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Abstract. Grammatical inference – used successfully in a variety of
fields such as pattern recognition, computational biology and natural lan-
guage processing – is the process of automatically inferring a grammar by
examining the sentences of an unknown language. Software engineering
can also benefit from grammatical inference. Unlike the aforementioned
fields, which use grammars as a convenient tool to model naturally occur-
ing patterns, software engineering treats grammars as first-class objects
typically created and maintained for a specific purpose by human de-
signers. We introduce the theory of grammatical inference and review
the state of the art as it relates to software engineering.

Keywords: grammatical inference, software engineering, grammar in-
duction

1 Introduction

The human brain is extremely adept at seeing patterns by generalizing from
specific examples, a process known as inductive reasoning. This is precisely the
idea behind grammatical induction, also known as grammatical inference, where
the specific examples are sentences and the patterns are grammars. Grammat-
ical inference is the process of identifying an unknown language by examining
examples of sentences in that language. Specifically, the input to the process is
a set of strings and the output is a grammar.

The main challenge of identifying a language of infinite cardinality from a
finite set of examples is knowing when to generalize and when to specialize. Most
inference techniques begin with the given sample strings and make a series of
generalizations from them. These generalizations are typically accomplished by
some form of state-merging (in finite automata), or non-terminal merging (in
context-free grammars).

Grammatical inference techniques are used to solve practical problems in
a variety of different fields: pattern recognition, computational biology, natural
language processing and acquisition, programming language design, data mining,
and machine learning. Software engineering, in particular software language en-
gineering, is uniquely qualified to benefit because it treats grammars as first-class
objects with an intrinsic value rather than simply as a convenient mechanism to
model patterns in some other subject of interest.
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Historically there have been two main groups of contributors to the field
of grammatical inference: theorists and empiricists. Theorists consider language
classes and learning models of varying expressiveness and power, attempting to
firm up the boundaries of what is learnable and how efficiently it can be learned,
whereas empiricists start with a practical problem and, by solving it, find that
they have made a contribution to grammatical inference research.

Grammatical inference is, intuitively as well as provably, a difficult problem
to solve. The precise difficulty of a particular inference problem is dictated by two
things: the complexity of the target language and the information available to the
inference algorithm about the target language. Naturally, simpler languages and
more information both lead to easier inference problems. Most of the theoretical
literature in this field investigates some specific combination of language class
and learning model, and presents results for that combination.

In Section 2 we describe different learning models along with the type of infor-
mation they make available to the inference algorithm. In Section 3 we explore
the learnability, decidability, and computational complexity of different learn-
ing models applied to language classes of interest in software engineering: finite
state machines and context-free grammars. Section 4 discusses the relationship
between theoretical and empirical approaches, and gives several practical exam-
ples of grammatical inference in software engineering. In Section 5 we list the
related surveys, bibliographies, and commentaries on the field of grammatical in-
ference and briefly mention the emphasis of each. Finally, in Section 6 we discuss
the main challenges currently facing software engineers trying to adopt gram-
matical inference techniques, and suggest future research directions to address
these challenges.

2 Learning Models

The type of learning model used by an inference method is fundamental when
investigating the theoretical limitations of an inference problem. This section
covers the main learning models used in grammatical inference and discusses
their strengths and weaknesses.

Section 2.1 describes identification in the limit, a learning model which allows
the inference algorithm to converge on the target grammar given a sufficiently
large quantity of sample strings. Section 2.2 introduces a teacher who knows
the target language and can answer particular types of queries from the learner.
This learning model is, in many cases, more powerful than learning from sample
strings alone. Finally, Section 2.3 discusses the PAC learning model, an elegant
method that attempts to find an optimal compromise between accuracy and
certainty. Different aspects of these learning models can be combined and should
not be thought of as mutually exclusive.

2.1 Identification in the limit

The field of grammatical inference began in earnest with E.M. Gold’s 1967 paper,
titled “Language Identification in the Limit” [24]. This learning model provides
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the inference algorithm with a sequence of strings one at a time, collectively
known as a presentation. There are two types of presentation: positive presenta-
tion, where the strings in the sequence are in the target language; and complete
presentation, where the sequence also contains strings that are not in the target
language and are marked as such. After seeing each string the inference algorithm
can hypothesize a new grammar that satisfies all of the strings seen so far, i.e. a
grammar that generates all the positive examples and none of the negative ex-
amples. The term “information” is often used synonymously with “presentation”
(e.g. positive information and positive presentation mean the same thing).

