
Specification and Verification of Graph-Based
Model Transformation Properties?

Gehan M. K. Selim1, Levi Lúcio2, James R. Cordy1, Juergen Dingel1, and
Bentley J. Oakes2

1 School of Computing, Queen’s University, Kingston ON K7L2N8, Canada,
{gehan, cordy, dingel}@cs.queensu.ca

2 School of Computer Science, McGill University, Montreal QC H3A2A7, Canada,
levi@cs.mcgill.ca, bentley.oakes@mail.mcgill.ca

Abstract. We extend a previously proposed symbolic model transfor-
mation property prover for the DSLTrans transformation language. The
original prover generated the set of path conditions (i.e., symbolic trans-
formation executions), and verified atomic contracts (constraints on input-
output model relations) on these path conditions. The prover evaluated
atomic contracts to yield either true or false for the transformation when
run on any input model. In this paper we extend the prover such that
it can verify atomic contracts and more complex properties composed of
atomic contracts. Besides demonstrating our prover on a simple transfor-
mation, we use it to verify different kinds of properties of an industrial
transformation. Experiments on this transformation using our prover
show a speed-up in verification run-time by two orders of magnitude
over another verification tool that we evaluated in previous research.

Keywords: MDD, model transformation, verification, property prover.

1 Introduction
In Model-Driven Development (MDD), models are the basic blocks of software
development, and model transformations are used to map between models con-
forming to different metamodels. Given their key role in MDD, verification of
transformations is becoming of increasing interest to researchers [2, 16].

In this study, we formulate and focus on the following research question: “How
can we efficiently verify properties of transformations expressed as input-output
model relations?”. We focus on properties expressed as input-output model rela-
tions since they have been highly investigated in the literature, using both textual
(e.g., [9, 3]) and graphical (e.g., [11, 20]) property languages. After a thorough
review of studies addressing the same research question, we found several limi-
tations in the state of the art. For example, several studies translate either the
transformation (e.g., [9, 10]) or the property (e.g., [11]) of interest to an inter-
mediate format to facilitate verification, without proving the soundness of the
translation. Secondly, other studies propose incomplete verification techniques
that do not account for all possible transformation executions (e.g., [9]). Finally,

? This work is supported in part by NSERC, as part of the NECSIS Automotive
Partnership with General Motors, IBM Canada and Malina Software Corp.

2

a large number of studies proposed input-dependent verification techniques [2]
(e.g., Henshin [4], AGG [20]) that prove properties for transformations only when
run on a specific input. More general, input-independent techniques are needed
were property verification is to be performed only once for the transformation,
and verification results are to be guaranteed for all possible inputs.

In an attempt to answer the above research question and overcome limita-
tions of previous studies, we investigate verifying properties of transformations
implemented in the graph-based model transformation language DSLTrans [7].
DSLTrans is non-Turing complete, i.e., DSLTrans cannot specify transformations
that require unbounded loops (e.g., simulation transformations). We extend a
symbolic model transformation property prover for DSLTrans [14, 12] that was
previously limited to verifying atomic contracts (i.e., constraints on input-output
model relations). The extension we present in this paper supports a more expres-
sive property language that facilitates verifying atomic contracts and composi-
tions of atomic contracts in the form of propositional logic formulae. Moreover,
our prover now handles rules that overlap in their application.

The contribution of this study, at a high level, is extending a DSLTrans
property prover that is input-independent [2], i.e., verification results generated
by the prover hold for all possible inputs. Our specific contributions are:

– We describe how our prover currently handles overlapping rules (Section 4).
– We introduce our new property language, and show how it can be used to express

commonly occurring properties, e.g., multiplicity invariants. (Section 5).
– We apply our extended prover to an industrial case study [18] (Section 6).
– We demonstrate how our extensions of the prover led to a two orders of magni-

tude improvement in execution time over the verification tool we used in another
study [17]. We also discuss the strengths and limitations of our prover (Section 7).

This study adds to the state of the art (Section 8) and is useful to transforma-
tion verification research in general. We provide some evidence for our prover’s
scalability and usefulness since verification using our prover does not have to be
performed for each input. Thus, we motivate researchers to adopt our prover.
Moreover, users of languages other than DSLTrans can benefit from our study
in two ways: (1) the study can be used as a guide to develop input-independent
verification for any language; (2) higher order transformations (HOTs) can be
developed to convert transformations in other languages to DSLTrans to en-
able using our prover. To develop such HOTs, research has to be conducted to
understand what class of transformations can be translated to DSLTrans.

Section 2 summarizes DSLTrans and it’s simplest properties; Section 3 overviews
our prover’s architecture; Section 4 describes path condition generation; Sec-
tion 5 discusses our prover’s verification technique; Section 6 demonstrates an
industrial case study; Section 7 discusses our prover’s strengths and limitations;
Section 8 reviews related work; Section 9 concludes and presents future work.

