
A Survey of Grammatical Inference in Software

Engineering

Andrew Stevenson, James R. Cordy

School of Computing
Queen’s University

Kingston, Ontario, Canada K7L 3N6

Abstract

Grammatical inference – used successfully in a variety of fields such as pattern
recognition, computational biology and natural language processing – is the
process of automatically inferring a grammar by examining the sentences of
an unknown language. Software engineering can also benefit from grammatical
inference. Unlike these other fields, which use grammars as a convenient tool
to model naturally occuring patterns, software engineering treats grammars as
first-class objects typically created and maintained for a specific purpose by
human designers. We introduce the theory of grammatical inference and review
the state of the art as it relates to software engineering.

Keywords: grammatical inference, software engineering, grammar induction

1. Introduction

The human brain is extremely adept at seeing patterns by generalizing from
specific examples, a process known as inductive reasoning. This is precisely the
idea behind grammatical induction, also known as grammatical inference, where
the specific examples are sentences and the patterns are grammars. Grammat-
ical inference can be described concisely: ”The learning task is to identify a
”correct” grammar for the (unknown) target language, given a finite number of
examples of the language” [74].

The main challenge of identifying a language of infinite cardinality from
a finite set of examples is knowing when to generalize and when to specialize.
Most inference techniques begin with the given sample strings and make a series
of generalizations from them. These generalizations are typically accomplished
by some form of state-merging (in finite automata), or non-terminal merging
(in context-free grammars).

Email addresses: andrews@cs.queensu.ca (Andrew Stevenson), cordy@cs.queensu.ca

(James R. Cordy)

Preprint submitted to Science of Computer Programming September 23, 2013

Grammatical inference techniques are used to solve practical problems in
a variety of di↵erent fields: pattern recognition, computational biology, nat-
ural language processing and acquisition, programming language design, data
mining, and machine learning. Software engineering, in particular software lan-
guage engineering, is uniquely qualified to benefit because it treats grammars
as first-class objects with an intrinsic value rather than simply as a convenient
mechanism to model patterns in some other subject of interest.

Historically there have been two main groups of contributors to the field of
grammatical inference: theorists and empiricists. Theorists consider language
classes and learning models of varying expressiveness and power, attempting to
firm up the boundaries of what is learnable and how e�ciently it can be learned,
whereas empiricists start with a practical problem and, by solving it, find that
they have made a contribution to grammatical inference research.

Grammatical inference is, intuitively as well as provably, a di�cult problem
to solve. The precise di�culty of a particular inference problem is dictated by
two things: the complexity of the target language, and the information avail-
able to the inference algorithm about the target language. Naturally, simpler
languages and more information both lead to easier inference problems. Most
of the theoretical literature in this field investigates some specific combination
of language class and learning model, and presents results for that combination.

In Section 2 we describe di↵erent learning models along with the type of
information they make available to the inference algorithm. In Section 3 we
explore the learnability, decidability, and computational complexity of di↵erent
learning models applied to language classes of interest in software engineer-
ing: finite state machines and context-free grammars. Section 4 discusses the
relationship between theoretical and empirical approaches, and gives several
practical examples of grammatical inference in software engineering. In Sec-
tion 5 we list the related surveys, bibliographies, and commentaries on the field
of grammatical inference and briefly mention the emphasis of each. Finally,
in Section 6 we discuss the main challenges currently facing software engineers
trying to adopt grammatical inference techniques, and suggest future research
directions to address these challenges.

This survey builds on our previous overview [75] by expanding Section 4, in
particular the inference of grammars from execution traces. We also include a
discussion on the benefits of GI to other grammar-based systems in Section 6.

2. Learning Models

The type of learning model used by an inference method is fundamental when
investigating the theoretical limitations of an inference problem. This section
covers the main learning models used in grammatical inference and discusses
their strengths and weaknesses.

Section 2.1 describes identification in the limit, a learning model which allows
the inference algorithm to converge on the target grammar given a su�ciently
large quantity of sample strings. Section 2.2 introduces a teacher who knows

2

the target language and can answer particular types of queries from the learner.
This learning model is, in many cases, more powerful than learning from sample
strings alone. Finally, Section 2.3 discusses the PAC learning model, an elegant
method that attempts to find an optimal compromise between accuracy and
certainty. Di↵erent aspects of these learning models can be combined and should
not be thought of as mutually exclusive.

2.1. Identification in the limit

The field of grammatical inference began in earnest with E.M. Gold’s 1967
paper, titled “Language Identification in the Limit” [34]. This learning model
provides the inference algorithm with a sequence of strings one at a time, col-
lectively known as a presentation. There are two types of presentation: positive
presentation, where the strings in the sequence are in the target language; and
complete presentation, where the sequence also contains strings that are not in
the target language and are marked as such. After seeing each string the infer-
ence algorithm can hypothesize a new grammar that satisfies all of the strings
seen so far, i.e. a grammar that generates all the positive examples and none
of the negative examples. The term “information” is often used synonymously
with “presentation” (e.g. positive information and positive presentation mean
the same thing).

The more samples that are presented to the inference algorithm the better
it can approximate the target language, until eventually it will converge on the
target language exactly. Gold showed that an inference algorithm can identify
an unknown language in the limit from complete information in a finite number
of steps. However, the inference algorithm will not know when it has correctly
identified the language because there is always the possibility the next sample
it sees will invalidate its latest hypothesis.

Positive information alone is much less powerful, and Gold showed that any
superfinite class of languages cannot be identified in the limit from positive
presentation. A superfinite class of languages is a class that contains all finite
languages and at least one infinite language. The regular languages are a su-
perfinite class, indicating that even the simplest language class in Chomsky’s
hierarchy of languages is not learnable from positive information alone.

There has been much research devoted to learning from positive informa-
tion because the availability of negative examples is rare in practice. However,
the di�culty of learning from positive data is in the risk of overgeneralization,
learning a language strictly larger than the target language. Angluin o↵ers a
means to avoid overgeneralization via “tell-tales”, a unique set of strings that
distinguish a language from other languages in its family [4]. She states condi-
tions for the language family that, if true, guarantee that if the tell-tale strings
are included in the positive presentation seen so far by the inference algorithm
then it can be sure its current guess is not an overgeneralization.

2.2. Teacher and Queries

This learning model is similar in spirit to the game “twenty questions” and
uses a teacher, also called an oracle, who knows the target language and an-

3

swers queries from the inference algorithm. In practice, the teacher is often a
human who knows the target language and aids the inference algorithm, but in
theory can be any process hidden from the inference algorithm that can answer
particular types of questions. Angluin describes six types of queries that can be
asked of the teacher, two of which have a significant impact on language learn-
ing: membership and equivalence [8]. A teacher that answers both membership
and equivalence queries is said to be a minimally adequate teacher because she
is su�cient to help identify DFAs in polynomial time without requiring any
examples from the target language [7].

For a membership query, the inference algorithm presents a string to the
teacher who responds with “yes” if the string is in the language or “no” if it is
not. Likewise for an equivalence query, the inference algorithm presents a gram-
mar hypothesis to the teacher who answers “yes” or “no” if the guess is equiv-
alent to the target grammar or not. In the case when the teacher answers “no”
she also provides a counter-example, a string from the symmetric di↵erence of
the target language and the guessed language, allowing the inference algorithm
to zero in on the target grammar. The symmetric di↵erence of two sets A and
B are the elements in either A or B but not both: A

L
B = (A[B)� (A\B).

Queries provide an alternate means to measure the learnability of a class of
languages. They can be used on their own or in conjunction with a presentation
of samples, either positive or complete, to augment the abilities of the learner.
Section 3 discusses how learning with queries di↵ers in di�culty from learning
in the limit for various language classes.