The more samples that are presented to the inference algorithm the better
it can approximate the target language, until eventually it will converge on the
target language exactly. Gold showed that an inference algorithm can identify
an unknown language in the limit from complete information in a finite number
of steps. However, the inference algorithm will not know when it has correctly
identified the language because there is always the possibility the next sample
it sees will invalidate its latest hypothesis.

Positive information alone is much less powerful, and Gold showed that any
superfinite class of languages cannot be identified in the limit from positive
presentation. A superfinite class of languages is a class that contains all finite
languages and at least one infinite language. The regular languages are a su-
perfinite class, indicating that even the simplest language class in Chomsky’s
hierarchy of languages is not learnable from positive information alone.

There has been much research devoted to learning from positive information
because the availability of negative examples is rare in practice. However, the
difficulty of learning from positive data is in the risk of overgeneralization, learn-
ing a language strictly larger than the target language. Angluin offers a means to
avoid overgeneralization via “tell-tales”, a unique set of strings that distinguish
a language from other languages in its family [2]. She states conditions for the
language family that, if true, guarantee that if the tell-tale strings are included
in the positive presentation seen so far by the inference algorithm then it can be
sure its current guess is not an overgeneralization.

2.2 Teacher and Queries

This learning model is similar in spirit to the game “twenty questions” and uses a
teacher, also called an oracle, who knows the target language and answers queries
from the inference algorithm. In practice, the teacher is often a human who
knows the target language and aids the inference algorithm, but in theory can
be any process hidden from the inference algorithm that can answer particular
types of questions. Angluin describes six types of queries that can be asked of the
teacher, two of which have a significant impact on language learning: membership
and equivalence [6]. A teacher that answers both membership and equivalence
queries is said to be a minimally adequate teacher because she is sufficient to
help identify DFAs in polynomial time without requiring any examples from the
target language [5].
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For a membership query, the inference algorithm presents a string to the
teacher who responds with “yes” if the string is in the language or “no” if it
is not. Likewise for an equivalence query, the inference algorithm presents a
grammar hypothesis to the teacher who answers “yes” or “no” if the guess is
equivalent to the target grammar or not. In the case when the teacher answers
“no” she also provides a counter-example, a string from the symmetric difference
of the target language and the guessed language, allowing the inference algorithm
to zero in on the target grammar. The symmetric difference of two sets A and
B are the elements in either A or B but not both: A

⊕
B = (A∪B)− (A∩B).

Queries provide an alternate means to measure the learnability of a class of
languages. They can be used on their own or in conjunction with a presentation
of samples, either positive or complete, to augment the abilities of the learner.
Section 3 discusses how learning with queries differs in difficulty from learning
in the limit for various language classes.

2.3 PAC Learning

In 1984 Valiant proposed the Probably Approximately Correct (PAC) learning
model [55]. This model has elements of both identification in the limit and learn-
ing from an oracle, but differs because it doesn’t guarantee exact identification
with certainty. As its name implies, PAC learning measures the correctness of its
result by two user-defined parameters, ε and δ, representing accuracy and con-
fidence respectively. This learning model is quite general and thus uses different
terminology than typically found in formal languages, but of course applies just
as well to grammatical inference. The goal is still to learn a “concept” (grammar)
from a set of “examples of a concept” (strings).

Valiant assumes there exists a (possibly unknown) distribution D over the
examples of a target concept that represent how likely they are to naturally
occur, and makes available to the inference algorithm a procedure that returns
these examples according to this distribution. As with Gold’s identification in
the limit, PAC learning incrementally approaches the target concept with more
accurate guesses over time.

A metric is proposed to measure the distance between two concepts, defined
as the sum of probabilities D(w) for all w in the symmetric difference of L(G)
and L(G′). In Figure 1, the lightly shaded regions represent the symmetric differ-
ence between L(G) and L(G′). The area of this region decreases as the distance
between the two concepts decreases. In the case of grammatical inference, these
two concepts refer to the target grammar and the inference algorithm’s current
guess.

The PAC learning model’s criteria for a successful inference algorithm is
one that can confidently (i.e. with probability at least 1 − δ) guess a concept
with high accuracy (i.e. distance to the target concept is less than ε). Valiant
demonstrates the PAC learning model with a polynomial time algorithm that
approximates bounded conjunctive normal form (k-CNF) and monotone disjunc-
tive normal form (DNF) expressions using just the positive presentation from D
and a membership oracle.
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Fig. 1. The PAC-learning measure of distance between two language concepts

The novelty and uniqueness of Valiant’s model intrigued the grammatical
inference community, but negative and NP-hardness equivalence results (e.g. [33,
49]) dampened enthusiasm for PAC learning. Many feel Valiant’s stipulation that
the algorithm must learn polynomially under all distributions is too stringent to
be practical since the learnability of many apparently simple concept classes are
either known to be NP-hard, or at least not known to be polynomially learnable
for all distributions.

