches
that are able to detect Type 2 (renamed) and Type 3 (near-
miss) clones [13], [15], [17], [14] are ideally suited for this
task. For simpler, more purely structure-based patterns, the
detected instances will be examples of Type 2 clones of the
pattern, in that the structure of both the pattern model and the
models being analyzed will be identical, but the element names
or types will be different. In more complex model patterns
that have more flexibility in their definitions and relationships,
Type 3 (near-miss) clones of the pattern models will indicate
potential pattern instances that can be verified by a specialist.
Thus, we conclude that only Type 2 and Type 3 clones should
be used for model pattern detection.

C. Example: Simulink Antipatterns

In this section, we present examples of Simulink antipattern
representations and discuss how detection of instances of these
can be implemented using MCD. We focus specifically on
Simulink because (1) no one has yet achieved model pattern or
antipattern detection for it; (2) Simulink is of particular interest
to our industrial partners; and (3) we have previously devel-
oped a Simulink near-miss MCD tool, Simone [13], that we
are familiar with and has been quantitatively evaluated [33].
In the future, we plan on implementing these model antipat-
tern representations in Simulink and executing our detection
process on our industrial and open-source models.

Based on their industrial experience and extending existing
antipattern research on traditional code-based antipatterns,
Tran and Kreuz [34] have developed a corpus of Simulink
model antipatterns. They outline briefly, but without actual
models or examples in Simulink, analogies of corresponding
code-based antipatterns, and proposals for how to refactor
them. They do not discuss or present any way of detecting
them, rather they focus strictly on refactoring the models once
instances of the antipatterns are discovered. Here we present
a small set of potential Simulink model antipattern represen-
tations corresponding to a small selection of antipatterns in
Tran and Kreuz’s corpus.

1) Primitive Obsession: The Primitive Obsession antipat-
tern is characterized by a project that has small subsystems
encapsulating simple, or even primitive, calculations. In Fig-
ure 4, we present four potential Simulink representations, each
its own subsystem, that we could use for cross cloning to detect
primitive obsession antipattern instances. In our examples, the
blocks have Simulink default names, which will be ignored
by any model clone detector capable of detecting Type 2 or 3
clones.

2) Block/Signal Clumps: The Block/Signal Clumps an-
tipattern involves a set of primitive blocks or signals that
often appear together in various locations in a project. Since

Fig. 5. Block/Signal Clumps Antipattern Simulink Example

these are not encapsulated, in either a bus or subsystem, this
increases the numbers of ports and the sizes of subsystems.
Model clone detection detects this antipattern, in the generic
sense, by default in that commonly recurring groups of blocks
are always identified by MCD. However, if there were a
specific clump of blocks/signals that we wanted to identify,
we could include a clump in our pattern project/library, such
as the one presented in Figure 5, and find all instances of that
clump by detecting near-miss model clones at the block level.

3) Other Examples: Other interesting examples of Simulink
antipatterns identified by Tran and Kreuz include the Middle
Man and Inappropriate Intimacy. Middle Man occurs when
a subsystem is essentially a delegate and not contributing
significantly to the overall behavior of the system. A Simulink
representation of it for MCD purposes might include a sub-
system containing many inports connected directly to out-
ports that are not part of some virtual or non-virtual bus.
Inappropriate Intimacy involves a scenario where two systems
are too highly coupled together. For detecting Inappropriate
Intimacy, pattern models containing subsystems connected to
one another through a varying number of connections can be
developed.

IV. AREAS OF RESEARCH AND FUTURE WORK

A. Simulink Antipattern Detection Using MCD

In the near future, we will be conducting research on detect-
ing antipatterns in Simulink using Simone and developing an
evaluated proof of concept prototype. This involves extending
the preliminary list provided by Tran and Kreuz [34], devising
and refining Simulink antipattern representations, and speaking
to our industrial partners and other domain experts about
other Simulink antipatterns of interest. The refinement of
model antipattern representations involves developing potential
pattern models and attempting to minimize the number of false
positives encountered when performing MCD on those pattern
models cross cloned with open-source and industrial projects.
We will then present these representations to the modeling
community at large for feedback, and formalize and package
the Simulink antipattern detection process for adoption in both
industry and research. We focus on model antipatterns for
Simulink because these appear to be an important topic to
both researchers and industry.

Another source of antipatterns that we can leverage for
potential model clone targets is the MathWorks Automotive
Advisory Board’s modeling style guidelines2. These style
guidelines include roughly eighty guidelines, some of which
can be modeled as antipatterns.

2http://www.mathworks.com/solutions/automotive/standards/maab.html



Fig. 4. Primitive Obsession Antipattern Simulink Examples

B. Semantically Equivalent Pattern Instances

The majority of MCD research thus far identifies structural
clones only. While structure in these models often describe
behavior, there is also the new notion of Type 4, semanti-
cally equivalent, clones. These clones occur when two very
structurally different models exhibit identical behavior. From
a pattern detection perspective, this is an interesting area
of research because there may be models that meet the
criteria of a pattern from a semantic perspective but have very
little structural similarity to the definition of the pattern. Al-
Batran et al. [32] present forty semantics-preserving Simulink
transformations that illustrate this possibility. Evaluation using
current MCD technologies or any type of model comparison
would miss instances of both patterns and antipatterns that
were semantically equivalent but structurally different beyond
a defined threshold.

