
TETE: A Non-Invasive Unit Testing Framework for Source Transformation∗

Derek M. Shimozawa James R. Cordy

School of Computing, Queen’s University, Kingston, Canada
E-mail: dshimoza@ca.ibm.com, cordy@cs.queensu.ca

Abstract

While the use of test-driven development as a debug-
ging, pedagogic, and analytical methodology for object-
oriented and procedural systems is well documented, it is
a relatively unexplored and informal practice within the
paradigm of source transformation. This paper describes a
test-driven approach to the specification and evaluation of
source transformation programs through rule-by-rule and
type-by-type unit testing. We introduce the Transforma-
tion Engineering Toolkit for Eclipse (TETE), a test-driven
framework centered around a simple yet flexible infrastruc-
ture for automatically and non-invasively unit testing sub-
transformations, application strategies, and grammar types
specified in the TXL source transformation language.

1 Introduction

Test-driven development is an approach to coding which
encourages developers to write one or more unit tests to
capture and validate the behavior of a program in small,
manageable chunks before adding new code. While it has
proven well-suited to development of object-oriented and
procedural systems [8, 18, 19, 7], it has yet to be explored
in the realm of source transformation programming.

Many common software development tasks can be char-
acterized as source transformations, from simple text pretty-
printing to advanced source code processing and compi-
lation. The source transformation programming paradigm
models these processes as syntactic conversions from the
problem domain, represented as program input, to the solu-
tion domain, represented as program output, using syntax-
based pattern matching and replacement.

In this paper, we describe a test-driven approach to
source transformation which leverages unit testing to help
overcome some of the existing complexities and learning
barriers inherent in many transformation-based systems.

∗This work was supported by the Natural Sciences and Engineering
Research Council of Canada and by IBM through an Eclipse Innovation
Award

We have identified five challenges specific to source trans-
formation that are well suited to unit-testing solutions:

Grammatical type evaluation: Transformation systems
use a context-free grammar to tokenize and parse the source
input. For generality, their grammar frameworks usually al-
low for unrestricted grammatical forms, without analyzing
or checking for type ambiguities or parser restrictions. Due
to this leniency, it is easy for developers to introduce un-
expected parsing behavior. This problem is further compli-
cated by the fact that nonterminal types cannot be directly
accessed independently of the rest of the grammar and the
rules that use it. In the context of a transformation, visibility
of a grammatical type is ultimately determined by the appli-
cation scope of the rules that apply it, and so considerable
effort must be expended to test the correctness of a nonter-
minal type definition as it relates to concrete examples of
input.

Rewrite subtransformation evaluation: Transforma-
tion processes are implemented using sets of individual sub-
transformations (rewriting rules) that map syntactic sub-
structures in the program input to those in the output. These
rules carry out the bulk of the transformation work on in-
termediate tree structures (i.e., parse trees) by searching for
subtrees matching a specified pattern and substituting them
with replacement subtrees constructed from parts captured
in the pattern. By default, substitutions are applied in an ag-
gregate fashion to form the final transformed tree structure,
and thus the behavior of a single pattern-replacement pair
cannot be easily dissociated from that of the overall trans-
formation. When a rule is failing to match its intended pat-
tern, it takes considerable hand effort to localize and debug
the offending subtransformation.

Application strategy evaluation: Controlling the ap-
plication of rules within a transformation is a major con-
cern for programmers. Rewrite systems are not necessarily
confluent or terminating, and therefore they often include
traversal control facilities and application conditions to con-
strain the order and scope of application of rewrites. Track-
ing down errors in a program’s application strategy is time
consuming, because the entire transformation must be de-
bugged as a whole, as opposed to isolating constituent parts

of the overall rule application. In many cases, programmers
will attempt to fix their application strategies without fully
understanding the precise nature of the error. The result
is repeated shotgun re-arrangement of the order of rewrites
and re-execution of the entire transformation until it yields
the desired results.

Grammar scope refinement: Grammars for common
programming languages consist of scores of non-terminal
types. Typically, programmers are only interested in a small
subset of the grammar’s types, because subtransformations
operate on only part of the intermediate tree structure at a
time. Thus test inputs are often much more elaborate and
complex than they need to be when a user is analyzing or
debugging the effects of a single rewrite.

