
Submodel Pattern Extraction for Simulink Models

[Extended Abstract]

James R. Cordy
School of Computing

Queen’s University

Kingston, Ontario, Canada K7L 3N6

cordy@queensu.ca

ABSTRACT

Long before MDE became a popular method for software
development, Simulink was firmly established as a tool for
model–driven development of hybrid industrial systems.
While practical and expressive for model creation and reuse,
Simulink lacks for good abstraction mechanisms, and copy–
paste–modify is a standard paradigm in Simulink develop-
ment, leading to large numbers of variants of similar sub-
models. SIMONE is a framework and tool for automatically
identifying, classifying and formalizing submodel patterns
in Simulink models, using near-miss clone detection to find
similarities and model merging to identify points of variance.
The result is a set of submodel patterns which can be used
as a reference for variance in the models, supporting con-
sistency analysis, test optimization, fault identification and
the disciplined generation of new subsystem instances using
feature selection.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques—model driven engineering ; D.2.7 [Software Engi-
neering]: Distribution, Maintenance, and Enhancement—
reverse and re-engineering

General Terms

Design, Measurement, Verification

Keywords

Model–driven engineering, model patterns, Simulink

1. INTRODUCTION

Model-driven engineering (MDE) is rapidly growing as a
software development technique in industry. Simulink1 is
an established tool for the modelling and code generation of

1www.mathworks.com/products/simulink

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC 2013 Tokyo, Japan
Copyright 2013 ACM 978-1-4503-1968-3/13/08 ...$15.00.

hybrid embedded systems, which is already widely used in
the automotive industry. As is the case for traditional pro-
gramming languages, copy-paste-modify is a common reuse
technique in Simulink model development, and with the
wide range of similar products in automobile manufactur-
ing, these copies can easily get out of hand.

The NECSIS Model Pattern Engineering project is aimed
at addressing this issue by analyzing our industrial partners’
large set of Simulink models to discover, catalogue and char-
acterize the domain- and application-dependent submodel
patterns in repeated use in their software development. Our
idea is not to be predictive, but rather emergent - we seek
those patterns which are in actual use in our partner’s pro-
duction models. The project consists of three phases: dis-

covery, in which similar submodels are identified and clus-
tered; formalization, in which these clusters are merged into
parameterized patterns; and application, in which these pat-
terns are applied in practice to aid in tasks such as consis-
tency and best practice analysis, test- and code-generation
optimization, identification of potential faults, variance anal-
ysis and model product line creation.

2. MODEL CLONE DETECTION

In the first phase, discovery, we are seeking to uncover sim-
ilar submodels in a large set of Simulink models. The discov-
ery of similar fragments, or code clones, in software source
code is an established technique with almost two decades of
research and several production clone analysis tools available
[6]. Code clone research identifies four kinds of code clones:
type 1, or exact clones, which differ only in formatting of
the source text; type 2, or renamed clones, which differ in
formatting and naming of elements in the code; type 3, or
near-miss clones, which differ in formatting, naming, and
minor additions, deletions or modifications of the code; and
finally, type 4, or semantic clones, which are code sections
that implement the same functionality in different ways.

Because they are specified graphically, using a two-dimensional
network of connected parts, detection of similarity in models
is a different problem. Thus clone technology for graphical
models such as Simulink has been based on treating the
models as the nodes and edges or graphs, where similar con-
nected subgraphs of blocks can be identified by tools such
as ConQAT [3]. While this technique works well for exact
(type 1) and renamed (type 2) submodel clones, the exten-
sion to type 3 (near-miss) clones, those of interest in our
work, has proven difficult due to the complexity of approxi-
mate subgraph matching.

While near-miss (type 3) clone detection is difficult for
graphs, it is a firmly established technique in code clone
detection, and tools such as NiCad [4] have demonstrated
high levels of accuracy in finding groups of almost-similar
code functions and blocks in large bodies of source code [5].
Thus in our work in pattern identification in Simulink, we
have explored a crazy idea: can textual code clone detection
be used to find near-miss clones in graphical models? In
particular, can an extension of NiCad be used as the basis
of our pattern discovery, to find near-miss submodel clones
in Simulink graphical models?

3. SIMONE

SIMONE [1], is a Simulink near-miss submodel clone de-
tector based on this idea. SIMONE leverages the NiCad
code clone detector engine to analyze the proprietary inter-
nal textual representation of Simulink models. The adapta-
tion of code clone detection to graphical models poses several
challenges. First, NiCad is a structure-sensitive code ana-
lyzer, and requires a syntactic parse of the code (a “parse
tree”) in order to work. Thus we needed a grammar for the
Simulink internal textual form (“.mdl” files). Because there
is no published reference for the syntax of the Simulink tex-
tual representation, we used grammar inference techniques
[7] to infer a syntax for Simulink .mdl files.