Li and Vitanyi propose a modification to the PAC learning model that only
considers simple distributions [43]. These distributions return simple examples
with high probability and complex examples with low probability, where sim-
plicity is measured by Kolmogorov complexity. Intuition is that simple examples
speed learning. This is corroborated by instances of concepts given by the authors
that are polynomially learnable under simple distributions but not known to be
polynomially learnable under Valiant’s more general distribution assumptions.

Despite the learnability improvements that simple PAC learning offers, the
PAC learning model has attracted little interest from grammatical inference
researchers in recent years. Identification in the limit and query-based learning
models remain far more prevalent, with newer models such as neural networks
and genetic algorithms also garnering interest.

3 Complexity

A significant portion of the grammatical inference literature is dedicated to an
analysis of its complexity and difficulty, with results typically stated for a specific
grammar class or type. The broadest form of result is simply whether a language
class can be learned or not, while other results consider learning in polynomial
time, learning the simplest grammar for the target language, or identifying the
target language with a particular probability. Table 1 outlines the complexity
results for different language classes and learning models.
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Language Presentation Queries
Class Complete Positive Membership

Only
Equivalence
Only

Both

Finite Identifiable in
the limit [24]

Identifiable in
the limit [24]

k-reversible
automata

Polynomial
[4]

Strictly
deterministic
automata

Identifiable in
the limit [60]

Superfinite Identifiable in
the limit [24]

Not
identifiable in
the limit [24]

Regular Finding the
minimum
state DFA is
NP-hard [25]

Polynomial
for
representative
sample [3]

No
polynomial
algorithm [7]

Polynomial
[5]

Polynomial [15]

Reversible
context-free

Identifiable in
the limit with
structured
strings [52]

Noncounting
context-free

Identifiable
with
structured
strings [16]

Very simple Polynomial
identifiable in
the limit [59]

Polynomial
[59]

Structurally
reversible
context-free

Polynomial
[11]

Simple de-
terministic

Polynomial
[28]

Context-free As hard as
inverting RSA
[8]

Polynomial
with
structured
strings [51]

Table 1. Learnability and complexity results for various language classes using different
learning models
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Gold showed that a large class of languages can be identified in the limit
from complete information including the regular, context-free, context-sensitive,
and primitive recursive classes. This identification can be accomplished by a
brute-force style of technique called identification by enumeration where, as each
new example is presented, the possible grammars are enumerated until one is
found that satisfies the presentation seen so far. By contrast, positive information
alone cannot identify the aforementioned classes in the limit, nor any other
superfinite class [24]. The subsequent sections describe the two easiest grammar
classes to infer from the Chomsky hierarchy: regular grammars and context-free
grammars. Very little research has been attempted on the inference of more
powerful grammar classes such as context-sensitive and unrestricted grammars,
so they are omitted from this overview.

3.1 Deterministic Finite Automata

For any non-trivial language, multiple different grammars can be constructed
to generate it. Likewise, there can exist DFAs that differ in their size but are
equivalent in the sense that they accept the same language. When inferring
a DFA from examples, it is naturally desirable to find the smallest DFA that
accepts the target language. There exists only one such minimal DFA for a
given language, known as the canonical DFA acceptor for that language. Despite
the strong identification power of complete information, finding the minimal
DFA that accepts an unknown regular language from a finite set of positive and
negative samples is NP-complete [25].

Early claims of polynomial-time inference algorithms use the number of states
in the target language’s canonical acceptor as the input size. With this criteria,
Angluin gives negative results for the polynomial identification of regular lan-
guages using membership queries only [3] or equivalence queries only [7]. How-
ever, if the membership oracle is augmented with a representative sample of
positive data, a set of strings that exercise all the live transitions in the target
language’s canonical acceptor, then it is possible to identify a regular language
in polynomial time [3]. By combining the power of both membership and equiv-
alence queries, a regular language can be identified in polynomial time even
without a single positive example in the unknown language [5]. Her proposed
algorithm runs in time polynomial to the number of states in the minimum DFA
and the longest counter-example provided by the equivalence oracle.

Several algorithms have been developed for the inference of DFAs from exam-
ples. These algorithms generally start by building an augmented prefix tree ac-
ceptor from positive and negative samples, then perform a series of state merges
until all valid merges are exhausted. Each state merge has the effect of gener-
alizing the language accepted by the DFA. The algorithms differ by how they
select the next states to merge, constraints on the input samples, and whether
or not they guarantee the inference of a minimal DFA.