Transformation pedagogy: Source transformation sys-
tems often help experienced developers to quickly produce
source transformations. However, they typically presume
a strong grasp of the underlying paradigm fundamentals
and place their target audience well above the introduc-
tory level, making them difficult to learn. Because of their
close conceptual proximity to general compiler technology,
they necessitate a radical cognitive shift from procedural
and object-oriented programming. Allowing for piecewise
transformation through unit testing can be an effective ped-
agogical solution to help new users compose example tests
and answer questions about the evaluation semantics of the
source transformation paradigm.

To address these issues, we have designed the Trans-
formation Engineering Toolkit for Eclipse (TETE), a set
of Eclipse [11] plug-ins that provides a flexible but sim-
ple infrastructure for automatically and non-invasively unit
testing rewrite subtransformations, rewrite strategies (which
are implicitly defined by the composition of subtransforma-
tions), and grammar types written in the TXL source trans-
formation language.

2 The TXL Source Transformation Lan-
guage

TXL [4, 5, 6] is a special-purpose language designed to
provide rule-based source transformation using functional
specification and interpretation. A TXL program has two
main parts: a context-free grammar that describes the syn-
tactic structure of inputs to be transformed, and a set of
context-sensitive, example-like transformation rules orga-
nized in functional programming style.

The TXL processor (Figure 1) is a compiler and run-time
system that directly interprets TXL programs. Source pro-
cessing is performed in three phases. First, the parser takes
the entire input, tokenizes it, and parses it according to the
TXL program’s grammar definitions to produce an inter-
mediate parse tree. The second phase transforms the parse
tree into a new tree that corresponds to the desired output.

Figure 1. The TXL transformation process.

Finally, the processor unparses the intermediate parse into
output text.

3 General Approach

The general approach to unit testing with TETE oper-
ates in two phases. The first of these applies TXL’s func-
tional decomposition to isolate rule and grammar constructs
of interest. The second phase uses Eclipse’s [11] source
modelling and interface framework to automate the pro-
gram mutation process and implement each testing feature.
Based on a source model for TXL transformations, TETE’s
unit testing framework calculates the file inclusion depen-
dencies and implements appropriate program mutations to
support each test. The details of this approach are explained
in the following sections.

3.1 TXL Rule Isolation

Program transformation in TXL is specified using a set
of transformation rules that by default use the fixed point
compositional semantics of pure rewriting systems. A rule
in TXL looks like this:

rule name

replace [type]

pattern
by

replacement
end rule

A rule searches its scope of application (the tree to which
it is applied) for nodes of the type of the rule. Each time a
node of the rule’s type is found, the tree rooted at that node
is compared against the rule’s pattern. If it matches, then
the rule builds a replacement tree, and substitutes this for
the subtree that was matched, yielding a new scope.

Structurally, TXL rules are organized into a rooted pure
functional program in which lower level rules are applied as
functions of subscopes captured by higher level patterns [6].

Figure 2. Isolating TXL rules through func-
tional decomposition.

Several rules can be applied to the same scope in succession
using functional composition, for example:

X[f][g][h]

Traversal strategies are implicitly programmed as part of
the functional decomposition of the transformation rule set,
which controls how and in which order subrules are applied.
That is, f is applied first, then g to the result of f, then h to
the result of g. In more conventional function notation, the
composition would be written as:

h(g(f(X)))

Our goal is to isolate rewrite rules to be tested so that
they can be applied independently of their higher level rules.
A rule that is to be unit tested is called the target rule. Our
hope is that since TXL uses functional decomposition to
specify the application and ordering strategy for the pro-
gram, we can break down the program’s application strat-
egy into standalone regions (rooted at the respective target
rules) that can be evaluated separately.

Figure 2 illustrates our unit testing process, as applied
to potential target rules in the program’s functional topol-
ogy. Execution of a TXL program begins by applying the
rule main to the entire input parse tree. The main rule typ-
ically captures the highest level structure to be transformed

and invokes a series of subrules (e.g. A0, B0, and C0) to
perform the actual transformation. If other rules are to be
applied, then these rules must explicitly invoke them, and
so on, in the style of a recursive functional program.