Second, NiCad is designed to find similarities at a spe-
cific granularity, such as a Java class, method or code block,
in order to yield meaningful units as results. Fortunately,
Simulink is a hierarchical modelling method, with three clear
levels of granularity, model, corresponding to a whole pro-
gram; system, corresponding to a hierarchical unit such as a
class or method; and block, corresponding to a single state-
ment or expression in Java. Since we are interested in sub-
model patterns, whole models were clearly too coarse-grained,
and single blocks clearly too fine-grained. Moreover, if our
patterns are to be meaningful to Simulink engineers, then
they should be in a form that is recognizable to them. Thus
Simulink “systems”were chosen as the target granularity for
our submodel clones, and a NiCad “extractor” for Simulink
(sub-)systems was crafted to collect the submodels to be
compared for similarity.

Third, the textual form of Simulink models encodes not
only the structure of the model itself, but also a large set of
elements and attributes describing the presentation of the
model, such as the size, colour, font, and other attributes of
model elements; the window size, layout, printing options,
and other attributes of the model presentation, and many
other options. None of these is relevant to submodel similar-
ity analysis, and a filtering transformation was implemented
to filter out presentation elements and attributes from the
textual representation of the submodels to be compared.

The most difficult problem to be faced in using a text-
based code clone detector on the textual form of graphical
models is that there is no defined linear order for the ele-
ments of the model in the textual form – the meaning of
the graphical model remains the same no matter what or-
der its elements and connections are defined in its textual
representation. To address this problem, SIMONE uses a
normalizing topological sort of the textual elements before
comparison, effectively defining a standard order for the tex-
tual form. Both filtering and sorting are implemented as
TXL [2] source transformations of the extracted Simulink
textual representation.

GM Fuel System Models!
Remove unique subsystems"

Figure 1: Near-miss subsystem clone relationships
in three production industrial automotive models

4. SUBMODEL CLONES

SIMONE has been validated on a large set of publicly
available Simulink models, including all of the demonstra-
tion models distributed with Simulink itself,2 and the en-
tire set of models available at Matlab Central3. Compari-
son with the ConQAT state-of-the-art graph-based Simulink
model clone detector found that text-based SIMONE finds
all of the type 1 (exact) and type 2 (renamed) subsystem
clones in these examples found by ConQAT, and addition-
ally finds the many near-miss (type 3) subsystem model
clones that we are interested in. These near-miss clones
form the basis of our submodel pattern analysis.

As an example, Figure 1 shows a graphical representation
of the results of a SIMONE near-miss subsystem clone anal-
ysis of three production industrial models (indicated by the
three different colours) from our automotive industry part-
ners. The nodes in the graph represent the extracted subsys-
tems, and the edges represent the near-miss clone relation-
ships between them. The size of the nodes indicates the rel-
ative size of the corresponding subsystems (100–20,000 lines
of textual representation), and the thickness of the edges
represents the strength of the similarity (70–100% similar).

5. CLONE CLASSES

The first step in inferring submodel patterns in the model
set consists of clustering similar subsystems into connected
groups called clone classes. Clone classes are created auto-
matically by the NiCad clone detector from the clone rela-
tionships by grouping the connected components of the clone
relationship graph, yielding clusters of similar subsystems.
Figure 2 shows a conceptual view of the clone classes for the
production model subsystem clones of Figure 1.

Of course, Simulink engineers are not interested in con-
ceptual views – they are much more interested in being able
to use the results of our analysis to assist them in their
everyday work in the Simulink IDE. To make these results
accessible and actionable, we have created the SimNav clone
class exploration interface as an extension to Simulink itself
(Figure 3). Using SimNav, the engineer can explore a ta-
ble of the clone classes and bring up the the actual similar
subsystems in the Simulink graphical model editor interface
they are using to work with the models.

2www.mathworks.com/products/simulink/examples.html
3www.mathworks.com/matlabcentral

GM Fuel System Models!
Rearrange to cluster similar subsystems"

Figure 2: Near-miss subsystem clones of Fig. 1
clustered into clone classes

6. PATTERNS

Clone classes can be used directly as sets of exemplars to
represent the subsystem pattern of which they are instances.
That is, we can use a subsystem clone class as its own pat-
tern, by using the clone detector to search any new model
for subsystems similar to any subsystem of the pattern clone
class. Using this definition, we can partition the clone re-
lationships discovered by SIMONE into pattern instances,
forming a clear distinction between the patterns. Figure 4
shows a conceptual view of the patterns inferred from the
clone classes of the production model subsystem clones of
Figure 1.