An early state-merging algorithm is described by Trakhtenbrot and Barzdin
that infers a minimal DFA in polynomial time, but requires that all strings up
to a certain length are labeled as positive or negative [54]. The regular positive
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and negative inference (RPNI) algorithm also finds the canonical acceptor but
allows an incomplete labeling of positive and negative examples which is more
common in practice [48]. RPNI does, however, require the positive examples
contain a characteristic set with respect to the target acceptor. A characteristic
set is a finite set of positive examples S ⊂ L(A) such that there is no other
smaller automata A′ where S ⊂ L(A′) ⊂ L(A). Lang provides convincing em-
pirical evidence that his exbar algorithm out-performs comparable algorithms,
and represents the state of the art in minimal DFA inference [38].

The algorithms discussed so far are guaranteed to infer a minimal DFA for
the given examples, but evidence driven state merging (EDSM) algorithms relax
this requirement for better scalability and performance. The order that states in
a prefix tree are merged has a significant impact on an algorithm’s performance
because each merge restricts possible future merges. Bad merge decisions cause
a lot of backtracking that can be avoided with smarter merge decisions. EDSM
algorithms are so named because they use evidence from the merge candidates to
determine a merge that is likely to be a good generalization, such as the heuristic
proposed by Rodney Price in the first EDSM algorithm [39] and a winner of the
Abbadingo Learning Competition. Differences in EDSM algorithms come down
to the search heuristic used to select merges, and several have been tried such as
beam search [38], stochastic search and the self-adaptive greedy estimate (SAGE)
algorithm [32]. These search heuristics are comparable in performance and are
the best known inference algorithms for large or complex DFAs.

3.2 Context-free grammars

Polynomial-time algorithms to learn higher grammar classes have also been
investigated, in particular for context-free grammars. Identifying context-free
grammars in polynomial time is considerably more difficult than for DFAs, so
most polynomial results in the literature either learn a strict subset of context-
free grammars, use structured strings as input, or both. Unlike DFA inference,
there is currently no known polynomial algorithm to identify a general context-
free language from positive and negative samples.

Angluin and Kharitonov give a hardness result that applies to all context-
free languages: constructing a polynomial-time learning algorithm for context-
free grammars using membership queries only is computationally equivalent to
cracking well-known cryptographic systems, such as RSA inversion [8].

Anecdotally, it appears a fruitful method to find polynomial-time learning
algorithms for context-free languages from positive samples is to adapt corre-
sponding algorithms from DFA inference, with the added stipulation that the
sample strings be structured. A structured string is a string along with its un-
labelled derivation tree, or equivalently a string with nested brackets to denote
the shape of its derivation tree. Sakakibara has shown this method effective by
adapting Angluin’s results for learning DFAs by a minimally adequate teacher
[5] and learning reversible automata [4] to context-free variants with structured
strings [51, 52].



9

Clark et al. have devised a polynomial algorithm for the inference of languages
that exhibit two special characteristics: the finite context property and the finite
kernel property [15]. These properties are exhibited by all regular languages,
many context-free languages, and some context-sensitive languages. The algo-
rithm is based on positive data and a membership oracle. More recently, Clark
has extended Angluin’s result [5] of learning regular languages with membership
and equivalence queries to a larger subclass of context-free languages [14].

Despite the absence of a general efficient context-free inference algorithm,
many researchers have developed heuristics that provide relatively good perfor-
mance and accuracy by sacrificing exact identification in all cases. We describe
several such approaches related to software engineering in Section 4.

4 Applications in Software Engineering

Grammatical inference has its roots in a variety of separate fields, a testament
to its wide applicability. Implementors of grammatical inference applications
often have an unfair advantage over purely theoretical GI research because theo-
rists must restrict themselves to inferring abstract machines (DFAs, context-free
grammars, transducers, etc.) making no additional assumptions about the under-
lying structure of the data. Empiricists, on the other hand, can make many more
assumptions about the structure of their data because their inference problem
is limited to their particular domain.

Researchers attempting to solve a practical inference problem will usually
develop their own custom solution, taking advantage of structural assumptions
about their data. Often this additional domain knowledge is sufficient to over-
come inference problems that theorists have proved impossible or infeasible with
the same techniques in a general environment. The applications described in the
following sections use grammatical inference techniques, but rarely result from
applying a purely theoretical result to a practical problem.

4.1 Inference of General Purpose Programming Languages

Programming language design is an obvious area to benefit from grammatical
inference because grammars themselves are first-class objects. Programming lan-
guages almost universally employ context-free, non-stochastic grammars to parse
a program, which narrows the possible inference approaches considerably when
looking for an inductive solution. When discussing the inference of programming
language grammars here, the terms “sample” and “example” refer to instances
of computer programs written in the target programming language.