2 The DSLTrans Model Transformation Language
DSLTrans [7] is a graph-based transformation language that can be used to spec-
ify out-place (i.e., input-preserving), model transformations that are confluent
and terminating by construction. DSLTrans rules are constructive – elements

3

Fig. 1. Household Language Fig. 2. Community Language

Layer TopLevel

MatchModel

Households

ApplyModel

Community

HouseholdsToCommunity

MatchModel

Member

ApplyModel

Man

FatherToMan

Family father

MatchModel

Member

ApplyModel

Man

SonToMan

Family son

MatchModel

Member

ApplyModel

Woman

MotherToWoman

Family mother

MatchModel

Member

ApplyModel

Woman

DaughterToWoman

Family daughter

Layer FamilyMembersToGender

MatchModel

Member

ApplyModel

Person

BuildCommunity

Households

Community has

Layer BuildCommunityOfPersons

Type=Any

Type=Any Type=Any Type=Any Type=Any

Type=Any Type=Any Type=Any Type=Any

Type=Any Type=Any

Fig. 3. The Persons Transformation expressed in DSLTrans.

can be created but not deleted. The semantics of DSLTrans (currently defined
using set theory) are in-line with, and can be defined using, pushout approaches.
We demonstrate DSLTrans using a simple transformation as a running example.

Figs. 1 and 2 present two metamodels used to describe different representa-
tions of a set of people. The ‘Household Language’ represents people as members
of families which in turn form a set of households. The ‘Community Language’
represents people as men or women who belong to a community.

Fig. 3 presents a DSLTrans transformation that aims to transform family
members in the ‘Household Language’ (source metamodel) into men and women
of a community in the ‘Community Language’ (target metamodel). In what
follows, we refer to the transformation in Fig. 3 as the Persons transformation.

A DSLTrans transformation is composed of an ordered set of layers (e.g.,
‘TopLevel’, ‘FamilyMembersToGender’, and ‘BuildCommunityOfPersons’ layers
in Fig. 3) that are executed sequentially. A layer consists of a set of transforma-
tion rules that execute in a non-deterministic order but produce a deterministic
result. Each rule is a pair (MatchModel, ApplyModel) where MatchModel is a
pattern of source metamodel elements and ApplyModel is a pattern of target
metamodel elements. For example, the MatchModel of the ‘HouseholdsToCom-
munity’ rule in the ‘TopLevel’ layer (Fig. 3) has one ‘Households’ class from the
‘Household Language’ and the ApplyModel has one ‘Community’ class from the

4

‘Community Language’. This means that ‘Households’ input model elements will
be transformed into ‘Community’ output model elements.

When a DSLTrans rule executes, traceability links are created between each
element in the rule’s MatchModel and each element in the ApplyModel. These
are used to keep track of which output elements came from which input elements.

We describe some DSLTrans constructs that are used to build the Match-
Model of a DSLTrans rule. More DSLTrans constructs can be found in [7, 12].

– Match Elements are variables typed by source metamodel classes that can assume
as values instances of that class from the input model. An example of a match
element is the ‘Family’ element in the ‘FatherToMan’ rule (Fig. 3). Match elements
can be of two types: Any match elements are bound to all matching instances in
the input model, and Exists match elements are bound to only one (deterministic)
matching instance in the input. All match elements in Fig. 3 are of type Any.

– Attribute Conditions are conditions on the attributes of a match element.
– Direct Match Links are links between two match elements that are typed by la-

belled relations of the source metamodel. These links can assume as values links
having the same label in the input model.

– Indirect Match Links represent a path of containment associations between the
linked match elements. For example, an indirect match link appears in the ‘Build-
Community’ rule as a horizontal, dashed arrow between match elements.

– Backward Links link elements of the MatchModel and the ApplyModel of a rule,
e.g., backward links are used in the ‘BuildCommunity’ rule and are denoted as
vertical, dashed lines. Backward links are used to refer to traceability links between
input and output model elements that are generated by the rules of previous layers.

Similar constructs can be used to build a rule’s ApplyModel, as shown in Fig. 3.

– Apply elements are variables typed by target metamodel classes and linked by ap-
ply links. Apply elements that are not connected by backward links create output
elements of the same type each time the MatchModel is found in the input. Apply
elements that are connected by backward links are handled differently, e.g., ‘Build-
Community’ rule connects ‘Community’ and ‘Person’ output elements that were
formerly created from ‘Households’ and ‘Member’ input elements with a ‘has’ link.

– Apply elements can have apply attributes that can be set from references to one or
more attributes of match elements.

DSLTrans AtomicContracts: An AtomicContract is the simplest property
expressible in our prover. Each AtomicContract is a pair (pre, post) that specifies
a property of the form: “if the input model satisfies the precondition pre, then
the output model should satisfy the postcondition post”. A precondition is a con-
straint on the transformation’s input in the form of a structural relation between
input elements. A postcondition is a constraint on the transformation’s output
in the form of a structural relation between output elements. Preconditions and
postconditions are expressed using the same constructs as rules. Postconditions
may also have traceability links to link postcondition elements to precondition
elements. This signifies that the property will only match an output element
that was previously created from an input element. Figs. 4 and 5 demonstrate
two AtomicContracts for the Persons transformation. Fig. 4 is interpreted as fol-
lows: “a mother and a father in a family will always be transformed to a woman

5

Precondition

MemberFamily

Postcondition

ManWoman

Member mother father

Contract1

Fig. 4. Contract1 ; should hold.

Precondition

MemberFamily

Postcondition

Man

Member mother daughter

Contract2

Fig. 5. Contract2 ; should not hold.

Fig. 6. The architecture of our symbolic model transformation property prover.

and a man”. Fig. 5 is interpreted as follows: “a family including a mother and
a daughter will always be transformed to a man”. Our prover should verify
that Contract1 (Fig. 4) will always hold for the Persons transformation, while
Contract2 (Fig. 5) will not always hold (with a counterexample).