2.3. PAC Learning

In 1984 Valiant proposed the Probably Approximately Correct (PAC) learn-
ing model [77]. This model has elements of both identification in the limit and
learning from an oracle, but di↵ers because it doesn’t guarantee exact identifica-
tion with certainty. As its name implies, PAC learning measures the correctness
of its result by two user-defined parameters, ✏ and �, representing accuracy and
confidence respectively. This learning model is quite general and thus uses di↵er-
ent terminology than typically found in formal languages, but of course applies
just as well to grammatical inference. The goal is still to learn a “concept”
(grammar) from a set of “examples of a concept” (strings).

Valiant assumes there exists a (possibly unknown) distribution D over the
examples of a target concept that represent how likely they are to naturally
occur, and makes available to the inference algorithm a procedure that returns
these examples according to this distribution. As with Gold’s identification in
the limit, PAC learning incrementally approaches the target concept with more
accurate guesses over time.

A metric is proposed to measure the distance between two concepts, de-
fined as the sum of probabilities D(w) for all w in the symmetric di↵erence of
L(G) and L(G0). In Figure 1, the lightly shaded regions represent the symmetric
di↵erence between L(G) and L(G0). The area of this region decreases as the dis-
tance between the two concepts decreases. In the case of grammatical inference,

4

Figure 1: The PAC-learning measure of distance between two language concepts

these two concepts refer to the target grammar and the inference algorithm’s
current guess.

The PAC learning model’s criteria for a successful inference algorithm is
one that can confidently (i.e. with probability at least 1 � �) guess a concept
with high accuracy (i.e. distance to the target concept is less than ✏). Valiant
demonstrates the PAC learning model with a polynomial time algorithm that
approximates bounded conjunctive normal form (k-CNF) and monotone dis-
junctive normal form (DNF) expressions using just the positive presentation
from D and a membership oracle.

The novelty and uniqueness of Valiant’s model intrigued the grammatical
inference community, but negative and NP-hardness equivalence results (e.g.
[46, 68]) dampened enthusiasm for PAC learning. Many feel Valiant’s stipu-
lation that the algorithm must learn polynomially under all distributions is
too stringent to be practical since the learnability of many apparently simple
concept classes are either known to be NP-hard, or at least not known to be
polynomially learnable for all distributions.

Li and Vitanyi propose a modification to the PAC learning model that only
considers simple distributions [57]. These distributions return simple exam-
ples with high probability and complex examples with low probability, where
simplicity is measured by Kolmogorov complexity. Intuition is that simple ex-
amples speed learning. This is corroborated by instances of concepts given by
the authors that are polynomially learnable under simple distributions but not
known to be polynomially learnable under Valiant’s more general distribution
assumptions.

Despite the learnability improvements that simple PAC learning o↵ers, the
PAC learning model has attracted little interest from grammatical inference

5

researchers in recent years. Identification in the limit and query-based learning
models remain far more prevalent, with newer models such as neural networks
and evolutionary algorithms also garnering interest.

3. Complexity

A significant portion of the grammatical inference literature is dedicated to
an analysis of its complexity and di�culty, with results typically stated for a
specific grammar class or type. The broadest form of result is simply whether
a language class can be learned or not, while other results consider learning
in polynomial time, learning the simplest grammar for the target language, or
identifying the target language with a particular probability. Table 1 outlines
the complexity results for di↵erent language classes and learning models.

Gold showed that a large class of languages can be identified in the limit from
complete information including the regular, context-free, context-sensitive, and
primitive recursive classes. This identification can be accomplished by a brute-
force style of technique called identification by enumeration where, as each new
example is presented, the possible grammars are enumerated until one is found
that satisfies the presentation seen so far. By contrast, positive information
alone cannot identify the aforementioned classes in the limit, nor any other su-
perfinite class [34]. The subsequent sections describe the two easiest grammar
classes to infer from the Chomsky hierarchy: regular grammars and context-free
grammars. While small context-sensitive extensions to context-free grammars
are common as features of source processing systems, little theoretical research
has been attempted on the inference of context-sensitive and unrestricted gram-
mars classes so they are omitted from this overview.

3.1. Deterministic Finite Automata

For any non-trivial language, multiple di↵erent grammars can be constructed
to generate it. Likewise, there can exist DFAs that di↵er in their size but are
equivalent in the sense that they accept the same language. When inferring
a DFA from examples, it is naturally desirable to find the smallest DFA that
accepts the target language. There exists only one such minimal DFA for a given
language, known as the canonical DFA acceptor for that language. Despite the
strong identification power of complete information, finding the minimal DFA
that accepts an unknown regular language from a finite set of positive and
negative samples is NP-complete [35].

Early claims of polynomial-time inference algorithms use the number of
states in the target language’s canonical acceptor as the input size. With this
criteria, Angluin gives negative results for the polynomial identification of regu-
lar languages using membership queries only [5] or equivalence queries only [9].
However, if the membership oracle is augmented with a representative sample
of positive data, a set of strings that exercise all the live transitions in the target
language’s canonical acceptor, then it is possible to identify a regular language in
polynomial time [5]. By combining the power of both membership and equiv-
alence queries, a regular language can be identified in polynomial time even

6

Language Presentation Queries
Class Complete Positive Membership

Only
Equivalence
Only

Both

Finite Identifiable
in the
limit [34]

Identifiable
in the
limit [34]

k-reversible
automata

Polynomial
[6]

Strictly
deterministic
automata

Identifiable
in the
limit [83]

Superfinite Identifiable
in the
limit [34]

Not
identifiable
in the
limit [34]

Regular Finding the
minimum
state DFA
is NP-hard
[35]

Polynomial
for
representative
sample [5]

No
polynomial
algorithm
[9]

Polynomial
[7]

Polynomial [18]
Reversible
context-
free

Identifiable
in the
limit with
structured
strings [73]

Noncounting
context-
free

Identifiable
with
structured
strings [21]

Very simple Polynomial
identifi-
able in the
limit [82]

Polynomial
[82]

Structurally
reversible
context-
free

Polynomial
[14]

Simple de-
terministic

Polynomial
[40]

Context-
free

As hard as
inverting
RSA [10]

Polynomial
with
structured
strings
[72]

Table 1: Learnability and complexity results for various language classes using di↵erent learn-

ing models

7

without a single positive example in the unknown language [7]. Her proposed
algorithm runs in time polynomial to the number of states in the minimum DFA
and the longest counter-example provided by the equivalence oracle.

Several algorithms have been developed for the inference of DFAs from ex-
amples. These algorithms generally start by building an augmented prefix tree
acceptor from positive and negative samples, then perform a series of state
merges until all valid merges are exhausted. Each state merge has the e↵ect
of generalizing the language accepted by the DFA. The algorithms di↵er by
how they select the next states to merge, constraints on the input samples, and
whether or not they guarantee the inference of a minimal DFA.

An early state-merging algorithm is described by Trakhtenbrot and Barzdin
that infers a minimal DFA in polynomial time, but requires that all strings up to
a certain length are labeled as positive or negative [76]. The regular positive and
negative inference (RPNI) algorithm also finds the canonical acceptor but allows
an incomplete labeling of positive and negative examples which is more common
in practice [67]. RPNI does, however, require the positive examples contain a
characteristic set with respect to the target acceptor. A characteristic set is
a finite set of positive examples S ⇢ L(A) such that there is no other smaller
automata A0 where S ⇢ L(A0) ⇢ L(A). Lang provides convincing empirical
evidence that his exbar algorithm out-performs comparable algorithms, and
represents the state of the art in minimal DFA inference [51].

The algorithms discussed so far are guaranteed to infer a minimal DFA for
the given examples, but evidence driven state merging (EDSM) algorithms relax
this requirement for better scalability and performance. The order that states in
a prefix tree are merged has a significant impact on an algorithm’s performance
because each merge restricts possible future merges. Bad merge decisions cause
a lot of backtracking that can be avoided with smarter merge decisions. EDSM
algorithms are so named because they use evidence from the merge candidates to
determine a merge that is likely to be a good generalization, such as the heuristic
proposed by Rodney Price in the first EDSM algorithm [52] and a winner of
the Abbadingo Learning Competition. Di↵erences in EDSM algorithms come
down to the search heuristic used to select merges, and several have been tried
such as beam search [51], stochastic search and the self-adaptive greedy estimate
(SAGE) algorithm [45]. These search heuristics are comparable in performance
and are the best known inference algorithms for large or complex DFAs.