C. Using MCD for Model Pattern and Antipattern Mining

Model pattern inference involves discovering new libraries
of patterns by looking at a large number of existing model-
driven systems, extracting instances of common reuse, and
evaluating these instances to determine if they are “good” or
“bad” according to a domain expert. It may be hard to define
what one is looking for in terms of “new” model patterns. A
good starting point could be to think of model patterns as the
model representation of traditional patterns similar to those
associated with software code [5], [4], [35] for those that do
not yet have a model-based definition.

For pattern inference, MCD approaches capable of detecting
Type 1 clones only are not likely to be of use. This is because
we are not looking for identical elements, but rather for those
with similar intention in being constructed a certain way.
What is most promising are MCD approaches that detect Type
2 and Type 3 clones. The similarity threshold and sample
patterns can be tailored to fit the general types of patterns
or sub-structures desired, possibly by extending techniques to
consider semantic information. For behavioral models, model
clone detection techniques could yield some interesting results
as they are already designed to match the largest common
subsequences of elements. If we look at the semantics of the
clones extracted, likely through the assistance of a domain
expert and the techniques discussed by Al-Batran et al. [32],
we may be able to deduce model pattern- or antipattern-
like sub graphs. A first approximation to this idea has been
implemented by Antony et al. [15], who used model clone de-
tection to find instances of potential security threats in design-

recovered behavioral models of web application interactions.

D. Challenges

One challenge relates to representing the patterns in model
form for clone detection and evaluating the process we lay
out in this paper. It is important that both the model being
chosen to represent the model pattern and the clone similarity
threshold being used by an MCD tool retains the essence of
the pattern, while still capturing as many pattern instances
as possible. In other words, we want our model pattern
representations and tool configurations to yield both high
precision and high recall for each pattern. Early on, this can be
accomplished informally and manually by experimentation and
consulting with Simulink users. Eventually, the evaluation of
precision and recall for model pattern detection, and evaluation
of our proposed approach may be achieved quantitatively and
automatically, as we have done in the past for MCD tool
evaluation [33].

There may be some patterns that are more challenging to
represent in a single model or set of models. For example, the
“Divergent Change” Simulink antipattern [34] is when there
is a single subsystem that “needs to be modified by many
different types of changes”. From a structural perspective, it is
not immediately clear what set or sets of models could be used
to encapsulate this antipattern. It may dictate a situation where
a model pattern representation should employ a Simulink
variation block3 to account for multiple possibilities and block
types.

Lastly, MCD for model types other than Simulink are only
now beginning to emerge and mature. This lack of maturity
is an inhibiting factor to realizing MCD-based model pattern
detection for other model types.

V. CONCLUSION

Establishing model quality is an important step in cultivating
the growth of MDE. One way of accomplishing this step is to
have a facility for detecting both patterns and antipatterns at
the modelling level. Almost all approaches thus far perform
pattern detection on code or use textual rules, like Prolog
or Java, to analyze models. In this paper, we propose using
model clone detection (MCD), a form of model comparison, to
detect model patterns directly using models only. This allows
for analysis on primarily model-based projects, earlier quality
assessment in the software engineering process, and keeps the
level of abstraction consistent for analyzers and engineers.

3http://www.mathworks.com/help/simulink/slref/variantsubsystem.html



The process of using MCD for detecting instances of model
patterns begins by devising a representative form of each
model pattern being searched for. When a design pattern is
defined in a general/high-level sense, we need to instantiate a
concrete instance of that pattern and ensure both the instance
and similarity threshold of the MCD tool afford us high
recall. If the pattern definition is a specific example model
or set of models, we need only to create those models in our
modeling notation. After we set up our “pattern models” for
cross cloning with the systems under analysis, we can then
configure and execute an MCD tool to look for Type 2 and
Type 3 clones only. All model clones in the same clone class
as a pattern model can be interpreted to be an instance of that
pattern. After outlining this process, we presented examples
of potential Simulink antipattern models.

Our immediate plan involves realizing Simulink antipattern
detection by constructing Simulink antipattern representations,
configuring and executing our Simulink MCD tool, evaluating
both our proposed process and the results, and repeating
and refining that process. We plan on having much of this
completed by the time of the workshop and presenting it
in future papers. Areas of future work and research include
detecting structurally different pattern instances, antipattern
detection of other model types as their respective MCD tools
mature, and addressing the research challenges we mentioned
above. Overall, it is our position that using MCD for model
pattern and antipattern detection can help further our ability to
automatically evaluate model quality, thus helping to evolve
the field of MDE.
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