3 The Symbolic Model Transformation Property Prover
Fig. 6 demonstrates our property prover’s final architecture. Our prover takes
four inputs: the DSLTrans transformation of interest, the transformation’s source
and target metamodels, and the property to verify. Verification is then carried
out in two steps, as shown in Fig. 6. First, the prover generates the set of path
conditions representing all possible executions of the input transformation (Sec-
tion 4). Then, the prover verifies the input property on the generated set of path
conditions and renders the property to be either true or false (with a counter
example) for the transformation when run on any input model (Section 5).

We have chosen Python and T-Core [19] to implement our prover. T-Core is
a Python library with primitives that support typed graph manipulation (e.g.,
graph matching/rewriting) and composition of these primitives into transforma-
tion blocks. The use of Python and T-Core allowed constructing our prover using
MDD principles. In other words, all artifacts used at verification run-time are
models (instances of explicit metamodels), all model-related computations are
implemented as transformations, and all computations that do not directly ma-
nipulate models are implemented as Python algorithms that have been optimized
to minimize memory usage and run-time. The models, metamodels, and trans-
formations used at verification run-time are themselves automatically generated
by higher order transformations in a compilation step that precedes verification.

4 Generating the Set of Path Conditions
Our prover generates a set of path conditions that symbolically represent the pos-
sible transformation executions. For a transformation with n layers, our prover
uses the transformation rules to build the path conditions in n iterations. In

6

Fig. 7, we demonstrate how the path conditions for the Persons transformation
are generated in iterations. We identify every rule in each layer of Fig. 3 with
a pair of numbers, e.g., 42 corresponds to the fourth rule (ordered from top to
bottom and then from left to right in Fig. 3) in the second layer (i.e., ‘Son-
ToMan’ rule). We start off with the empty path condition, where we assume no
transformation rule has been applied. To generate path conditions in iteration 1,
the empty path condition is combined with all possible rule combinations of the
first transformation layer. Similarly, to generate path conditions in iteration 2,
each path condition from iteration 1 is combined with all applicable rule com-
binations of the second layer. A rule combination of the second layer that does
not have backward links is always applicable, since it does not depend on rules
from the first layer. Rule combinations of the second layer with backward links
are combined with a path condition from iteration 1 only if the path condition
generates the elements linked by backward links in the rule combination.

Each path condition thus accumulates a set of rules describing a possible
path of rule applications through the transformation’s layers. We refer to the
accumulated MatchModels (or ApplyModels) of all the rules in a path condition
as the path condition’s match pattern (or apply pattern). Since our technique
abstracts from how many times the rule executes for an input, a transformation
rule only occurs once in each path condition. Thus, a path condition symbolically
represents a set of concrete executions since each of the rules in a path condition
can be concretely executed any number of times on an input model.

In Fig. 8, we show the path condition of the node with the dotted edge in
Fig. 7. As shown from the numbers in the node, the path condition contains
four combined rules (i.e., ‘HouseholdsToCommunity’, ‘FatherToMan’, ‘Moth-
erToWoman’, ‘BuildCommunity’) and traceability links. When combining the
rules, elements of the same type of the combined rules can be merged. This rep-
resents the fact that different rules may execute over the same input elements.

Only the path conditions from the last iteration are returned as the result
since they capture all the possible complete transformation executions. Details
on AtomicContracts and path condition generation can be found in [12].

Overlapping Rules: The industrial transformation presented later in Sec-
tion 6 had overlapping rules which required treatment during path condition
generation. Overlapping rules are defined as follows: when two rules in the same
layer use match elements of the same metamodel classes of type Any or Exists,
then the MatchModel of one rule syntactically subsumes the MatchModel of the
other rule. For example, a rule having a MatchModel containing an Any match
element of class ‘A’ is subsumed by a MatchModel of another rule that contains
an Exists match element of class ‘A’ and an Any match element of class ‘B’.

Our path condition generation algorithm was extended to handle overlapping
rules. This extension led to a pronounced decrease in the number of generated
path conditions in our case study, since a set of rules in a subsumption relation
(described above) can often be merged into a smaller set of rules. Depending
on whether rules overlap totally or partially, rule merge may be done before
path condition generation or during path condition generation. For transforma-

7

11

11 12

11 12

22

11 12

32

11 12

42

11 ...

Iteration 1

Iteration 2

Iteration 3

12 22

...

11 12

13

11 12

22 13
...

Fig. 7. Generation of the set of path conditions in iterations.

Match Pattern

Member

Apply Pattern

Man

MemberFamily

mother

Households

father

have

WomanCommunity

has

has

Fig. 8. A path condition of the Persons transformation.

tions with rule overlaps, this extension leads to an improved management of the
combinatorial explosion in path condition generation.

5 Verification of the Property of Interest

We extended the technique proposed in [14] for verifying AtomicContracts of
DSLTrans transformations to enable the verification of more complex properties.
Our extended technique employs the following syntax and semantics.