3.2. Context-free grammars

Polynomial-time algorithms to learn higher grammar classes have also been
investigated, in particular for context-free grammars. Unlike DFA inference,
there is currently no known polynomial algorithm to identify a general context-
free language from positive and negative samples, so most polynomial results in
the literature either learn a strict subset of context-free grammars, use struc-
tured strings as input, or both.

Angluin and Kharitonov give a hardness result that applies to all context-
free languages: constructing a polynomial-time learning algorithm for context-

8

free grammars using membership queries only is computationally equivalent to
cracking well-known cryptographic systems, such as RSA inversion [10].

Anecdotally, it appears a fruitful method to find polynomial-time learning
algorithms for context-free languages from positive samples is to adapt corre-
sponding algorithms from DFA inference, with the added stipulation that the
sample strings be structured. A structured string is a string along with its un-
labelled derivation tree, or equivalently a string with nested brackets to denote
the shape of its derivation tree. Sakakibara has shown this method e↵ective by
adapting Angluin’s results for learning DFAs by a minimally adequate teacher
[7] and learning reversible automata [6] to context-free variants with structured
strings [72, 73].

Clark et al. have devised a polynomial algorithm for the inference of lan-
guages that exhibit two special characteristics: the finite context property and
the finite kernel property [18]. These properties are exhibited by all regular
languages, many context-free languages, and some context-sensitive languages.
The algorithm is based on positive data and a membership oracle. More re-
cently, Clark has extended Angluin’s result [7] of learning regular languages
with membership and equivalence queries to a larger subclass of context-free
languages [17].

Despite the absence of a general e�cient context-free inference algorithm,
many researchers have developed heuristics that provide relatively good perfor-
mance and accuracy by sacrificing exact identification in all cases. We describe
several such approaches related to software engineering in Section 4.

4. Applications in Software Engineering

Grammatical inference has its roots in a variety of separate fields, a testa-
ment to its wide applicability. Implementors of grammatical inference appli-
cations often have an unfair advantage over purely theoretical GI research be-
cause theorists must restrict themselves to inferring abstract machines (DFAs,
context-free grammars, transducers, etc.) making no additional assumptions
about the underlying structure of the data. Empiricists, on the other hand, can
make many more assumptions about the structure of their data because their
inference problem is limited to their particular domain.

Researchers attempting to solve a practical inference problem will usually
develop their own custom solution, taking advantage of structural assumptions
about their data. Often this additional domain knowledge is su�cient to over-
come inference problems that theorists have proved impossible or infeasible with
the same techniques in a general environment. The applications described in
the following sections use grammatical inference techniques, but rarely result
from applying a purely theoretical result to a practical problem.

4.1. Inference of General Purpose Programming Languages

Programming language design is an obvious area to benefit from grammati-
cal inference because grammars themselves are first-class objects. Programming

9

languages almost universally employ context-free, non-stochastic grammars to
parse a program, which narrows the possible inference approaches considerably
when looking for an inductive solution. When discussing the inference of pro-
gramming language grammars here, the terms “sample” and “example” refer to
instances of computer programs written in the target programming language.

Crespi-Reghizzi et al. suggest an interactive system to semi-automatically
generate a programming language grammar from program samples [22]. This
system relies heavily on the language designer to help the algorithm converge on
the target language by asking for appropriate positive and negative examples.
Every time the learning algorithm conjectures a new grammar, it outputs all
sentences for that grammar up to a certain length. If the conjectured grammar
is too large, there will be sentences in the output that don’t belong and the
designer marks them as such. If the conjectured grammar is too small, there
will be sentences missing from the output and the designer is expected to provide
them. This latter task is significantly more di�cult because the cognitive burden
of creating correct missing sentences is much greater than identifying flaws in
existing sentences. A modern technique to alleviate this burden is to mutate
programs in the positive set to automatically produce examples for the negative
set. The designer’s corrections are finally fed back into the algorithm which
corrects the grammar and outputs a new conjecture, and the process repeats
until the target grammar is obtained.

Another system is proposed by Dubey et al. to infer a context-free grammar
from positive samples for a programming language dialect when the standard
language grammar is already known [29]. Their algorithm requires the non-
terminals in the dialect grammar to be unchanged from the standard grammar,
but allows for the terminals and production rules to be extended in the di-
alect grammar (i.e. new keywords can be added in the dialect along with their
associated grammar rules). Their approach has the advantage of being fully
automated so the designer simply needs to provide the dialect program samples
and the standard language grammar. The authors have improved their original
heuristic-based inference algorithm to a deterministic one that guarantees the
output grammar parses all sample programs in the dialect language.

An alternate solution to the same dialect inference problem is described by
Di Penta et al [28, 27]. Their approach is also automated and uses a genetic
algorithm that appears to mimic the changes a human developer would rea-
sonably make to the starting grammar. This has the advantage of keeping the
starting grammar’s non-terminal names and structure mostly intact in the re-
sulting dialect grammar, allowing it to be understood and maintained by human
developers with little disruption or rework.

4.2. Inference of Domain Specific Languages

Domain specific languages (DSLs) are languages whose syntax and notation
are customized for a specific problem domain [64, 30, 33, 62], and are often
more expressive and declarative compared to general purpose languages (GPLs).
DSLs are intended to be used, and possibly designed, by domain experts who
do not necessarily have a strong computer science background. Grammatical

10

inference allows the creation of a grammar for a DSL by only requiring positive
(and possibly negative) program samples by the designer.

The techniques for DSL inference are the same as those for GPLs, but far
more success has been had inferring DSL grammars because of their smaller
size and complexity. An empirical study corroborates the common intuition
that DSL syntax is simpler than GPL syntax [20]. The authors of the study
devised and applied a set of LR table metrics and generated language metrics
applied to six DSLs (EXPR, FDL, EBNF, CFDG, GAL, ANTLR) and four
GLPs (Ruby, C, Python, Java).

Črepinšek et al. have developed both a brute-force algorithm [79] and a
genetic algorithm [78] to infer grammars for small DSLs using positive and neg-
ative samples. The brute-force approach exploits the fact that derivation trees
of grammars in Chomsky Normal Form resemble full binary trees. These deriva-
tion trees are enumerated until one is found whose grammar parses all positive
samples and no negative samples. The number of derivation trees explored can
be drastically reduced by only searching for trees with a distinct nonterminal
labelling, but even with this optimization the search space is still prohibitive for
large programs.

For the evolutionary approach, the authors combine a set of grammar pro-
duction rules into a chromosome representing a complete grammar, then apply
crossover and mutation genetic operators that modify a population of chromo-
somes for the next generation. They use a fitness function that reflects the
goal of having the target grammar accept all positive samples and reject all
negative samples. Since a single random mutation is more likely to produce
a grammar that rejects both positive and negative samples, the authors found
that testing a chromosome on only positive samples converges more quickly to
the target grammar than testing it on negative samples. Therefore, they chose
a fitness value proportional to the total length (in tokens) of the positive sam-
ples that can be parsed by a chromosome. Negative samples, used to control
overgeneralization, are only included in the fitness value if all positive samples
are successfully parsed.

This genetic approach has been shown to accurately infer small DSLs [78],
including one discussed by Javed et al. to validate UML class diagrams from
use cases [41]. Javed et al. express UML class diagrams in a custom DSL and
require a domain expert to provide positive and negative use cases written in
that DSL. The system validates these use cases against the given UML diagrams
and reports feedback to the user, who can use that feedback to change the
UML diagrams to improve use case coverage. In this situation the computer is
providing valuable context and information to the human user who is making the
important generalization and specialization decisions for the grammar, but in
theory UML diagrams can be synthesized entirely from the use case descriptions
given a su�ciently powerful grammar inference engine.