Crespi-Reghizzi et al. suggest an interactive system to semi-automatically
generate a programming language grammar from program samples [17]. This
system relies heavily on the language designer to help the algorithm converge on
the target language by asking for appropriate positive and negative examples.
Every time the learning algorithm conjectures a new grammar, it outputs all
sentences for that grammar up to a certain length. If the conjectured grammar
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is too large, there will be sentences in the output that don’t belong and the
designer marks them as such. If the conjectured grammar is too small, there will
be sentences missing from the output and the designer is expected to provide
them. The designer’s corrections are fed back into the algorithm which corrects
the grammar and outputs a new conjecture, and the process repeats until the
target grammar is obtained.

Another system is proposed by Dubey et al. to infer a context-free grammar
from positive samples for a programming language dialect when the standard lan-
guage grammar is already known [21]. Their algorithm requires the non-terminals
in the dialect grammar to be unchanged from the standard grammar, but allows
for the terminals and production rules to be extended in the dialect grammar
(i.e. new keywords can be added in the dialect along with their associated gram-
mar rules). Their approach has the advantage of being fully automated so the
designer simply needs to provide the dialect program samples and the standard
language grammar. However, like many current CFG inference techniques, a
heuristic is used which cannot guarantee the output grammar converges exactly
to the target grammar.

4.2 Inference of Domain Specific Languages

Domain specific languages (DSLs) are languages whose syntax and notation are
customized for a specific problem domain, and are often more expressive and
declarative compared to general purpose languages. DSLs are intended to be
used, and possibly designed, by domain experts who do not necessarily have
a strong computer science background. Grammatical inference allows the cre-
ation of a grammar for a DSL by only requiring positive (and possibly negative)
program samples by the designer.

Črepinšek et al. propose a genetic approach to infer grammars for small DSLs
using positive and negative samples [56]. They combine a set of grammar pro-
duction rules into a chromosome representing a complete grammar, then apply
crossover and mutation genetic operators that modify a population of chromo-
somes for the next generation. They use a fitness function that reflects the goal
of having the target grammar accept all positive samples and reject all negative
samples. Since a single random mutation is more likely to produce a grammar
that rejects both positive and negative samples, the authors found that testing a
chromosome on only positive samples converges more quickly to the target gram-
mar than testing it on negative samples. Therefore, they chose a fitness value
proportional to the total length (in tokens) of the positive samples that can
be parsed by a chromosome. Negative samples, used to control overgeneraliza-
tion, are only included in the fitness value if all positive samples are successfully
parsed.

This genetic approach has been shown to accurately infer small DSLs [56],
including one discussed by Javed et al. to validate UML class diagrams from
use cases [29]. Javed et al. express UML class diagrams in a custom DSL and
require a domain expert to provide positive and negative use cases written in
that DSL. The system validates these use cases against the given UML diagrams
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and reports feedback to the user, who can use that feedback to change the
UML diagrams to improve use case coverage. In this situation the computer is
providing valuable context and information to the human user who is making
the important generalization and specialization decisions for the grammar, but in
theory UML diagrams can be synthesized entirely from the use case descriptions
given a sufficiently powerful grammar inference engine.

Javed et al. extend their genetic algorithm by learning from positive samples
only by using beam search and Minimum Description Length (MDL) heuris-
tics [40] in place of negative examples to control overgeneralization of the con-
jectured grammar [31]. The idea here is to find the simplest grammar at each
step and incrementally approach the target grammar. MDL is used as a measure
of grammar simplicity, and beam search is used to more efficiently search the
solution space of possible grammars. One disadvantage of this approach is it re-
quires the positive samples to be presented in a particular order, from simplest
to most complex, which allows the learning algorithm to encode the incremental
differences from the samples into the target grammar. The authors’ subsequent
effort into a grammar inference tool for DSLs, called MAGIc, eliminates this need
for an order-specific presentation of samples by updating the grammar based on
the difference between successive (arbitrary) samples [46, 27]. This frees the de-
signer from worrying about the particular order to present their DSL samples to
the learning algorithm. Hrnčič et al. demonstrate how MAGIc can be adapted
to infer DSLs embedded in a general purpose language (GPL) given the GPL’s
grammar [26]. The GPL’s grammar rules are included in the chromosome, but
frozen so they cannot mutate. Learning, therefore, occurs strictly on the DSL
syntax and the locations in the GPL grammar where the embedded DSL is
allowed.

The inference of DSLs can make it easier for non-programmer domain experts
to write their own domain-specific languages by simply providing examples of
their DSL programs. It can also be used in the migration or maintenance of
legacy software whose grammar definitions are lost or unavailable.