Syntax: Our syntax is based on propositional logic. An AtomicContract
(pre,post) is the smallest unit in our property language. A propositional formula
can be built using one or more AtomicContracts and the operators ¬tc (not),
∨tc (or), ∧tc (and), and =⇒tc (implication), where tc stands for “transformation
contract”. Assuming that (pre,post) is an element of the set of AtomicContracts
AC, the syntax of formulae is:

ϕ := (pre, post) | ¬tcϕ | ϕ ∨tc ϕ | ϕ ∧tc ϕ | ϕ =⇒tc ϕ (1)

Free variables can occur in any element e of an AtomicContract ’s pre/ post-
condition. This occurrence binds the free variable to all the matches found for
e within an instantiation of a MatchModel. Using the same free variable in
different AtomicContracts allows these AtomicContracts to refer to the same
matched element, e.g., AtomicContract cont1 in Fig. 9 binds a matched element
of type ‘Community’ to the free variable ‘COMMUNITY’ such that this element
can be referred to in cont2 and cont3. The bindings of a set of free variables
{var1, . . . , varn} (in elements {e1, . . . , el} of an AtomicContract) to matched
elements {m1, . . . ,mn} in a path condition is expressed as a binding function
l = {(var1,m1), . . . , (varn,mn)}, i.e., l ∈ P(FV × BE), where FV and BE are
the sets of free variables and bound elements, and P is the power set operator.

Semantics: We define a function evalAtomic(pc, c) that evaluates an Atom-
icContract c= (pre,post) for a path condition pc as follows:

8

1. If pc contains an isomorphic copy of pre but does not contain an isomorphic copy
of post, then evalAtomic(pc, c) returns false (i.e., c does not hold for pc and the
transformation) and an empty set of binding functions L=∅.

2. Otherwise, evalAtomic(pc, c) returns true (i.e., c holds for pc) and a set of binding
functions L for the free variables of c, where L ⊆ P(FV ×BE).

Thus, evalAtomic is defined as evalAtomic : PC ×AC → {true, false}×P(FV ×
BE), where PC is the set of path conditions of a transformation τ . Note that a
set L of binding functions is returned since an AtomicContract may evaluate to
true using different bindings of the free variables. Thus, L is constructed from
all binding functions li returned by all possible subgraph isomorphisms.

Assuming that FORMULAE is the set of elements generated by the grammar
in Eqn.(1), we evaluate a formula ϕ for a path condition pc ∈ PC using a function
eval:PC × FORMULAE → {true, false} × P(FV ×BE) as follows:

eval(pc, ϕ) =

(res1, L1) if ϕ ∈ AC, evalAtomic(pc, ϕ) = (res1, L1)

(¬res1, L1) if ϕ = ¬tcψ, eval(pc, ψ) = (res1, L1)

((res1 ∨ res2) ∧ C(L1, L2), if ϕ = ψ ∨tc φ, eval(pc, ψ) = (res1, L1),

L1 ∪ L2) eval(pc, φ) = (res2, L2)

((res1 ∧ res2) ∧ C(L1, L2), if ϕ = ψ ∧tc φ, eval(pc, ψ) = (res1, L1),

L1 ∪ L2) eval(pc, φ) = (res2, L2)

((res1 =⇒ res2) ∧ C(L1, L2), if ϕ = ψ =⇒tc φ, eval(pc, ψ) = (res1, L1),

L1 ∪ L2) eval(pc, φ) = (res2, L2)

(2)
where the semantics of the propositional operators (¬,∨,∧,=⇒) is standard, and
resi ∈ {true, false}. The consistency function C : P(FV ×BE)×P(FV ×BE)→
{true, false} checks for two sets of binding functions (e.g., L and L’) that all free
variables bound by a binding function in the first set L will always be bound to
the same elements by a binding function of the second set L’ as follows:

C(L,L′) =∀l ∈ L,∃l′ ∈ L′ :
(
∀v ∈ FVl : ((v,m) ∈ l ∧ (v,m′) ∈ l′) =⇒ m = m′) and

∀l′ ∈ L′, ∃l ∈ L :
(
∀v ∈ FVl′ : ((v,m′) ∈ l′ ∧ (v,m) ∈ l) =⇒ m′ = m

)
(3)

where m,m′ ∈ BE , and FVl, FVl′ are the sets of free variables used in l and
l’ respectively. Based on the former definitions, we evaluate a formula ϕ for a
transformation τ (with path conditions PC) using a function eval(τ, ϕ):

eval(τ, ϕ) =

{
true if ∀pc ∈ PC : eval(pc, ϕ) = (true,L)

false otherwise
(4)

where L is any set of binding functions. Thus, eval(τ, ϕ) renders a property ϕ to
be true or false for a transformation τ by verifying ϕ for each path condition.
Function eval(τ, ϕ) returns true only if for all path conditions of τ , ϕ holds and
the bindings of all free variables consistently refer to the same elements.

Formulae of AtomicContracts: The new syntax and semantics allows us
to formulate complex properties by composing propositional formulae of Atom-
icContracts. We demonstrate how the AtomicContracts in Fig. 9 (i.e., cont1,
cont2, cont3) together with free variables can be used with different proposi-

9

Precondition

Postcondition

Personhas

cont2

Precondition

Postcondition

Community

cont1

COMMUNITY

Community

COMMUNITY

Precondition

Postcondition

Personhas

cont3

Community

COMMUNITY

has
Person

Fig. 9. Three AtomicContracts that can be used with different propositional operators
to convey different properties for the Persons transformation.

tional operators to convey multiplicity invariants1. A property that mandates
that the Persons transformation will always generate an output where every
community has one or more ‘Persons’ (i.e., a multiplicity invariant of ‘1..*’) can
be expressed as ‘cont1 =⇒tc cont2’. In other words, if an element of type ‘Com-
munity’ is generated in the output, then this element must have at least one
‘Person’. Whereas the property ‘cont1 =⇒tc (cont2 ∧tc ¬tccont3)’ expresses a
multiplicity invariant of ‘1..1’ (i.e, if a ‘Community’ is generated in the output,
then this ‘Community’ must have one ‘Person’ and not more).