Javed et al. extend their genetic algorithm by learning from positive samples
only by using beam search and Minimum Description Length (MDL) heuris-
tics [53] in place of negative examples to control overgeneralization of the con-
jectured grammar [43]. The idea here is to find the simplest grammar at each

11

step and incrementally approach the target grammar. MDL is used as a mea-
sure of grammar simplicity, and beam search is used to more e�ciently search
the solution space of possible grammars. One disadvantage of this approach
is it requires the positive samples to be presented in a particular order, from
simplest to most complex, which allows the learning algorithm to encode the
incremental di↵erences from the samples into the target grammar. The authors’
subsequent e↵ort into a grammar inference tool for DSLs, called MAGIc, elim-
inates this need for an order-specific presentation of samples by updating the
grammar based on the di↵erence between successive (arbitrary) samples [61, 39].
This frees the designer from worrying about the particular order to present their
DSL samples to the learning algorithm. Hrnčič et al. demonstrate how MAGIc
can be adapted to infer DSLs embedded in a general purpose language (GPL)
given the GPL’s grammar [38]. The GPL’s grammar rules are included in the
chromosome, but frozen so they cannot mutate. Learning, therefore, occurs
strictly on the DSL syntax and the locations in the GPL grammar where the
embedded DSL is allowed.

The inference of DSLs can make it easier for non-programmer domain experts
to write their own domain-specific languages by simply providing examples of
their DSL programs. It can also be used in the migration or maintenance of
legacy software whose grammar definitions are lost or unavailable.

4.3. Inference of Graph Grammars and Visual Languages

Unlike one-dimensional strings whose elements are connected linearly, visual
languages and graphs are connected in two or more dimensions allowing for
arbitrary proximity between elements. Graph grammars define a language of
valid graphs by a set of production rules with subgraphs instead of strings on
the right-hand side.

Fürst et al. propose a graph grammar inference algorithm based on positive
and negative graph samples [32]. The algorithm starts with a grammar that pro-
duces exactly the set of positive samples then incrementally generalizes towards
a smaller grammar representation, a strategy similar to typical DFA inference
algorithms which build a prefix tree acceptor then generalize by merging states.
The authors demonstrate their inference algorithm with a flowchart example
and a hydrocarbon example, making a convincing case for its applicability to
software engineering tasks such as metamodel inference and reverse engineering
visual languages.

Another graph grammar inference algorithm is proposed by Ates et al. which
repeatedly finds and compresses overlapping identical subgraphs to a single non-
terminal node [11]. This system uses only positive samples during the inference
process, but validates the resulting grammar by ensuring all the graphs in the
training set are parsable and other graphs which are close to but distinct from
the training graphs are not parsable. Ates et al. demonstrate their algorithm
with two practical inferences: one for the structure of a programming language
and one for the structure of an XML data source.

Kong et al. use graph grammar induction to automatically translate a web-
page designed for desktop displays into a webpage designed for mobile dis-

12

plays [48]. The inference performed is similar to the aforementioned proposed
by Ates et al. [11] because they both use the Spatial Graph Grammar (SGG)
formalism and subgraph compression. The induction algorithm consumes web-
pages, or more accurately their DOM trees, to produce a graph grammar. After
a human has verfied this grammar it is used to parse a webpage, and the re-
sulting parse is used to segment the webpage into semantically related subpages
suitable for display on mobile devices.

Graph grammar inference algorithms are less common than their text-based
counterparts, but provide a powerful mechanism to infer patterns in complex
structures. Parsing graphs is NP-hard in general, causing these algorithms to be
more computationally expensive than inference from text. Most graph grammar
learners overcome this complexity by restricting their graph expressiveness or
employing search and parse heuristics to achieve a polynomial runtime.

4.4. Inference from Execution Traces

Grammatical inference is well suited to analyses involving program execu-
tion because the events in execution traces are temporally ordered in the same
way that characters in strings are spatially ordered. Most of the applications
described below use some form of encoding scheme to represent execution traces
as strings before applying grammatical inference techniques to reverse engineer
a model representing the behaviour of the running program.

Section 3 describes the di�culty inferring various language classes from pos-
itive samples alone, and in particular that only finite languages can be identified
in the limit from positive samples [34]. The SEQUITUR algorithm, developed
by Nevill-Manning and Witten, is designed to take a single string (long but
finite) and produce a context-free grammar that reflects repetitions and hierar-
chical structure contained in that string [65]. This di↵ers from typical grammar
inference algorithms because it does not generalize. Data compression is an
obvious use of this algorithm, but it has found other uses in software engineer-
ing. For example, Larus uses the SEQUITUR algorithm to concisely represent a
program’s entire runtime control flow and uses this dynamic control flow infor-
mation to identify heavily executed paths in the program to focus performance
and compiler optimization e↵orts [54].

Many of the inference algorithms discussed in this section use a variation of
the k-tails NFA inference algorithm developed by Biermann and Feldman [12].
This algorithm takes an integer parameter k = 1, 2, 3, . . . and initially computes
a set of strings of length k, called k-tails, for each state in the candidate NFA.
The definition of a k-tail can be stated simply: “state a has a k-tail t 2 ⌃k

i↵ starting from a it’s possible to see the sequence t” [70]. Once k-tails are
computed for each state, the finite state machine is generalized by merging
states with identical k-tails until no more merges are possible.

Lo et al. compare algorithms, such as the k-tails algorithm, that infer simple
finite state automata (FSA) representing a software system’s behavioural model
to algorithms that infer FSA annotated with data-flow information, known as
“extended FSA” or EFSA [59]. Their comparison covers three general areas:
1) the quality of the inferred model, measured by how well it captures legal

13

behaviour and rejects illegal behaviour, 2) the performance di↵erence between
FSA and EFSA during inference and analysis, and 3) how the e↵ectiveness of
these techniques di↵er under sparse or dense trace data.

Ammons et al. use runtime trace data to discover program specifications
that can be subsequently refined and used for automated program verifica-
tion [3]. The specifications in mind here are programming interfaces and ab-
stract datatypes used by the application. For example, the inferred specification
may capture the correct order of function calls in a socket connection lifecycle:
create socket, bind to port, listen, accept connection, read/write bytes, close
socket. Inference is done in two steps: (1) a probabilistic NFA learner [69]
(based on the k-tail algorithm) produces an NFA with weighted transitions rep-
resenting how often that transition was taken in the training set, then (2) a
corer strips the low-frequency transitions and leaves the high-frequency “core”,
subject to some connectivity constraints. The result is an NFA that models
common runtime behaviour, which the authors correlate with correct behaviour
in a reasonably debugged program.

Reiss and Renieris propose a framework to capture trace data from a running
program, then use several compaction schemes to represent the trace data as
sequences [70]. In one such scheme function call traces are encoded by placing
the callee to the right of its caller and using the “v” character as a placeholder
for return (e.g. the function call trace “A calls B, A calls C” is encoded as
“ABvCv” whereas the trace “A calls B, B calls C” is encoded as “ABCvv”).
Some of these sequences are kept intact but compressed (e.g. with SEQUITUR)
and others are generalized by recognizing repeating elements (e.g. the sequence
AAAABABABC is represented as the regular expression A⇤(BA)⇤BC). The
authors have developed a FSM construction algorithm designed to take advan-
tage of the assumed structure in trace sequences such as frequent self-loops.
The base algorithm merges FSM states that have at least one k-tail in common
rather than requiring identical k-tails as in Biermann and Feldman’s original
formulation. This relaxed merging rule leads to a higher generalization of the
final state machine.