At the bottom of Figure 2, we modify the original main
rule so that the target rule B1 is directly invoked on its cap-
tured pattern tree, thereby excluding the effects of other sub-
rules A0, B0 and C0. By doing so, we reduce the transfor-
mation to only B1 and its subrules, B2 and B3. We can
implement this in TXL using a new main rule to invoke B1
alone:

rule main

replace [program]

P [program]

by
P [B1]

end rule

This approach is applicable to subrules at all levels (e.g. C2,
also shown in Figure 2).

3.2 TXL Grammar Type Isolation

The basic unit of a TXL grammar is the define statement.
Each define gives an ordered set of alternative forms (sep-
arated by the | operator) for one nonterminal type in the
context-free grammar. Terminal symbols such as operators,
semicolons and keywords are represented as themselves,
and non-terminal types appear in square brackets []. For
example, the nonterminal definition:

define expression

[number]

| [expression] + [number]

| [expression] - [number]

end define

specifies that an item of type expression is either a num-
ber, or something that is already an expression followed by
a plus sign and a number, or an expression followed by a
minus sign and a number.

TXL programs normally begin with a base grammar that
forms the syntactic foundation of the transformation. The
base grammar can be modified or extended by overriding
nonterminal definitions using grammar redefines [4]. The
effective grammar is the one formed by substituting each of
the redefinitions in the order that they appear in the TXL
program.

Like rules, context free grammar types in TXL are in-
terpreted as a recursive functional program, starting with
the goal nonterminal [program]. Our approach reduces
a grammar by removing the types that functionally precede
the target definition in the program’s topology. This is re-
alized in a simple way by overriding the grammar entry

Figure 3. Grammar scope refinement to iso-
late parse subtrees.

point, program, so that it directly references the nonter-
minal type we want to test:

redefine program

[target definition]

end redefine

The example in Figure 3 shows the parse tree that results
when the root non-terminal is overridden by the definition
of the target type verb phrase.

Normally users must provide source input that meets the
syntactic specifications of the entire grammar. Often this
forces users to test their programs on examples that are
much larger and more complex than they need to be for
the purpose of testing a single rule. In conjunction with
rule isolation, type isolation can greatly simplify the testing
process by reducing a program’s grammar to the specific
pattern type of the target rule.

3.3 Non-Invasive Unit Test Automation
using Eclipse

Thus far, our methodology has focused on using func-
tional decomposition and grammar overrides to isolate in-
dividual TXL rules and types. Without an automation pro-
cess, a program must be manually mutated to implement
these new rule and grammar entry points. This is a cum-
bersome procedure, requiring developers to (i) modify the
program so that it isolates the rule and/or type of interest,
(ii) save the new contents in the editor, (iii) run the transfor-
mation from the command line, (iv) return to the editor to
fix any compile-time errors, and finally, (v) restore the pro-
gram back to its initial state, retaining any desired changes.

Even by leveraging TXL’s functional semantics, this task
is so time consuming that most programmers avoid doing it,

Figure 4. The TXL Perspective in Eclipse.

even though it is the most effective way to determine pro-
gram behavior [9]. Furthermore, the mutation process is
invasive; users may accidentally introduce unexpected pro-
gram behavior during the mutation process that is only dis-
covered when the code is returned back to its original state.

To address these issues, we have designed TETE, a set
of Eclipse plug-ins for editing, debugging and unit-testing
TXL source transformations. Figure 4 shows a screenshot
of the TXL Perspective provided by TETE.

Unit testing is provided by three interacting modules
of TETE: a comprehensive modelling infrastructure based
on the JDT framework [10] that provides a TXL-specific
view of the state of the Eclipse workspace and its child
resources, the Rapid Transformation Input View (RTIV),
which merges rule testing, type testing, and program exe-
cution into a single, interactive interface, and the TXL Test
Generator, which is responsible for automatically mutating
TXL programs to isolate target rules and grammar types for
testing. We discuss each of these components below. Figure
5 illustrates the automated mutation process in TETE.