6 Industrial Case Study

Previously in [18], we developed an industrial transformation that maps between
subsets of a legacy metamodel for General Motors (GM) and the AUTOSAR
metamodel. In that work, we focused on subsets of the metamodels that repre-
sent the deployment and interaction of software components. Later in [17], we
proposed properties of interest for our GM-2-AUTOSAR transformation.

We use our prover to verify the properties proposed in [17] on the GM-2-
AUTOSAR transformation [18] after reimplementing it in DSLTrans. In this
section, we summarize the transformation [18] and its properties [17]. Then, we
discuss formulating and verifying these properties using our prover.

6.1 GM-2-AUTOSAR Model Transformation

The Source GM Metamodel: Fig. 10 illustrates the subset of the GM meta-
model used in our transformation in [18]2. A PhysicalNode may contain multiple
Partitions (i.e., processing units). Multiple Modules can be deployed on a sin-
gle Partition. A Module is an atomic, deployable, and reusable software element
and can contain multiple Schedulers. A Scheduler is the basic unit for software
scheduling. It contains behavior-encapsulating entities, and is responsible for
providing/requiring Services to/from these behavior-encapsulating entities.

The Target AUTOSAR Metamodel: In AUTOSAR, an Electronic Com-
ponent Unit (ECU) is a physical unit on which software is deployed. Fig. 11 shows
the subset of the AUTOSAR metamodel [1] used by our transformation. The

1 Note that the three AtomicContracts in Fig. 9 have empty preconditions meaning
that they will match on any input model.

2 We follow the same obfuscated naming conventions that we used for the GM meta-
model in [18] for reasons of confidentiality.

10

Fig. 10. Subset of the GM metamodel used by our transformation.

Fig. 11. Subset of the AUTOSAR metamodel used by our transformation.

ECU configuration is modeled using a System that aggregates SoftwareCom-
position and SystemMapping. SoftwareComposition points to CompositionType
which eliminates any nested software components in a SoftwareComposition.
SoftwareComposition models the architecture of the software components (i.e.,
ComponentPrototypes) deployed on an ECU and their ports (i.e., PPortProto-
type/ RPortPrototype for providing/ requiring data and services).

SystemMapping binds software components to ECUs using SwcToEcuMap-
pings. SwcToEcuMappings assign SwcToEcuMapping components to an EcuIn-
stance. SwcToEcuMapping components, in turn, refer to ComponentPrototypes.

Reimplementation of the GM-2-AUTOSAR Transformation in
DSLTrans: We reimplemented the GM-2-AUTOSAR transformation [18] in
DSLTrans so that we can verify it in our prover. Table 1 shows the rules in each
transformation layer, and the input/output types that are mapped/generated by
each rule. Rules of the first and third layers create output elements. Rules of the
second layer generate associations between elements created by the the first layer
(shown in the actual transformation using backward links). Thus, the input and
output types shown for the rules of the second layer are types that have already
been matched and created and for which the rules create associations.

To represent positive application conditions (PACs) in our transformation
rules, we use a combination of Any and Exists match elements (Section 2). For
example, rule ‘MapPhysNode2FiveElements’ in Table 1 maps every PhysicalNode
to five elements, only if the PhysicalNode is eventually connected to at least
one Module. Thus, the MatchModel of rule ‘MapPhysNode2FiveElements’ has a
PhysicalNode (Any) match element connected to Partition and Module (Exists)
match elements. Similarly, rule ‘MapModule’ maps every Module (represented as
Any match element) only if it is contained in one PhysicalNode and one Partition
(represented as Exists match elements). The MatchModel of rule ‘MapPartition’
also has a Partition (Any) match element connected to PhysicalNode and Module
(Exists) match elements to represent a PAC. Thus, the rules in the first layer
totally overlap if we abstract from the match element types (i.e., Any or Exists).
The extension explained in Section 4 combines the rules of the first layer into

11

Layer Rule Name Input Types Output Types

1

MapPhysNode2FiveElements PhysicalNode System, SystemMapping, SoftwareComposition,
CompositionType, EcuInstance

MapPartition Partition SwcToEcuMapping

MapModule Module SwCompToEcuMapping component,
ComponentPrototype

2
MapConnPhysNode2Partition PhysicalNode,

Partition
SystemMapping, EcuInstance,
SwcToEcuMapping

MapConnPartition2Module PhysicalNode,
Partition,
Module

CompositionType, ComponentPrototype,
SwcToEcuMapping,
SwCompToEcuMapping component

3
CreatePPortPrototype Scheduler PPortPrototype

CreateRPortPrototype Scheduler RPortPrototype

Table 1. The rules in each layer of the GM-2-AUTOSAR transformation after reim-
plementing it in DSLTrans, and their input and output types.

Multiplicity Invariants: (Properties defined on the target metamodel elements only)

– (M1) Each CompositionType is associated to at least one ComponentPrototype.
– (M2) Each SoftwareComposition is associated to one CompositionType.
– (M3) Each SwcToEcuMapping is associated to at least one SwcToEcuMapping component.
– (M4) Each SwcToEcuMapping is associated to one EcuInstance.
– (M5) Each System is associated to one SoftwareComposition.
– (M6) Each System is associated to one SystemMapping.

Security Invariant: (Property defined on the target metamodel elements only)

– (S1) All the composite SwcToEcuMappings of a System must refer to ComponentPrototypes that
are contained within the CompositionType lying under the same System.