A similar algorithm is described by Cook and Wolf to infer a finite state
machine from a stream of execution events [19]. They modify the original k-tails
algorithm to better handle the unrolling of loops and to ignore noise, defined as
low-frequency event sequences. Viewing the trace data as an event stream allows
for many di↵erent event sources to be incorporated into the inferred model, but
also confounds the inference algorithm because unrelated software processes
may be producing events concurrently which appear as interleaved events in the
trace record. The authors acknowledge the problem of concurrency and suggest
annotating each event with its source, or treating some event types as noise in
the overall stream and correcting for it with their modified k-tail algorithm.

Jones and Oates directly address the problem of concurrent tasks producing
an interleaved sequence of events and investigate how to disentangle them [44].
They restrict the problem to two instances of the same task (program) running
concurrently, or in terms of automata theory: two executing instances of a single
DFA whose transitions are traversed until both instances are in a final state. At

14

each time step one of the two DFA instances is selected at random, and for that
instance one of the valid transitions from the current state is selected at random.
The symbol for the selected transition is appended to a common string shared by
both instances and the next time step commences. The authors show a negative
result for extracting a general DFA from its two-instance concurrent execution
trace, but demonstrate a restricted language class called terminated languages
where such an inference is possible. Terminated languages are distinguished
by a special terminating character that appears at, and only at, the end of
every valid string. The inference procedure involves building a super-DFA that
accepts the interleaved language, then extracting the original DFA from it using
a simple path-finding approach.

Walkinshaw et al. discuss how the most recent advances in grammatical
inference theory can be used in the dynamic analysis of software [81]. Assuming
the strings in the target language are once again program traces, they make
the novel claim that dynamic analysis (runtime behaviour) is best suited to
produce positive samples and static analysis is best suited to produce negative
samples. Furthermore, learning with an oracle can be used by executing tests or
performing static analysis to answer specific questions such as state reachability.
In contrast to other domains these GI resources can be automatically generated
and employed without a human’s intervention or aid. In a series of experiments,
the authors show the increasing e↵ectiveness of adding negative information
and an oracle to the inference process. They make a convincing case that
combining dynamic analysis, static analysis, automatic test generation, and
the latest in theoretical grammatical inference outperforms standard dynamic
analysis techniques.

4.5. Other uses in Software Engineering

Cunha et al. attempt to automatically infer the functional dependencies
between data cells in a spreadsheet to reverse engineer its underlying business
model [23]. This model can be used to ensure the spreadsheet remains valid, con-
sistent, and free from cell formula errors. The authors do not use inference tech-
niques from the grammatical inference community, but rather use algorithms
both of their own devising and related to reverse engineering database schema.
They recognize that their inference heuristics are specific to their spreadsheet
problem domain: “Note that several of these heuristics are possible only in the
context of spreadsheets. . . In the spreadsheet domain rich context is provided,
in particular, through the spatial arrangement of cells and through labels.” [23]

Ahmed Memon proposes using grammatical inference in log files to identify
anomalous activity [60]. He treats the contents of log files in a system running
normally as a specific language, and any erroneous or anomalous activities re-
ported in the log file are therefore not part of this language. Memon trains a
grammar from positive log file samples of a system running normally, then parses
subsequent log file entries using this grammar to identify anomalous activity.
The inference procedure depends on knowledge of the domain, specifically six-
teen text patterns that appear in typical log files: dates, times, IP addresses,

15

session IDs, etc. Once these patterns are identified and normalized, a custom
non-terminal merging algorithm is used to generalize the log file grammar.

Another recent use for grammatical inference is in the area of model-driven
engineering. The relationship between a grammar and the strings it accepts is
analogous to the relationship between a metamodel and the instance models it
accepts. Javed et al. describe a method to use grammar inference techniques on
a set of instance models to recover a missing or outdated metamodel [42]. The
process involves converting the instance models in XML format to a domain-
specific language, then performing existing grammar inference techniques on
those DSL programs. The authors use their previously developed evolutionary
approach [79] to do the actual inference, then recreate a metamodel in XML
format from the result so the recovered metamodel can be loaded into a modeling
tool. Liu et al. have recently extended this system to handle models with a
more complex and segmented organizational structure [58]. The authors refer
to these as multi-tiered domains because they support multiple viewpoints into
the model.

Aartes et al. have proposed using grammatical inference to learn imple-
mentation details of a black-box software system by treating its inputs and
associated outputs as a language to be learned [1]. Their algorithm applies a
modified result from the theoretical literature, Angluin’s L⇤ DFA learning algo-
rithm with membership and equivalence queries. The black-box system to be
learned acts as an oracle and can answer membership queries about its input-
output pairs ((input, output) 2 L?) by running the implementation on the input
and seeing if the expected output is produced. Since this system cannot answer
equivalence queries directly, the authors approximate this behaviour by first
generating many random strings from the hypothesized grammar then ask a
membership query for each generated string. If one of the strings is not in the
target language it is returned as a counter-example. If all strings are in the
language, the hypothesized grammar is assumed to be equivalent to the tar-
get grammar with some level of confidence. The more strings generated for an
equivalence query, the higher the confidence.

Two similar problems are grammar convergence [50] and grammar recov-
ery [49], both which involve finding grammars for a variety of software artifacts.
The goal of grammar convergence is to establish and maintain a mapping be-
tween software artifact structures in di↵erent formats that embody the same
domain knowledge. Grammatical inference can aid in the early steps of this
process to produce a grammar for each knowledge representation by examining
available concrete examples. Existing grammar transformation and convergence
techniques can then be used on the resulting source grammars to establish a uni-
fied grammar.

Grammar recovery can be viewed as a more general version of the grammar
inference problem because it seeks to recover a grammar from sources such as
compilers, reference manuals and written specifications, in addition to concrete
program examples. The e↵ort by Lämmel and Verhoef to recover a VS COBOL
II grammar includes leveraging visual syntax diagrams from the manual [49].
These diagrams give clues about the shape of the target grammar’s derivation

16

tree, knowledge that is known to greatly improve the accuracy of grammati-
cal inference techniques. For example, reversible context-free and non-counting
context-free languages are known to be identifiable from positive examples with
these types of structured strings [73, 21]. Furthermore, structured strings can
be used to identify any context-free language in polynomial time with a mem-
bership and equivalence oracle [72]. In the case of grammar recovery, an existing
compiler for the language (even without the compiler source code) may be used
as a membership oracle.

Nierstrasz et al. have more recently developed a tool to help recover a gram-
mar, and ultimately a parser, from a collection of legacy source code [66]. Their
technique requires the reverse engineer to identify text patterns corresponding
to source elements (classes, methods, etc.), each of which will become produc-
tions in the resulting grammar. A parser is automatically generated from this
grammar and validated against the legacy samples. Unparsable code is brought
to the engineer’s attention so he can provide further text patterns to cover
those cases. The parser is regenerated and the process iterates until a su�cient
amount of the legacy code can be parsed.

5. Related Surveys

Many surveys of grammatical inference have been written to introduce new-
comers to the field and summarize the state of the art. Most give a thorough
overview of grammatical inference in general, but each emphasise di↵erent as-
pects of the literature.

Fu and Booth (1986) give a detailed technical description of some early
inference algorithms and heuristics with an emphasis on pattern recognition
examples to demonstrate its relevance [31]. This survey is heavy on technical
definitions and grammatical notation, suitable for someone with prior knowledge
in formal languages who prefers to get right into the algorithms and techniques
of grammatical inference.

Vidal (1994) provides a concise but thorough overview of the learning models
and language classes in grammatical inference, with ample citations for follow-up
investigation [80]. He presents each learning model in the context of fundamental
learnability results in the field as well as their practical applications without
getting too deeply into the details of each learning model.

Dana Ron’s doctoral thesis (1995) on the learning of deterministic and prob-
abilistic finite automata primarily investigates PAC learning as it relates to iden-
tifying DFAs, and describes practical applications of its use [71]. Although not
exhaustive of grammatical inference in general, this thesis is a good reference
for someone specifically interested in DFA inference.

Lee (1996) presents an extensive survey on the learning of context-free lan-
guages, including those that have non-grammar formalisms [55]. She discusses
approaches that learn from both text and structured data, making it relevant
to software engineering induction problems.