TXL Model in Eclipse. The TXL Model comprises
of a set of interfaces and classes that model the TXL enti-
ties associated with creating, editing, and building a TXL
program. By recording model state through a central data
repository, support tools are able to share a current and con-
sistent view of the TXL program. In the context of unit-
testing, the TXL Model serves to identify the file depen-
dencies needed by the TXL Test Generator to create a tem-
porary directory from a project’s contents for non-invasive
testing. It also allows the RTIV to query for the rules and
types present in the TXL file being edited by the TXL Edi-
tor.

TXL RTIV. The TXL Rapid Transformation Input
View (RTIV) is an interface for executing TXL programs.
Whereas TETE’s unit testing functionality focuses on eval-

Original Program
Read TXL Source Model Extract

Dependencies TXL Test Generator

TXL RTIV

Test Input
Data

Read

Mutated Program
Copy and

Mutate

TETE Framework

Figure 5. The TETE unit testing infrastructure is made up of the TXL Model, RTIV, and the TXL Test
Generator.

uating individual program structures, the RTIV focuses on
accessibility and swift interaction. It allows users to bypass
the intricacies of the command line and avoid setup time to
evaluate their programs. By providing a central, example-
based interface for program exploration and verification, the
RTIV allows users to leverage test-driven development in a
piecewise, incremental, and simple manner.

The RTIV presents users with an input pane that can be
used to interactively compose input for testing a program’s
behavior, and a toolbar that provides actions for executing
and terminating a transformation, as well as for clearing,
saving and loading the input. TETE’s unit testing function-
ality is integrated into the RTIV using drop-down lists that
display the rules and types available for unit testing. The
lists are updated by querying the TXL Model for the source
entities of the compilation unit being edited. When the user
selects a new compilation unit from a different project, the
lists are refreshed with the new set of rules and types.

TETE is designed to be simple and intuitive, with the aim
of helping novice developers leverage the pedagogic ben-
efits of unit testing without being distracted by an overly
complex interface. In particular, the RTIV provides a
lightweight style of interaction with a minimal number of
controls. Figure 6 shows the step-by-step process used to
compose and execute a TXL unit test in the RTIV.

To run a TXL experiment, a user selects a target rule or
target grammar type from the respective RTIV drop-down
menu, types or loads the test data into the RTIV input view,
and executes the transformation by pressing the RTIV’s
launch button. The composed input is saved to a temporary
file, and directed to the TXL interpreter as the transforma-
tion input file. The contents of the rule and type drop-down
lists are dependent on the active TXL compilation unit that
is displayed in the editor. When the user executes the trans-
formation, the output and error streams are directed to the
standard Eclipse Debug Console for display.

TXL Test Generator. The TXL Test Generator pro-
vides the program launching infrastructure responsible for
automating program mutations in a non-invasive manner.
Implementing the mutations necessary for unit testing types
and rules directly in the Eclipse workspace would cause
several unwanted side-effects. Firstly, it would be error-
prone and confusing for programmers, because the testing
version of the source code no longer reflects the semantics
of the original program. TXL compilation units and their
working copies should only reflect those changes that are
committed by the user. Secondly, it would force unneces-
sary updates to the TXL Model, when program modifica-
tions are only necessary for the duration of the test exe-
cution. For these reasons, TETE exposes unit testing mu-
tations to the TXL processor only, leaving the workspace
artifacts themselves unmodified.

To implement this separation, a “shadow” copy of the
test program’s project in Eclipse is created in a temporary
directory on the local file system. The program’s main file,
containing the original main rule, is copied to this direc-
tory and mutated by the test generator to reflect the modified
transformation entry point. By working on this test copy we
ensure that unit testing mutations are non-invasive.