4.3 Inference of Graph Grammars and Visual Languages

Unlike one-dimensional strings whose elements are connected linearly, visual
languages and graphs are connected in two or more dimensions allowing for
arbitrary proximity between elements. Graph grammars define a language of
valid graphs by a set of production rules with subgraphs instead of strings on
the right-hand side.

Fürst et al. propose a graph grammar inference algorithm based on positive
and negative graph samples [23]. The algorithm starts with a grammar that pro-
duces exactly the set of positive samples then incrementally generalizes towards
a smaller grammar representation, a strategy similar to typical DFA inference
algorithms which build a prefix tree acceptor then generalize by merging states.
The authors demonstrate their inference algorithm with a flowchart example
and a hydrocarbon example, making a convincing case for its applicability to
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software engineering tasks such as metamodel inference and reverse engineering
visual languages.

Another graph grammar inference algorithm is proposed by Ates et al. which
repeatedly finds and compresses overlapping identical subgraphs to a single non-
terminal node [9]. This system uses only positive samples during the inference
process, but validates the resulting grammar by ensuring all the graphs in the
training set are parsable and other graphs which are close to but distinct from
the training graphs are not parsable. Ates et al. demonstrate their algorithm
with two practical inferences: one for the structure of a programming language
and one for the structure of an XML data source.

Kong et al. use graph grammar induction to automatically translate a web-
page designed for desktop displays into a webpage designed for mobile dis-
plays [35]. The inference performed is similar to the aforementioned proposed by
Ates et al. [9] because they both use the Spatial Graph Grammar (SGG) formal-
ism and subgraph compression. The induction algorithm consumes webpages, or
more accurately their DOM trees, to produce a graph grammar. After a human
has verfied this grammar it is used to parse a webpage, and the resulting parse
is used to segment the webpage into semantically related subpages suitable for
display on mobile devices.

Graph grammar inference algorithms are less common than their text-based
counterparts, but provide a powerful mechanism to infer patterns in complex
structures. Parsing graphs is NP-hard in general, causing these algorithms to be
more computationally expensive than inference from text. Most graph grammar
learners overcome this complexity by restricting their graph expressiveness or
employing search and parse heuristics to achieve a polynomial runtime.

4.4 Other uses in Software Engineering

Section 3 describes the difficulty inferring various language classes from positive
samples alone, and in particular that only finite languages can be identified in
the limit from positive samples [24]. The SEQUITUR algorithm, developed by
Nevill-Manning and Witten, is designed to take a single string (long but finite)
and produce a context-free grammar that reflects repetitions and hierarchical
structure contained in that string [47]. This differs from typical grammar infer-
ence algorithms because it does not generalize. Data compression is an obvious
use of this algorithm, but it has found other uses in software engineering. For ex-
ample, Larus uses the SEQUITUR algorithm to concisely represent a program’s
entire runtime control flow and uses this dynamic control flow information to
identify heavily executed paths in the program to focus performance and com-
piler optimization efforts [41]. It can also be used on the available positive sam-
ples as a first step in a generalizing context-free grammar inference algorithm,
such as in [46] to seed an initial population of grammars for a genetic approach.

Ahmed Memon proposes using grammatical inference in log files to identify
anomalous activity [45]. He treats the contents of log files in a system running
normally as a specific language, and any erroneous or anomalous activities re-
ported in the log file are therefore not part of this language. Memon trains
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a grammar from positive log file samples of a system running normally, then
parses subsequent log file entries using this grammar to identify anomalous ac-
tivity. The inference procedure depends on knowledge of the domain, specifically
sixteen text patterns that appear in typical log files: dates, times, IP addresses,
session IDs, etc. Once these patterns are identified and normalized, a custom
non-terminal merging algorithm is used to generalize the log file grammar.

Another recent use for grammatical inference is in the area of model-driven
engineering. The relationship between a grammar and the strings it accepts is
analogous to the relationship between a metamodel and the instance models it
accepts. Javed et al. describe a method to use grammar inference techniques on
a set of instance models to recover a missing or outdated metamodel [30]. The
process involves converting the instance models in XML format to a domain-
specific language, then performing existing grammar inference techniques on
those DSL programs. The authors use their previously developed evolutionary
approach [57] to do the actual inference, then recreate a metamodel in XML
format from the result so the recovered metamodel can be loaded into a modeling
tool. Liu et al. have recently extended this system to handle models with a
more complex and segmented organizational structure [44]. The authors refer to
these as multi-tiered domains because they support multiple viewpoints into the
model.