Sakakibara (1997) provides an excellent overview of the field with an empha-
sis on computational complexity, learnability, and decidability [74]. He covers

17

a wide range of grammar classes including DFAs, context-free grammars and
their probabilistic counterparts. This survey is roughly organized by the types
of language classes being learned.

Colin de la Higuera (2000) gives a high-level and approachable commentary
on grammatical inference including its historical progress and achievements [24].
He highlights key issues and unsolved problems, and describes some promising
avenues of future research. This commentary is not meant as a technical intro-
duction to inference techniques nor an exhaustive survey, and therefore contains
no mathematical or formal notation. It rather serves as a quick and motivational
read for anyone interested in learning about grammatical inference. A similar
piece on grammatical inference is written by Honavar and de la Higuera (2001)
for a special issue of the Machine Learning journal (volume 44), emphasizing
the cross-disciplinary nature of the field [37].

Cicchello and Kremer (2003) and Bugalho and Oliveira (2005) survey DFA
inference algorithms in depth, with excellent explanations about augmented
prefix tree acceptors, state merging, the red-blue framework, search heuristics,
and performance comparisons of state of the art DFA inference algorithms [16,
13].

de la Higuera (2005) provides an excellent guide to grammatical inference,
geared toward people (not necessarily experts in formal languages or computa-
tional linguistics) who think grammatical inference may help them solve their
particular problem [25]. He gives a general roadmap of the field, examples of
how grammatical inference has been used in existing applications, and provides
many useful references for further investigation by the reader.

Pieter Adriaans and Menno van Zaanen (2006) compare grammatical in-
ference from three di↵erent perspectives: linguistic, empirical, and formal [2].
They introduce the common learning models and broad learnability results in
the framework of each perspective, and comment on how these perspectives
overlap. This survey is useful for someone who comes from a linguistic, empir-
ical, or formal languages background and wishes to learn about grammatical
inference.

6. Future Direction and Challenges

Although some software engineers are finding uses for grammatical inference
it is still relatively rare in the field. The potential benefits of GI in software
engineering extend beyond obvious applications, such as reverse engineering a
parser, to other grammar-based systems. Mernik et al. catalogue grammar-
based systems, defining them as “any system that uses a grammar and/or sen-
tences produced by this grammar to solve various problems outside the domain
of programming language definition and its implementation. The vital compo-
nent of such a system is well structured and expressed with a grammar or with
sentences produced by this grammar in an explicit or implicit manners” [63].

One such example of a grammar-based system is a grammatical approach
to problem solving [36]. In this approach a problem description is coverted to

18

a context-free attribute grammar where the grammar productions encode the
problem domain concepts and the attributes capture the system behaviour. A
sentence in the language of this grammar represents a use case of the system.
Grammatical inference may be useful in this situation to work backward through
the process: describe system use cases in some DSL, infer a grammar from the
use case sentences, and finally generate a conceptual class diagram of the system
from the inferred grammar.

Another grammar-based business application is discussed in [56], which uses
a user-configurable context-free grammar to describe the workflow and interac-
tion between system components. For example, two productions of the grammar
presented in [56] are:

OnlinePurchase ![Identification], P resentation, Selection,

Purchase, [Identification], Confirmation,

OrderFulfillment

ShoppingCartOperation !{AddItem|DeleteItem|SaveCart}, Checkout

The sentences of this language are implied by the execution sequence of meth-
ods in the various components of the running system. Grammatical inference
techniques, especially those discussed in Section 4.4, could be used to recreate
this grammar by analysing the execution of the system and reverse-engineer the
system workflow at a relatively high level.

The theoretical work in grammatical inference is largely disconnected from
these practical uses because implementers tend to use domain specific knowledge
to craft custom solutions. Such solutions, while successful in some cases, usu-
ally ignore the powerful algorithms developed by the theoretical GI community.
Domain knowledge should continue to be exploited – we are not advocating
otherwise – but domain knowledge needs to be translated into a form general-
purpose inference algorithms can use. We believe this is the biggest challenge
currently facing software engineers wanting to use grammatical inference in their
applications: how to map their domain knowledge to theoretical GI constraints.

Constraints can be imposed in several ways, such as simplifying the gram-
mar class to learn, providing negative samples, adding a membership and/or
equivalence oracle where none existed, or partially structuring the input data.
Often these constraints are equivalent to some existing structural knowledge or
implicit assumptions about the input data, but identifying these equivalences is
nontrivial.

We motivate this approach with a concrete example, inspired by an example
from Sakakibara [73]. Suppose you have a collection of computer programs
written in an unknown language with a Pascal-like syntax and wish to infer a
grammar from the collection. For clarity, Figure 2 shows a sample program in
the collection and Figure 3 shows the target grammar to learn (a subset of the
full Pascal grammar).

At first glance this inference problem seems too di�cult to solve. It is a
context-free grammar with positive samples only, and Gold proved learning a
superfinite language in the limit from positive-only samples is impossible [34].

19

while limit > a do

begin

if a > max then max = a;

a := a + 1

end

Figure 2: A sample program in an unknown Pascal-like language

Statement ! Ident := Expression

Statement ! while Condition do Statement

Statement ! if Condition then Statement

Statement ! begin Statementlist end

Statementlist ! Statement;Statementlist

Statementlist ! Statement

Condition ! Expression > Expression

Expression ! Term+ Expression

Expression ! Term

Term ! Factor

Term ! Factor ⇥ Term

Factor ! Ident

Factor ! (Expression)

Figure 3: The target grammar for the Pascal-like language [73]

20

Even with the addition of negative samples there is no known algorithm to
e�ciently learn a context-free language.

On closer inspection, however, there is additional structural information in
the input samples, hidden in a place grammarware authors and parsers are
trained to ignore – the whitespace. By taking into account line breaks and
indented sections of source code in the input samples, a structured string can
be constructed for each program. If we further assume the target grammar
is reversible then we can apply a result by Sakakibara, who showed reversible
context-free grammars can be learned in polynomial time from positive struc-
tured strings [73].

This particular solution depends on two assumptions: (1) all the input sam-
ples have meaningful and consistent whitespace formatting, and (2) the target
grammar is in the class of reversible context-free grammars. The assumption
that the target grammar is reversible context-free is reasonable, as many DSLs
would fit this criterion. The Pascal subset grammar in Figure 3 is in fact re-
versible context-free, but full Pascal is not because adding a production rule like
Factor ! Number to this grammar violates the criteria of reversibility [73].

Leveraging domain knowledge and structural assumptions is quite power-
ful when inferring grammars from examples and should be encouraged, but at
present mapping this domain-specific knowledge to abstract constructs in gram-
matical inference research requires some creativity and awareness of theoretical
results in the field. Walkinshaw et al.’s paper on dynamic analysis [81] discussed
in Section 4.4 is an excellent example of this approach. Allowing the extensive
work done in the theoretical grammatical inference community to bear on spe-
cific applications of GI would be a great boon to software engineering.

7. Conclusion

In grammatical inference, an inference algorithm must find and use common
patterns in example sentences to concisely represent an unknown language in
the form of a grammar. This process spans two axes of complexity: the language
class to be learned and the learning model employed.

The theoretical foundations of grammatical inference are now well estab-
lished thanks to contributions by Gold, Angluin and others. The state of the
art, however, still has plenty of room to grow, and Colin de la Higuera identi-
fies ten open problems on the theoretical side of grammatical inference that he
believes are important to solve going forward [26].

In practice, assumptions can often be made which are not possible in a purely
theoretical setting because a specific problem domain has limited scope, allowing
for a better outcome than one would expect from simply applying the smallest
enclosing theoretical result. Some work has already been done to investigate
this relationship deeper, such as that by Kermorvant and de la Higuera [47] and
Cano et al [15]. It would be valuable to find a widely applicable technique to
equate domain assumptions with either a restriction in the class of language to
learn, or an augmentation of the learning model.