The relative source location and range of the code in the
generated test copy must remain consistent with the corre-
sponding code in the original version. Modifying the source
offset and range of the code may cause incorrect behav-
ior during error reporting, because syntactic errors reported
by TETE will refer to locations in the generated source
code instead of the actual locations reflected in the TETE
workspace. By keeping the original source contents of the
workspace file in an equivalent contiguous space in the test
file, we ensure that source locations in the original files are
preserved even after modifications are made to the corre-
sponding shadow copies, and thus error reporting remains
consistent between the test and workspace versions.

2.
Select
Target
Rule or

Function

1.
Enter
Input
Data

3.
Select
Target
Type

4.
Launch

5.
Analyze
Output

T r a n s f o r m

Figure 6. RTIV view for program unit test composition and launching.

4 An Example

The remainder of the paper demonstrates the use of
TETE’s automated unit testing interface using the example
program shown in Figure 7. The goal of this program is to
fold Java if-statements with the constant false as the branch-
ing condition. In this example, TETE’s unit testing infras-
tructure is used to test and debug the program’s rules and
application strategy.

In C++ and other object-oriented languages, test cases
are represented by examples of method invocations on tar-
get class members. In TXL, test cases are represented by
examples of input source from the problem domain target-
ing specific subtransformations and grammatical types.

Figure 8 shows two example test cases that should be
handled by our program, as well as the expected trans-
formed results for each. In the first case, the target input
contains a false if-statement followed by a series of else-
ifs (Figure 8(a)). The program must handle this case by
folding out the if-branch and propagating the first else-if
branch upwards (Figure 8(b)). In the second test case, if
the false if-statement is followed immediately by an else
branch (Figure 8(c)), then the entire statement group is re-
placed by the body of the else-branch (Figure 8(d)). To keep
the demonstration simple we’ll only consider these two. In
practice, users would develop many other test cases to con-
vince themselves of the transformation’s coverage.

The approach uses two primary TXL
subrules, foldFalseIf ElseIfs and
foldFalseIf noElseIfs, which search for and opti-
mize false if-statements with and without else-if branches

respectively. These embedded subrules are invoked by
the rule foldFalseIfs, which encodes an application
strategy that applies foldFalseIf noElseIfs first
and foldFalseIf ElseIfs second. foldFalseIfs
is invoked on the entire program scope captured by the
main rule.

As a first attempt to evaluate the correctness of our trans-
formation, we enter the input data shown in Figure 8(a) into
the RTIV’s input pane and launch our test, using the default
main function as the entry point. The RTIV returns with the
transformed output:

class C
{

public void foo(int x) {
x = 0;

}
}

which is incorrect compared to our expected output in Fig-
ure 8(b).

So far, the evaluation process has mirrored that of most
other transformation systems. We have executed our pro-
gram using a black box test in which composite subtransfor-
mations are opaquely merged into the final result. In the ab-
sence of unit testing, we must continually apply this coarse-
grained execution approach so that the entire transformation
is repeatedly modified and re-executed until it returns with
the expected output.

Given the erroneous output, we are unsure of whether
the error is caused by a faulty pattern-replacement in one

include "Java.Grm"

function main

replace [program]

P [program]

by
P [foldFalseIfs]

end function

rule foldFalseIfs

replace [statement]

S [statement]

construct NewS [statement]

S [foldFalseIfs noElseIfs]

[foldFalseIfs ElseIfs]

deconstruct not NewS

S

by
NewS

end rule

rule foldFalseIfs noElseIfs

replace [statement]

’if (false)

IfBranch [statement]

OptElsifs [repeat else if]

’else

ElseBranch [statement]

by
ElseBranch

end rule

rule foldFalseIfs ElseIfs

replace [statement]

’if (false)

IfBranch [statement]

’else ’if (ElseIfCond [expr])

ElseIfStatement [statement]

ElseRest [repeat else if part]

OptElsePart [opt else clause]

by
’if (ElseIfCond)

ElseIfStatement

ElseRest

OptElsePart

end rule

Figure 7. A TXL program to fold if-statements
containing the literal ’false’ in the condition.

class C
{

public void foo(int x) {
if (false){

x = 10;
}
else if (x == 0) {

x = 1;
}
else {

x = 0;
}

}
}

(a) Input with Else-ifs

class C
{

public void foo(int x) {
if (x == 0) {

x = 1;
}
else {

x = 0;
}

}
}

(b) Folded output from (a)

class C
{

public void foo(int x) {
if (false){

x = 10;
}
else {

x = 0;
}

}
}

(c) Input with no Else-ifs

class C
{

public void foo(int x) {
x = 0;

}
}

(d) Folded output from (c)

Figure 8. Two example test cases for false if-
statement folding.