While this method works well from a practical standpoint,
it is somehow dissatisfying from a conceptual one, in that
we have not actually characterized the pattern and its vari-
ants except by example. What we really want to do is to
create an actual Simulink subsystem model that represents
the pattern and its variants in a single unit. In current work
we are developing SimPat, a notation based on merging the
elements of the clones in a clone class and distinguishing the
points of variation explicitly.

Figure 3: The SimNav subsystem clone class explo-
ration interface in the Simulink model editor

GM Fuel System Models!
Infer common subsystem patterns"

Figure 4: Subsystem clone classes of Fig. 2
partitioned into pattern instances

Using Simulink to view these merges yields a representa-
tion very close to the the goal we have in mind. Figure 5
shows an example of such a pattern viewed in the Simulink
model editor. Our plan is to integrate pattern viewing into
SimNav, to highlight the variance in each instance of the
pattern and facilitate product variance management.

7. EVOLUTION

Model evolution is an important topic that has been heav-
ily studied for UML models. In spite of its established pre-
dominance in industry, however, little research has been
done on the evolution of Simulink models. In our ongo-
ing work, we are leveraging our inferred subsystem patterns
to study the maintenance evolution of production Simulink
models, with the goal of inferring patterns of model evolu-
tion analogous to our our patterns of submodel reuse.

Our work is based on tracing the migration of subsystem
patterns across versions, using individual pattern instances
as the links between the clone patterns of one version and
those of subsequent versions. By understanding how com-
mon subsystem patterns evolve to split or merge between
versions, we hope to characterize the evolution of the mod-
els at a higher level. Figure SimTrace shows an example of
how the submodel patterns of one version have evolved to
split into separate patterns in following versions. The dia-
gram is generated by our prototype pattern evolution tool
SimCCT.

!"#$#%&'$()'*+,-*'.+/#0'$12+3,45-*'.678*-&99++

,-*'.+/#0'$1+,#&%"(1:+

Figure 5: Representing variance in subsystem clone
patterns using Simulink

!"#$%&'"()'*+&,'(-+./,$012(3(4556(

!!"

Figure 6: Evolution of subsystem clone patterns

8. CONCLUSION

In this presentation we have outlined a process for infer-
ring emergent submodel patterns in Simulink models using
text-based near-miss clone detection to find and cluster sim-
ilarities. The results are integrated into the Simulink editing
environment for use by production engineers in understand-
ing and managing reuse and variance in their models. This
work is ongoing, and we are currently focussing on represent-
ing these patterns in a generic form that can characterize and
identify new instances and their variations in a production
Simulink engineering environment.

9. ACKNOWLEDGMENTS

This is joint work with Manar Alalfi, Thomas Dean,
Matthew Stephan and Andrew Stevenson of the Software
Technology Laboratory at Queen’s University. Our work is
supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC), as part of the NECSIS Auto-
motive Partnership with General Motors, IBM Canada and
Malina Software Corp. The author thanks Joseph d’Ambrosio

and Cheryl Williams of General Motors Research & Devel-
opment for their assistance in obtaining permission to use
production GM models as examples in this presentation.

10. REFERENCES

[1] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan, and
A. Stevenson. Models are clones too: Near-miss model
clone detection for Simulink models. In ICSM 2012,
pages 295–304, 2012.

[2] J. R. Cordy. The TXL source transformation language.
Science of Computer Programming, 61(3):190–210,
2006.

[3] F. Deissenboeck, B. Hummel, E. Jurgens, B. Schatz,
S. Wagner, J. F. Girard, and S. Teuchert. Clone
detection in automotive model-based development. In
ICSE 2009, pages 603–612, 2009.

[4] C. K. Roy and J. R. Cordy. NICAD: Accurate
detection of near-miss intentional clones using flexible
pretty-printing and code normalization. In ICPC 2008,
pages 172–181, 2008.

[5] C. K. Roy and J. R. Cordy. A mutation/injection-based
automatic framework for evaluating code clone
detection tools. In Mutation 2009, pages 157–166, 2009.

[6] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach. Science of Computer

Programming, 74(7):470–495, 2009.
[7] A. Stevenson and J. R. Cordy. Grammatical inference

in software engineering: An overview of the state of the
art. In SLE 2012, pages 204–223, 2012.