21

Theoretical grammatical inference research continues to advance in many
di↵erent directions: the language classes being learned, the learning models in
use, the criteria for a successful inference, and the e�ciency of the inference algo-
rithms. Existing applications for grammatical inference are continually refined
and new applications are found in a wide variety of disciplines.

References

[1] Aarts, F., Kuppens, H., Tretmans, G., Vaandrager, F., Verwer, S.: Learn-
ing and testing the bounded retransmission protocol. In Heinz, J., de la
Higuera, C., Oates, T., eds.: JMLRWorkshop and Conference Proceedings.
Volume 21. (September 2012) 4–18

[2] Adriaans, P., van Zaanen, M.: Computational grammatical inference. Stud-
ies in Fuzziness and Soft Computing 194 (2006) 187–203

[3] Ammons, G., Bodk, R., Larus, J.R.: Mining specifications. In: Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. POPL ’02, New York, NY, USA, ACM (2002)
4–16

[4] Angluin, D.: Inductive inference of formal languages from positive data.
Information and Control 45(2) (1980) 117–135

[5] Angluin, D.: A note on the number of queries needed to identify regular
languages. Information and Control 51(1) (1981) 76–87

[6] Angluin, D.: Inference of reversible languages. Journal of the ACM (JACM)
29 (1982) 741–765

[7] Angluin, D.: Learning regular sets from queries and counterexamples.
Information and Computation 75 (November 1987) 87–106

[8] Angluin, D.: Queries and concept learning. Machine Learning 2(4) (1988)
319–342

[9] Angluin, D.: Negative results for equivalence queries. Machine Learning
5(2) (July 1990) 121–150

[10] Angluin, D., Kharitonov, M.: When won’t membership queries help? In:
Proceedings of the twenty-third annual ACM symposium on Theory of
computing. STOC ’91, New York, NY, USA, ACM (1991) 444–454

[11] Ates, K., Kukluk, J., Holder, L., Cook, D., Zhang, K.: Graph grammar
induction on structural data for visual programming. In: 18th IEEE Inter-
national Conference on Tools with Artificial Intelligence, 2006. ICTAI ’06.
(November 2006) 232 –242

22

[12] Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines
from samples of their behavior. IEEE Transactions on Computers 21 (1972)
592–597 ACM ID: 1638997.

[13] Bugalho, M., Oliveira, A.L.: Inference of regular languages using state
merging algorithms with search. Pattern Recogn. 38(9) (September 2005)
1457–1467

[14] Burago, A.: Learning structurally reversible context-free grammars from
queries and counterexamples in polynomial time. In: Proceedings of the
seventh annual conference on Computational learning theory. COLT ’94,
New York, NY, USA, ACM (1994) 140–146

[15] Cano, A., Ruiz, J., Garćıa, P.: Inferring subclasses of regular languages
faster using RPNI and forbidden configurations. In: Proceedings of the
6th International Colloquium on Grammatical Inference: Algorithms and
Applications. ICGI ’02, London, UK, Springer-Verlag (2002) 28–36

[16] Cicchello, O., Kremer, S.C.: Inducing grammars from sparse data sets: a
survey of algorithms and results. J. Mach. Learn. Res. 4 (December 2003)
603–632

[17] Clark, A.: Distributional learning of some context-free languages with
a minimally adequate teacher. In: Proceedings of the 10th international
colloquium conference on Grammatical inference: theoretical results and
applications. ICGI’10, Berlin, Heidelberg, Springer-Verlag (2010) 24–37

[18] Clark, A., Eyraud, R., Habrard, A.: A polynomial algorithm for the in-
ference of context free languages. In: Proceedings of the 9th international
colloquium on Grammatical Inference: Algorithms and Applications. ICGI
’08, Berlin, Heidelberg, Springer-Verlag (2008) 29–42

[19] Cook, J.E., Wolf, A.L.: Discovering models of software processes from
event-based data. ACM Trans. Softw. Eng. Methodol. 7(3) (July 1998)
215–249

[20] Črepinšek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R., Roussel, G.:
On automata and language based grammar metrics. Computer Science and
Information Systems/ComSIS 7(2) (2010) 309–329

[21] Crespi-Reghizzi, S., Guida, G., Mandrioli, D.: Noncounting context-free
languages. Journal of the ACM (JACM) 25(4) (October 1978) 571–580

[22] Crespi-Reghizzi, S., Melkano↵, M.A., Lichten, L.: The use of grammatical
inference for designing programming languages. Communications of the
ACM 16 (1973) 83–90

[23] Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring ClassSheet
models from spreadsheets. In: 2010 IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). (September 2010) 93–100

23

[24] de la Higuera, C.: Current trends in grammatical inference. In: Proceed-
ings of the Joint IAPR International Workshops on Advances in Pattern
Recognition, London, UK, Springer-Verlag (2000) 28–31

[25] de la Higuera, C.: A bibliographical study of grammatical inference. Pat-
tern Recognition 38 (September 2005) 1332–1348

[26] de la Higuera, C.: Ten open problems in grammatical inference. In Sakak-
ibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E., eds.: Gram-
matical Inference: Algorithms and Applications. Volume 4201 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg (2006) 32–44

[27] Di Penta, M., Lombardi, P., Taneja, K., Troiano, L.: Search-based inference
of dialect grammars. Soft Computing 12(1) (2008) 51–66

[28] Di Penta, M., Taneja, K.: Towards the automatic evolution of reengineering
tools. In: Software Maintenance and Reengineering, 2005. CSMR 2005.
Ninth European Conference on, IEEE (2005) 241–244

[29] Dubey, A., Jalote, P., Aggarwal, S.: Learning context-free grammar rules
from a set of programs. IET Software 2(3) (2008) 223–240

[30] Fowler, M.: Domain-specific languages. Pearson Education (2010)

[31] Fu, K.S., Booth, T.L.: Grammatical inference: introduction and sur-
vey\part i. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 8 (May 1986) 343–359

[32] Fürst, L., Mernik, M., Mahnič, V.: Graph grammar induction as a parser-
controlled heuristic search process, Budapest, Hungary (October 2011)

[33] Ghosh, D.: DSLs in action. Manning Publications Co. (2010)

[34] Gold, E.M.: Language identification in the limit. Information and Control
10(5) (1967) 447–474

[35] Gold, E.M.: Complexity of automaton identification from given data. In-
formation and Control 37(3) (1978) 302–320

[36] Henriques, P.R., Kosar, T., Mernik, M., Pereira, M.J.V., Zumer, V.: Gram-
matical approach to problem solving. In: Information Technology Inter-
faces, 2003. ITI 2003. Proceedings of the 25th International Conference on,
IEEE (2003) 645–650

[37] Honavar, V., de la Higuera, C.: Introduction. Machine Learning 44(1–2)
(2001) 5–7

[38] Hrnčič, D., Mernik, M., Bryant, B.R.: Embedding dsls into gpls: A gram-
matical inference approach. Information Technology and Control 40(4)
(December 2011)

24

[39] Hrnčič, D., Mernik, M., Bryant, B.R., Javed, F.: A memetic grammar
inference algorithm for language learning. Applied Soft Computing 12(3)
(March 2012) 1006–1020

[40] Ishizaka, H.: Polynomial time learnability of simple deterministic lan-
guages. Machine Learning 5(2) (July 1990) 151–164

[41] Javed, F., Mernik, M., Bryant, B.R., Gray, J.: A grammar-based approach
to class diagram validation. (2005)

[42] Javed, F., Mernik, M., Gray, J., Bryant, B.R.: MARS: a metamodel recov-
ery system using grammar inference. Inf. Softw. Technol. 50(9-10) (August
2008) 948–968

[43] Javed, F., Mernik, M., Sprague, A., Bryant, B.: Incrementally inferring
context-free grammars for domain-specific languages. Proceedings of the
Eighteenth International Conference on Software Engineering and Knowl-
edge Engineering (SEKE’06) (2006) 363–368

[44] Jones, J., Oates, T.: Learning deterministic finite automata from in-
terleaved strings. In: Proceedings of the 10th international colloquium
conference on Grammatical inference: theoretical results and applica-
tions. ICGI’10, Berlin, Heidelberg, Springer-Verlag (2010) 80–93 ACM ID:
1886273.