Figure 9. RTIV rule and type selection lists for
unit testing.

of the subrules, or whether the program’s rule application
strategy is incorrect. Since our test input contains a lead-
ing if-statement with an else-if branch, we decide to di-
rectly test the rule that is responsible for this type of pattern,
foldFalseIfs ElseIfs.

One of the complicating factors of our current execution
setup is that the test input listed in Figure 8(a) is for the
entire program scope of our main function, instead of for
the rule we want to test, foldFalseIfs ElseIfs. We
can simplify our test to directly reflect the pattern scope of
the target rule, which is of type statement. To do this
we must ask TETE to isolate the target type statement
and the target rule foldFalseIfs ElseIfs. We select
these constructs in the RTIV rule and type drop-down lists,
as shown in Figure 9.

Now we can enter a test case consisting of just the if
statement into the RTIV’s input pane:

if (false) {
x = 10;

}
else if (x == 0) {

x = 1;
}
else {

x = 0;
}

and run the foldFalseIfs ElseIfs rule alone on it.
When we do so, TETE returns with the correct, trans-

formed output listed in Figure 8(b). By testing the sub-
rule foldFalseIfs ElseIfs directly, we have veri-
fied its correct operation, effectively eliminating the pos-
sibility of an erroneous pattern-replacement in this rule.
The next step in our evaluation process is to test the rule
that invokes the one we have just tested, foldFalseIfs.

rule foldFalseIfs

replace [statement]

S [statement]

construct NewS [statement]

S [foldFalseIfs ElseIfs]

[foldFalseIfs noElseIfs]

deconstruct not NewS

S

by
NewS

end rule

Figure 10. Application order modification
made to original program.

This rule implements an application strategy in which
all if-statements without else-if branches (those handled
by foldFalseIfs noElseIfs) are transformed before
those that do (handled by foldFalseIfs ElseIfs).

As a next try, we conduct a new rule test, this time by se-
lecting foldFalseIfs from the RTIV’s rule drop-down
list. Again, we launch the test, but this time we receive the
original erroneous result, demonstrating that the problem
originates in foldFalseIfs.

The cause of this error can be explained in terms
of the rewrite behavior of the two subrules called by
foldFalseIfs: both foldFalseIfs noElseIfs
and foldFalseIfs ElseIfs accept the same pattern
scope. Whereas foldFalseIfs ElseIfs simply prop-
agates the highest else-if statement into the if-branch po-
sition, foldFalseIfs noElseIfs replaces its entire
scope by the contents of the else-block if it matches a false
if-statement.

By calling foldFalseIfs noElseIfs before
foldFalseIfs ElseIfs, every else-if statement
that follows a false if-branch is removed by the time
foldFalseIfs ElseIfs is invoked. While further
unit testing will eventually reveal that the pattern of
foldFalseIfs noElseIfs is overly aggressive, a
more immediate solution to this error is to simply re-
arrange the application order in foldFalseIfs, so that
foldFalseIfs ElseIfs is invoked first (Figure 10).
Thus, all the else-if statement manipulation is completed
on foldFalseIfs’s replacement tree before it is passed
to foldFalseIfs noElseIfs.

After making this change, we save the contents
of the TXL Editor and re-execute the unit test for
foldFalseIfs, yielding the expected result:

class C
{

public void foo(int x) {
if (x == 0) {

x = 1;
}
else {

x = 0;
}

}
}

We can continue testing with a variety of different inputs
(including the test case in Figure 8(c)) to uncover and debug
other problems using unit testing in similar fashion, until we
are confident that we don’t need any further changes.