Pattern Contracts: (Properties that relate source and target metamodel elements)

– (P1) If a PhysicalNode is connected to a Service through the provided association (in the input),
then the corresponding CompositionType will be connected to a PPortPrototype (in the output).

– (P2) If a PhysicalNode is connected to a Service through the required association (in the input),
then the corresponding CompositionType will be connected to a RPortPrototype (in the output).

Table 2. Properties of interest for the GM-2-AUTOSAR transformation.

one path condition which simplifies property verification. Partially overlapping
rules (Section 4) also occur in layer 2 of our transformation.

6.2 GM-2-AUTOSAR Model Transformation Properties

In [17], we stated that properties could be invariants or contracts. Invariants are
properties defined on the target metamodel elements only, while contracts relate
source and target metamodel elements. Based on these definitions, we further
defined four categories of properties in [17]: Multiplicity Invariants, Uniqueness
Contracts, Security Invariants, and Pattern Contracts. For each category, we
formulated several properties that are summarized in Table 2 and discussed
in [17]. We omit Uniqueness Contracts in this study since they require reasoning
about attribute values, which is not yet implemented in our property prover.

Multiplicity invariants ensure that the transformation’s output preserves the
multiplicities in the AUTOSAR metamodel. The security invariant mandates
that a System does not refer to a ComponentPrototype that is not allocated in
that System. Pattern contracts require that if a pattern of elements is found in
the input, then a corresponding pattern of elements must be found in the output.

6.3 Verifying Properties of the GM-2-AUTOSAR Transformation

We demonstrate the formulation of pattern contracts (e.g., P1 and P2 in Table 2)
in our prover by showing the formulation of P1 in Fig. 12 as an example. P1

12

Precondition

Postcondition

AC1

CompositionType PPortPrototype
port

PhysicalNode Partition Module
partition module

Scheduler
scheduler

Service
provided

Fig. 12. One AtomicContract that is used to express property P1.

Precondition

Postcondition

SystemMapping
mapping

AC3

Precondition

Postcondition

System

AC2

SYSTEM

System

SYSTEM

Precondition

Postcondition

SystemMapping
mapping

AC4

System

SYSTEM
SystemMapping

mapping

Fig. 13. Three AtomicContracts that are used to express property M6.

Precondition

Postcondition

SoftwareComposition

softwareComposition

AC6

Precondition

Postcondition

System

AC5

SYSTEM

SystemMapping

mapping

SwcToEcuMapping

swMapping

SwcToEcuMapping_componentComponentPrototype

COMPONENTPROTOTYPE component
Prototype

component

System

SYSTEM

CompositionType

softwareComposition

ComponentPrototype

COMPONENTPROTOTYPE component

Fig. 14. Two AtomicContracts that are used to express property S1.

mandates that if a PhysicalNode is connected to a Service through the provided
association in the input (as in the precondition of Fig. 12), then the correspond-
ing CompositionType will be connected to a PPortPrototype in the output (as in
the postcondition). As explained in Section 2, using a traceability link in Fig. 12
mandates that P1 will only match CompositionTypes that were previously cre-
ated from PhysicalNodes. We demonstrate the formulation of ‘1..1’ multiplicity
invariants (e.g., M2, M4, M5, M6) by showing M6 as an example. M6 ensures
that if a System is created in the output, then this System must be connected to
one SystemMapping (and not more). Using the AtomicContracts in Fig. 13, M6
can be expressed as AC2 =⇒tc (AC3∧tc¬tcAC4). Variable ‘SYSTEM’ mandates
that if AC2 holds for a specific System, then AC3 should hold and AC4 should
not hold for the same System. Changing the former formula to AC2 =⇒tc AC3
expresses a ‘l..*’ multiplicity invariant (e.g., M1, M3). Using the AtomicCon-
tracts in Fig. 14, the security invariant S1 can be expressed as AC5 =⇒tc AC6.
Variables ‘SYSTEM’ and ‘COMPONENTPROTOTYPE’ mandate that if AC5
holds for a specific System and ComponentPrototype then AC6 should also hold
for the same System and ComponentPrototype.

13

Property M1 M2 M3 M4 M5 M6 S1 P1 P2

Verification Time
(our property prover)

.013 .017 .013 .017 .017 .019 .017 .02 .02

Verification Time
([17] at scope 6)

76 73.4 75 75 75.5 74.5 114 256 251

Table 3. Time taken (in seconds) to verify the properties in Table 2 using our property
prover (first row) and using a tool based on constraint solving [17] (second row).

Verification Results: We used our prover to verify the properties in Ta-
ble 2. The transformation was found to violate M1 and M3, i.e., our prover
uncovered the same bugs that we found in the ATL transformation implementa-
tion using another tool in [17]. After examining the counter examples (not shown
due to space limitations), we identified and fixed the two bugs. The properties
were reverified on the updated transformation, and they all returned true. (i.e.,
our transformation will always satisfy the properties in Table 2).

To assess our prover’s performance, we measured the time taken to generate
path conditions and to verify the properties (Table 2) of the GM-2-AUTOSAR
transformation after fixing the bugs. The prover took on average 0.6 seconds
to generate the path conditions. Table 3 (first row) shows the time taken (in
seconds) to verify the properties in Table 2 using the generated path conditions.
We do not include the time taken for path condition generation in Table 3 since
it is performed once for the transformation. The longest time taken to verify a
property was 0.02 seconds (P1, P2). Thus, our prover can verify an industrial
transformation’s properties in a short time. More experiments are needed before
we can claim that our prover scales to transformations of varying complexities.