Two similar problems are grammar convergence [37] and grammar recov-
ery [36], both which involve finding grammars for a variety of software artifacts.
The goal of grammar convergence is to establish and maintain a mapping be-
tween software artifact structures in different formats that embody the same
domain knowledge. Grammatical inference can aid in the early steps of this
process to produce a grammar for each knowledge representation by examining
available concrete examples. Existing grammar transformation and convergence
techniques can then be used on the resulting source grammars to establish a
unified grammar.

Grammar recovery can be viewed as a more general version of the grammar
inference problem because it seeks to recover a grammar from sources such as
compilers, reference manuals and written specifications, in addition to concrete
program examples. The effort by Lämmel and Verhoef to recover a VS COBOL
II grammar includes leveraging visual syntax diagrams from the manual [36].
These diagrams give clues about the shape of the target grammar’s derivation
tree, knowledge that is known to greatly improve the accuracy of grammati-
cal inference techniques. For example, reversible context-free and non-counting
context-free languages are known to be identifiable from positive examples with
these types of structured strings [52, 16]. Furthermore, structured strings can be
used to identify any context-free language in polynomial time with a member-
ship and equivalence oracle [51]. In the case of grammar recovery, an existing
compiler for the language (even without the compiler source code) may be used
as a membership oracle.
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5 Related Surveys

Many surveys of grammatical inference have been written to introduce newcom-
ers to the field and summarize the state of the art. Most give a thorough overview
of grammatical inference in general, but each emphasise different aspects of the
literature.

Fu and Booth (1986) give a detailed technical description of some early infer-
ence algorithms and heuristics with an emphasis on pattern recognition examples
to demonstrate its relevance [22]. This survey is heavy on technical definitions
and grammatical notation, suitable for someone with prior knowledge in for-
mal languages who prefers to get right into the algorithms and techniques of
grammatical inference.

Vidal (1994) provides a concise but thorough overview of the learning models
and language classes in grammatical inference, with ample citations for follow-up
investigation [58]. He presents each learning model in the context of fundamental
learnability results in the field as well as their practical applications without
getting too deeply into the details of each learning model.

Dana Ron’s doctoral thesis (1995) on the learning of deterministic and prob-
abilistic finite automata primarily investigates PAC learning as it relates to iden-
tifying DFAs, and describes practical applications of its use [50]. Although not
exhaustive of grammatical inference in general, this thesis is a good reference for
someone specifically interested in DFA inference.

Lee (1996) presents an extensive survey on the learning of context-free lan-
guages, including those that have non-grammar formalisms [42]. She discusses
approaches that learn from both text and structured data, making it relevant to
software engineering induction problems.

Sakakibara (1997) provides an excellent overview of the field with an empha-
sis on computational complexity, learnability, and decidability [53]. He covers
a wide range of grammar classes including DFAs, context-free grammars and
their probabilistic counterparts. This survey is roughly organized by the types
of language classes being learned.

Colin de la Higuera (2000) gives a high-level and approachable commentary
on grammatical inference including its historical progress and achievements [18].
He highlights key issues and unsolved problems, and describes some promising
avenues of future research. This commentary is not meant as a technical introduc-
tion to inference techniques nor an exhaustive survey, and therefore contains no
mathematical or formal notation. It rather serves as a quick and motivational
read for anyone interested in learning about grammatical inference. A similar
piece on grammatical inference is written by Honavar and de la Higuera (2001)
for a special issue of the Machine Learning journal (volume 44), emphasizing
the cross-disciplinary nature of the field.

Cicchello and Kremer (2003) and Bugalho and Oliveira (2005) survey DFA
inference algorithms in depth, with excellent explanations about augmented pre-
fix tree acceptors, state merging, the red-blue framework, search heuristics, and
performance comparisons of state of the art DFA inference algorithms [13, 10].
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de la Higuera (2005) provides an excellent guide to grammatical inference,
geared toward people (not necessarily experts in formal languages or computa-
tional linguistics) who think grammatical inference may help them solve their
particular problem [19]. He gives a general roadmap of the field, examples of
how grammatical inference has been used in existing applications, and provides
many useful references for further investigation by the reader.

Pieter Adriaans and Menno van Zaanen (2006) compare grammatical infer-
ence from three different perspectives: linguistic, empirical, and formal [1]. They
introduce the common learning models and broad learnability results in the
framework of each perspective, and comment on how these perspectives over-
lap. This survey is useful for someone who comes from a linguistic, empirical, or
formal languages background and wishes to learn about grammatical inference.