TETE provides many other facilities to assist in testing
and debugging TXL programs, including saving and load-
ing unit test cases, rule and grammar navigation panels, con-
figurations for larger test inputs, and so on. While we have
concentrated on TXL in this work, we believe that similar
methods can easily be used with other source transforma-
tion languages and tools such as those below.

5 Related Work

While TXL has its own way of expressing source trans-
formations, many other tools and languages share similari-
ties. Capturing instances of structured syntax, or patterns,
and replacing them with alternate structures, or replace-
ments, is a fundamental concept in transformation-capable
tools. These tools typically differ in their methods of rewrite
and grammar specification and interpretation.

The ASF+SDF Meta-Environment [12, 13] is a generic
development framework that supports automatic construc-
tion of interactive tools for programs and specifications
written in a formal language. ASF+SDF is a modu-
lar, first-order formalism for the integrated specification
of syntax and semantics. SDF provides the syntax defi-
nition component and ASF uses re-write rules to describe
transformations. ASF+SDF supports a fixed number of
non-programmable tree-traversal strategies (i.e. top-down,
bottom-up) to visit the nodes of a parse tree in a predictable
order.

Stratego/XT [14, 15, 16] is a hybrid language and toolset
framework that supports the specification of program trans-
formation systems based on the paradigm of rewriting
strategies, which augment rewrite rules with generic strate-
gies for their application. Stratego/XT provides a strategy
unit-testing tool called SUnit that allows for the specifica-
tion of tests to apply a strategy to a specific term and com-
pare the result to the expected output. This idea is similar
to rule testing in TETE, except that program traversal in

TXL is an inherent part of functional decomposition. Strat-
ego/XT also provides a command-line tool for testing SDF
grammar definitions, similar to TETE’s grammar type test-
ing. Tests written with SUnit and ParseUnit must be speci-
fied in separate test suites from the command line, whereas
TETE merges rule, strategy and grammar testing together
in a single, comprehensive interactive interface.

The DMS Software Reengineering Toolkit (SRT) [1, 2]
is a commercial program analysis and transformation sys-
tem based on user-configurable, generalized compiler tech-
nology. It includes facilities for defining language syntax
and deriving context-free parsers and pretty-printers for lan-
guages such as C, C++, COBOL, and Java. SRT is capable
of defining multiple, arbitrary specification and implemen-
tation languages (or domains), as well as applying transfor-
mations to source code written in any combination of the
defined domains.

Extensible Stylesheet Language Transformations
(XSLT)[3, 17] is the W3C standard for the source trans-
formation of XML documents. While XSLT is not a
general-purpose transformation technology, it shares
several properties with current source transformation
languages such as Stratego/XT, ASF+SDF, and TXL, such
as its pure-functional, user-programmable paradigm, and
its use of pattern match and replacement pairs applied in a
term-by-term rewriting style.

6 Future Work

The TETE framework provides a proof of concept for in-
troducing isolated rule and grammar execution to the TXL
source transformation paradigm. By leveraging TXLs func-
tional semantics in combination with the source infrastruc-
ture of Eclipse, transformations can be non-invasively unit
tested using a rule-by-rule, type-by-type approach.

Thus far, TETE is still in the proof-of-concept stage and
many issues need to be faced as it comes into practice, par-
ticularly if it is to be used for experienced as well as novice
users of TXL. TETE has a number of limitations that need
to be addressed, for example:

At present only unparameterized rules are supported by
TETEs unit testing infrastructure. TXL subrules may op-
tionally be parameterized by arguments captured in patterns
of the invoking rule. To support unit testing of parameter-
ized rules, TETEs source model must be extended to iden-
tify and connect rule parameters with their associated rules.

A production unit testing facility should automate the
loading, running and verification of suites of tests rather
than just one at a time. Presently, each unit test in TETE
must be loaded and run separately. We would like to extend
TETEs unit testing interface so that users can configure and
run multiple tests in unison, and save test suites to support
regression testing.

TETE does not presently support the TXL stepwise de-
bugger (TXLDB). If it is to be used in debugging complex
rulesets, provision for stepwise execution and back-tracing
of rule applications is required.