Our property prover and the transformation used in [14] is available at [13].
The industrial transformation is not included for confidentiality reasons.

7 Discussion
We discuss the strengths and limitations of our prover by comparing it to a tool
that we used to verify the GM-2-AUTOSAR transformation in [17]. The tool
we used in [17] verifies ATL (textual) transformations by translating them to a
relational representation and then using constraint solvers to prove properties for
the translated transformation within a scope (i.e., maximum number of objects
per class). In contrast, the prover described in this study verifies DSLTrans
(graphical) transformations in their native form (i.e., without translating them
to another formalism) using the symbolic transformation executions.

We identify three strengths of our prover in comparison with the tool we
used in [17]. First, our prover’s verification result holds for all transformation
executions and is not limited to a scope. Second, our prover verifies the transfor-
mation without translating it to another formalism. Third, our prover verified
the properties faster than the tool we used in [17]. Table 3 shows the time taken
to verify the properties in Table 2 using our prover (first row) and using the
tool in [17] (second row). In Table 3, we only show the results for the smallest
scope we used in [17] (i.e., 6). As shown in Table 3, our prover takes significantly
shorter time to exhaustively verify the properties, whereas much longer times
were needed to verify the same properties in a scope of 6 in [17]. Thus, we claim
that our prover scales well in comparison with the tool we used in [17].

14

We identify two limitations of our prover in comparison with the tool we used
in [17]. First, although negative application conditions (NACs) are expressible
in DSLTrans, our prover cannot verify transformations with rules having NACs.
Second, our prover cannot verify properties that reason about attribute values
such as the uniqueness contracts (Section 6.2) that we were able to verify in [17].
We are currently working on addressing both limitations in our prover.

8 Related Work

We review input-independent verification techniques proposed for (1) textual
and (2) graphical transformations, and (3) property languages similar to ours.

(1) Büttner et al. [9] and Cabot et al. [10] translated a transformation and
its metamodels into a transformation model and used model finders (e.g., USE
Validator) and constraint solvers (e.g., UMLtoCSP) to verify properties. Anas-
tasakis et al. [3] and Baresi and Spoltini [6] translated a transformation into
an Alloy model and used the Alloy Analyser to verify the Alloy model within
a scope. Troya and Vallecillo [21] translated a transformation into Maude and
used Maude’s analysis capabilities to verify the transformation. Orejas and Wirs-
ing [15] translated graphs to triple algebras to verify (e.g., using Maude) propo-
sitional formula of properties. The study claimed that verifying graph transfor-
mations is difficult, and hence the need for the translation to algebra.

(2) Becker et al. [8] verified if a transformation can generate forbidden pat-
terns by checking if the backward application of each rule to each forbidden
pattern can produce a valid input, and returns this input as a counterexam-
ple. Asztalos et al. [5] implemented a VMTS-based verification tool for in-place
transformations. VMTS transformations are expressed as graphical rules sched-
uled by a control flow graph. The tool assigns conditions to each edge in the
control flow graph that are guaranteed to hold for the transformation (when
run on any input) at this edge. Assigning conditions is performed by analyzing
individual rules to generate their strongest post-conditions and iteratively prop-
agating these conditions using inference rules. Eventually, the final edge in the
control flow graph is assigned a condition pfinal which will always hold for any
input. A property p is then verified by evaluating pfinal −→ p. Besides being
semi-automated, another limitation of the tool is that a property’s verification
result may be undecidable either due to (a) the lack of the necessary inference
(propagation) rules or (b) the need to collectively analyze the control flow graph
instead of analyzing rules separately.

Tools such as Henshin [4] and AGG [20] have the drawback of being input-
dependent, i.e., they verify transformations when run on a specific input. Similar
to model checkers (e.g., Groove), Henshin [4] generates a state space that simu-
lates all possible transformation executions for a specific input and verifies the
generated state space. AGG [20] verifies a property on the input and reverifies it
on the output of each rule application. AGG does not check all transformation
executions; only the first found execution is verified. AGG, however, performs
other types of analysis, e.g., critical pair analysis and graph parsing.

(3) Büttner et al. [9] expressed properties in OCL and verified them us-
ing model finders. PaMoMo [11] is a graphical language used to express con-

15

tracts and complex properties that manipulate contracts. These properties can
be compiled into OCL and injected into any OMG-based transformation imple-
mentation (e.g., ATL) for automated verification. The property languages used
by Asztalos et al. [5] and AGG [20] are similar to ours; i.e., their graph-based
property languages are used in their native graphical format and properties are
contracts that can be used to build propositional formulae. The difference is that
both studies [5, 20] do not introduce a construct equivalent to our free variables
which allows contracts in the same formula to refer to a specific element.

Difference between our study and related work: Our study differs from
related work in one or more of the following aspects: (i) Verification is performed
on an intuitive, graphical language that does not require a mathematical back-
ground to be used, e.g., Maude [21, 15]. (ii) We used our prover to verify a simple
and an industrial transformation. (iii) We demonstrated several property kinds
that our prover can conclusively verify (unlike [5]) as opposed to verifying specific
property kinds, e.g., forbidden patterns [8]. (iv) Verification is based on generat-
ing the symbolic executions. (v) We have proved the soundness and completeness
of our technique in [12]. Many studies translated a transformation into another
formalism and verified properties on the translated transformation [9, 10, 3, 6,
21, 15]. Such approaches should prove the soundness of the translated transfor-
mation before verifying properties. Moreover, such approaches should translate
the verification result back to the original formalism for comprehension. Other
studies proposed incomplete techniques that are restricted to a scope [9] or that
do not guarantee that the transformation is fault-free, e.g., testing.