[45] Juillé, H., Pollack, J.B.: A stochastic search approach to grammar induc-
tion. In: Proceedings of the 4th International Colloquium on Grammatical
Inference. ICGI ’98, London, UK, UK, Springer-Verlag (1998) 126–137

[46] Kearns, M., Li, M., Pitt, L., Valiant, L.: On the learnability of boolean
formulae. In: Proceedings of the nineteenth annual ACM symposium on
Theory of computing. STOC ’87, New York, NY, USA, ACM (1987) 285–
295

[47] Kermorvant, C., Higuera, C.D.L.: Learning languages with help. In:
Proceedings of the 6th International Colloquium on Grammatical Infer-
ence: Algorithms and Applications. ICGI ’02, London, UK, Springer-Verlag
(2002) 161–173

[48] Kong, J., Ates, K., Zhang, K., Gu, Y.: Adaptive mobile interfaces through
grammar induction. In: 20th IEEE International Conference on Tools with
Artificial Intelligence, 2008. ICTAI ’08. Volume 1. (November 2008) 133
–140

[49] Lämmel, R., Verhoef, C.: Semi-automatic grammar recovery. Softw. Pract.
Exper. 31(15) (December 2001) 1395–1448

[50] Lämmel, R., Zaytsev, V.: An introduction to grammar convergence.
In: Proceedings of the 7th International Conference on Integrated Formal
Methods. IFM ’09, Berlin, Heidelberg, Springer-Verlag (2009) 246–260

25

[51] Lang, K.J.: Faster algorithms for finding minimal consistent DFAs. Tech-
nical report (1999)

[52] Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the abbadingo
one DFA learning competition and a new evidence-driven state merging
algorithm. In: Proceedings of the 4th International Colloquium on Gram-
matical Inference, London, UK, Springer-Verlag (1998) 1–12

[53] Langley, P., Stromsten, S.: Learning context-free grammars with a sim-
plicity bias. Proceedings of the Eleventh European Conference on Machine
Learning (2000) 220–228

[54] Larus, J.R.: Whole program paths. In: ACM SIGPLAN Notices. PLDI
’99, New York, NY, USA, ACM (1999) 259–269

[55] Lee, L.: Learning of context-free languages: A survey of the literature.
REP (1996) 12–96

[56] Levi, K., Arsanjani, A.: A goal-driven approach to enterprise component
identification and specification. Commun. ACM 45(10) (October 2002)
45–52

[57] Li, M., Vitányi, P.M.B.: Learning simple concepts under simple distribu-
tions. Siam Journal of Computing 20 (1991) 911–935

[58] Liu, Q., Bryant, B.R., Mernik, M.: Metamodel recovery from multi-tiered
domains using extended MARS. In: Proceedings of the 2010 IEEE 34th
Annual Computer Software and Applications Conference. COMPSAC ’10,
Washington, DC, USA, IEEE Computer Society (2010) 279–288

[59] Lo, D., Mariani, L., Santoro, M.: Learning extended FSA from software:
An empirical assessment. J. Syst. Softw. 85(9) (September 2012) 2063–2076

[60] Memon, A.U.: Log File Categorization and Anomaly Analysis Using Gram-
mar Inference. Master of science, Queen’s University (2008)

[61] Mernik, M., Hrnčič, D., Bryant, B., Sprague, A., Gray, J., Liu, Q., Javed,
F.: Grammar inference algorithms and applications in software engineer-
ing. In: Information, Communication and Automation Technologies, 2009.
ICAT 2009. XXII International Symposium on. (October 2009) 1–7

[62] Mernik, M.: Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments. Information Science Reference (2013)

[63] Mernik, M., Črepinšek, M., Kosar, T., Rebernak, D., Žumer, V.: Grammar-
based systems: Definition and examples. Informatica 28(3) (2004) 245–255

[64] Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-
specific languages. ACM Computing Surveys (CSUR) 37 (2005) 316–344

26

[65] Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in
sequences: a linear-time algorithm. Journal of Artificial Intelligence Re-
search 7(1) (September 1997) 67–82

[66] Nierstrasz, O., Kobel, M., Girba, T., Lanza, M.: Example-driven recon-
struction of software models. In: Software Maintenance and Reengineering,
2007. CSMR’07. 11th European Conference on, IEEE (2007) 275–286

[67] Oncina, J., Garćıa, P.: Identifying regular languages in polynomial time.
In: Advances in Structural and Syntactic Pattern Recognition - Proceed-
ings of the International Workshop on Structural and Syntactic Pattern
Recognition, Bern, Switzerland (1992) 99–108

[68] Pitt, L., Valiant, L.G.: Computational limitations on learning from exam-
ples. Journal of the ACM (JACM) 35(4) (October 1988) 965–984

[69] Raman, A., Patrick, J., North, P.: The sk-strings method for inferring
PFSA. In: Proceedings of the workshop on automata induction, grammat-
ical inference and language acquisition at the 14th international conference
on machine learning (ICML97). (1997)

[70] Reiss, S.P., Renieris, M.: Encoding program executions. In: Proceedings
of the 23rd International Conference on Software Engineering. ICSE ’01,
Washington, DC, USA, IEEE Computer Society (2001) 221–230

[71] Ron, D.: Automata Learning and its Applications. PhD thesis, Hebrew
University (1995)

[72] Sakakibara, Y.: Learning context-free grammars from structural data in
polynomial time. Theoretical Computer Science 76(2-3) (November 1990)
223–242

[73] Sakakibara, Y.: E�cient learning of context-free grammars from positive
structural examples. Information and Computation 97(1) (1992) 23–60

[74] Sakakibara, Y.: Recent advances of grammatical inference. Theoretical
Computer Science 185 (October 1997) 15–45

[75] Stevenson, A., Cordy, J.R.: Grammatical inference in software engineering:
An overview of the state of the art. In Czarnecki, K., Hedin, G., eds.: SLE.
Volume 7745 of Lecture Notes in Computer Science., Springer (2012) 204–
223

[76] Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata: Behaviour and
Synthesis. North-Holland Publishing Company, Amsterdam (June 1973)

[77] Valiant, L.G.: A theory of the learnable. Communications of the ACM 27
(1984) 1134–1142

27

[78] Črepinšek, M., Mernik, M., Bryant, B.R., Javed, F., Sprague, A.: Inferring
context-free grammars for domain-specific languages. Electronic Notes in
Theoretical Computer Science 141(4) (December 2005) 99–116

[79] Črepinšek, M., Mernik, M., Javed, F., Bryant, B.R., Sprague, A.: Ex-
tracting grammar from programs: evolutionary approach. ACM SIGPLAN
Notices 40 (2005) 39–46

[80] Vidal, E.: Grammatical inference: An introductory survey. In Carrasco,
R., Oncina, J., eds.: Grammatical Inference and Applications. Volume 862
of Lecture Notes in Computer Science. Springer Berlin / Heidelberg (1994)
1–4

[81] Walkinshaw, N., Bogdanov, K., Holcombe, M., Salahuddin, S.: Improving
dynamic software analysis by applying grammar inference principles. Jour-
nal of Software Maintenance and Evolution: Research and Practice 20(4)
(2008) 269–290

[82] Yokomori, T.: Polynomial-time learning of very simple grammars from
positive data. In: Proceedings of the fourth annual workshop on Com-
putational learning theory, San Francisco, CA, USA, Morgan Kaufmann
Publishers Inc. (1991) 213–227

[83] Yokomori, T.: On polynomial-time learnability in the limit of strictly
deterministic automata. Machine Learning 19(2) (1995) 153–179

28