Like all new interfaces, TETE requires feedback from
practical use to identify unexpected use cases and tune
the interface and work flow to match the way TXL pro-
grammers actually develop and test transformations. While
TETE is already being used as a convenient TXL editor, it is
yet to be used for its original intent: helping novices explore
and test TXL programs as an aid to understanding. Our plan
for this year is to introduce it to undergraduate and graduate
classes using source transformation.

7 Conclusion

Unit testing has many benefits that have been well docu-
mented in the procedural and object-oriented programming
paradigms. Automated unit testing for source transforma-
tion is a much more recent concept. We have identified
a list of five paradigm-specific motivations for introducing
unit testing to source transformation programming.

By leveraging TXL’s functional decomposition seman-
tics in combination with Eclipse’s scalable language-
modelling framework, TETE automates rule and grammar
unit testing and allows users to more easily develop, de-
bug, and analyze their source transformations in a piecewise
manner.

References

[1] L. Aversano, M. D. Penta, and I. D. Baxter. Handling
Preprocessor-Conditioned Declarations. In Proc. SCAM
2002, pages 83–92, 2002.

[2] I. D. Baxter. Design Maintenance Systems. Commun. ACM,
35(4):73–89, 1992.

[3] J. Clark. XSL Transformations (XSLT) version 1.0.
(http://www.w3.org/tr/xslt), 1999.

[4] J. R. Cordy. TXL - A Language for Programming Language
Tools and Applications. Proc. LDTA 2004, pages 1–27,
April 2004.

[5] J. R. Cordy, I. H. Carmichael, and R. Halliday. The TXL Pro-
gramming Language v10.4. School of Computing, Queen’s
University, January 2005.

[6] J. R. Cordy, T. R. Dean, A. J. Malton, and K. A. Schneider.
Source Transformation in Software Engineering using the
TXL Transformation System. J. Information and Software
Technology, 44(13):827–837, 2002.

[7] S. H. Edwards. Rethinking Computer Science Education
from a Test-First Perspective. In Companion to OOPSLA
’03, pages 148–155. ACM Press, 2003.

[8] S. H. Edwards. Using Software Testing to Move Stu-
dents from Trial-and-Error to Reflection-in-Action. In Proc.
SIGCSE ’04, pages 26–30. ACM Press, 2004.

[9] C. Reis. A Pedagogic Programming Environment for Java
that Scales to Production Programming. Master’s thesis,
Rice University, April 2003.

[10] J. C. team. Java development tooling core. Technical report,
JDT Core team, May 2005. http://www.eclipse.org/jdt/.

[11] O. Technologies. Eclipse Platform Technical Overview.
Technical report, Object Technology International, Inc.,
Feb. 2003. http://www.eclipse.org/whitepapers/eclipse-
overview.pdf.

[12] M. G. J. van den Brand and P. Klint. ASF+SDF Meta-
Environment User Manual. Centrum voor Wiskunde en
Informatica (CWI), Amsterdam, The Netherlands, January
2005.

[13] M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term
rewriting with traversal functions. ACM Trans. Softw. Eng.
Methodol., 12(2):152–190, 2003.

[14] E. Visser. The Stratego Reference Man-
ual 0.5 edition (http://www.stratego-
language.org/doc/reference/html/index.html).

[15] E. Visser. Stratego: A Language for Program Transforma-
tion Based on Rewriting Strategies. In Proc. RTA ’01, pages
357–362, London, UK, 2001. Springer-Verlag.

[16] E. Visser. Program Transformation with Stratego/XT: Rules,
Strategies, Tools, and Systems in StrategoXT-0.9. In
C. Lengauer et al., editors, Domain-Specific Program Gen-
eration, volume 3016 of LNCS, pages 216–238. Spinger-
Verlag, June 2004.

[17] P. Wadler. A Formal Semantics of Patterns in XSLT and
XPath. Markup Lang., 2(2):183–202, 2000.

[18] H. Younessi, P. Zeephongsekul, and W. Bodhisuwan. A gen-
eral model of unit testing efficacy. Software Quality Control,
10(1):69–92, 2002.

[19] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit test
coverage and adequacy. ACM Comput. Surv., 29(4):366–
427, 1997.