While textual property languages (e.g., OCL [9]) have been used for specify-
ing properties, we believe that a graphical property language is useful as more
researchers adopt graph transformations due to their intuitive, graphical format.
Approaches where graphical properties are translated into a textual formalism
(e.g., [11]) have two drawbacks: (a) the soundness of the translation should be
proved before verifying the translated properties; (b) the translated properties
in [11] cannot be used to automatically verify graphical transformations.

We believe that our graph-based property language (that can be verified
without translation to another formalism) and input-independent verification
technique advances the state of the art and may encourage users in safety critical
domains to use the more intuitive, graph-based transformation languages.

9 Conclusion and Future Work

In this study we extended a symbolic model transformation property prover [14,
12] that initially only verified AtomicContracts. The extended prover now verifies
AtomicContracts and propositional formulae of AtomicContracts for DSLTrans
transformations. We have also extended the original path condition generation
algorithm by treating overlapping rules. Further, we demonstrated our property
prover on an industrial case study [18]. We showed that the prover is of practical
use and features fast property proving times when compared with another prover.
We also discussed the strengths and limitations of our prover.

For future work, more experiments on bigger transformations are needed
to test the prover’s scalability. Moreover, as mentioned in Sections 6.2 and 7,

16

we plan to handle NACs and attribute values when generating the set of path
conditions to facilitate verifying properties that reason about attribute values.

References
1. AUTOSAR Consortium. AUTOSAR System Template,

http://AUTOSAR.org/index.php?p=3&up=1&uup=3& uuup=3&uuuup=0&
uuuuup=0/AUTOSAR TPS SystemTemplate.pdf, 2007.

2. M. Amrani, L. Lúcio, G. Selim, B. Combemale, J. Dingel, H. Vangheluwe, Y. Le
Traon, and J. R. Cordy. A Tridimensional Approach for Studying the Formal
Verification of Model Transformations. In VOLT, pages 921–928, 2012.

3. K. Anastasakis, B. Bordbar, and J. Küster. Analysis of Model Transformations
via Alloy. MoDeVVa, pages 47–56, 2007.

4. T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin: Ad-
vanced Concepts and Tools for In-Place EMF Model Transformations. In MoD-
ELS, pages 121–135. Springer, 2010.

5. M. Asztalos, L. Lengyel, and T. Levendovszky. Formal Specification and Analysis of
Functional Properties of Graph Rewriting-Based Model Transformation. Software
Testing, Verification and Reliability, 23(5):405–435, 2013.

6. L. Baresi and P. Spoletini. On the Use of Alloy to Analyze Graph Transformation
Systems. In ICGT, volume 4178 of LNCS, pages 306–320, 2006.

7. B. Barroca, L. Lúcio, V. Amaral, R. Félix, and V. Sousa. DSLTrans: A Turing
Incomplete Transformation Language. In SLE, pages 296–305. 2011.

8. B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling. Symbolic Invariant
Verification for Systems with Dynamic Structural Adaptation. In ICSE, 2006.

9. F. Büttner, M. Egea, E. Guerra, and J. De Lara. Checking Model Transformation
Refinement. In ICMT, pages 158–173. 2013.

10. J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Verification and Validation of
Declarative Model-to-Model Transformations Through Invariants. Systems and
Software, 83(2):283–302, 2010.

11. E. Guerra, J. de Lara, D. Kolovos, and R. Paige. A Visual Specification Language
for Model-to-Model Transformations. In VL/HCC, pages 119–126. IEEE, 2010.

12. L. Lúcio, B. Oakes, and H. Vangheluwe. A Technique for Symbolically Verifying
Properties of Graph-Based Model Transformations. Technical Report SOCS-TR-
2014.1, McGill U., 2014.

13. L. Lúcio and G. Selim. DSLTrans Property Prover and Example Transformation,
http://msdl.cs.mcgill.ca/people/levi/police station verification example.zip.

14. L. Lúcio and H. Vangheluwe. Model Transformations to Verify Model Transfor-
mations. In VOLT, 2013.

15. F. Orejas and M. Wirsing. On the Specification and Verification of Model Transfor-
mations. In Semantics and algebraic specification, pages 140–161. Springer, 2009.

16. L. A. Rahim and J. Whittle. A Survey of Approaches for Verifying Model Trans-
formations. SoSyM, pages 1–26, 2013.

17. G. Selim, F. Büttner, J. R. Cordy, J. Dingel, and S. Wang. Automated Verification
of Model Transformations in the Automotive Industry. In MODELS, 2013.

18. G. Selim, S. Wang, J. R. Cordy, and J. Dingel. Model Transformations for Migrat-
ing Legacy Models: An Industrial Case Study. ECMFA, pages 90–101, 2012.

19. E. Syriani and H. Vangheluwe. De-/re-constructing Model Transformation Lan-
guages. EASST, 29, 2010.

20. G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Val-
idation of Software. In AGTIVE, pages 446–453. Springer, 2004.

21. J. Troya and A. Vallecillo. A Rewriting Logic Semantics for ATL. JOT, 10:5: 1–29,
2011.