6 Future Direction and Challenges

Software engineers are finding a variety of uses for grammatical inference in their
work, but grammatical inference is still relatively rare in the field. The theoret-
ical work in grammatical inference is largely disconnected from these practical
uses because implementers tend to use domain specific knowledge to craft cus-
tom solutions. Such solutions, while successful in some cases, usually ignore the
powerful algorithms developed by the theoretical GI community. Domain knowl-
edge should continue to be exploited – we are not advocating otherwise – but
domain knowledge needs to be translated into a form general-purpose inference
algorithms can use. We believe this is the biggest challenge currently facing soft-
ware engineers wanting to use grammatical inference in their applications: how
to map their domain knowledge to theoretical GI constraints.

Constraints can be imposed in several ways, such as simplifying the gram-
mar class to learn, providing negative samples, adding a membership and/or
equivalence oracle where none existed, or partially structuring the input data.
Often these constraints are equivalent to some existing structural knowledge or
implicit assumptions about the input data, but identifying these equivalences is
nontrivial.

while limit > a do

begin

if a > max then max = a;

a := a + 1

end

Fig. 2. A sample program in an unknown Pascal-like language

We motivate this approach with a concrete example, inspired by an exam-
ple from Sakakibara [52]. Suppose you have a collection of computer programs
written in an unknown language with a Pascal-like syntax and wish to infer a
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grammar from the collection. For clarity, Figure 2 shows a sample program in
the collection and Figure 3 shows the target grammar to learn (a subset of the
full Pascal grammar).

Statement→ Ident := Expression

Statement→ while Condition do Statement

Statement→ if Condition then Statement

Statement→ begin Statementlist end

Statementlist→ Statement;Statementlist

Statementlist→ Statement

Condition→ Expression > Expression

Expression→ Term + Expression

Expression→ Term

Term→ Factor

Term→ Factor × Term

Factor → Ident

Factor → (Expression)

Fig. 3. The target grammar for the Pascal-like language [52]

At first glance this inference problem seems too difficult to solve. It is a
context-free grammar with positive samples only, and Gold proved learning a
superfinite language in the limit from positive-only samples is impossible [24].
Even with the addition of negative samples there is no known algorithm to
efficiently learn a context-free language.

On closer inspection, however, there is additional structural information in
the input samples, hidden in a place grammarware authors and parsers are
trained to ignore – the whitespace. By taking into account line breaks and in-
dented sections of source code in the input samples, a structured string can
be constructed for each program. If we further assume the target grammar
is reversible then we can apply a result by Sakakibara, who showed reversible
context-free grammars can be learned in polynomial time from positive struc-
tured strings [52].

This particular solution depends on two assumptions: (1) all the input sam-
ples have meaningful and consistent whitespace formatting, and (2) the target
grammar is in the class of reversible context-free grammars. The assumption
that the target grammar is reversible context-free is reasonable, as many DSLs
would fit this criterion. The Pascal subset grammar in Figure 3 is in fact re-
versible context-free, but full Pascal is not because adding a production rule like
Factor → Number to this grammar violates the criteria of reversibility [52].

Leveraging domain knowledge and structural assumptions is quite power-
ful when inferring grammars from examples and should be encouraged, but at
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present mapping this domain-specific knowledge to abstract constructs in gram-
matical inference research requires some creativity and awareness of theoretical
results in the field. Allowing the extensive work done in the theoretical gram-
matical inference community to bear on specific applications of GI would be a
great boon to software engineering.

7 Conclusion

In grammatical inference, an inference algorithm must find and use common
patterns in example sentences to concisely represent an unknown language in
the form of a grammar. This process spans two axes of complexity: the language
class to be learned and the learning model employed.

The theoretical foundations of grammatical inference are now well established
thanks to contributions by Gold, Angluin and others. The state of the art, how-
ever, still has plenty of room to grow, and Colin de la Higuera identifies ten open
problems on the theoretical side of grammatical inference that he believes are
important to solve going forward [20].

In practice, assumptions can often be made which are not possible in a purely
theoretical setting because a specific problem domain has limited scope, allowing
for a better outcome than one would expect from simply applying the smallest
enclosing theoretical result. Some work has already been done to investigate this
relationship deeper, such as that by Kermorvant and de la Higuera [34] and Cano
et al [12]. It would be valuable to find a widely applicable technique to equate
domain assumptions with either a restriction in the class of language to learn,
or an augmentation of the learning model.

Theoretical grammatical inference research continues to advance in many dif-
ferent directions: the language classes being learned, the learning models in use,
the criteria for a successful inference, and the efficiency of the inference algo-
rithms. Existing applications for grammatical inference are continually refined
and new applications are found in a wide variety of disciplines.
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26. Hrnčič, D., Mernik, M., Bryant, B.R.: EMBEDDING DSLS INTO GPLS: a
GRAMMATICAL INFERENCE APPROACH *. Information Technology And
Control 40(4) (December 2011)
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