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Abstract—We describe a robust and efficient system for recognizing typeset and handwritten mathematical notation. From a list of

symbols with bounding boxes the system analyzes an expression in three successive passes. The Layout Pass constructs a Baseline

Structure Tree (BST) describing the two-dimensional arrangement of input symbols. Reading order and operator dominance are used

to allow efficient recognition of symbol layout even when symbols deviate greatly from their ideal positions. Next, the Lexical Pass

produces a Lexed BST from the initial BST by grouping tokens comprised of multiple input symbols; these include decimal numbers,

function names, and symbols comprised of nonoverlapping primitives such as “=”. The Lexical Pass also labels vertical structures such

as fractions and accents. The Lexed BST is translated into LATEX. Additional processing, necessary for producing output for symbolic

algebra systems, is carried out in the Expression Analysis Pass. The Lexed BST is translated into an Operator Tree, which describes

the order and scope of operations in the input expression. The tree manipulations used in each pass are represented compactly using

tree transformations. The compiler-like architecture of the system allows robust handling of unexpected input, increases the scalability

of the system, and provides the groundwork for handling dialects of mathematical notation.

Index Terms—Document image analysis, recognition of mathematical notation, diagram recognition, tree transformation, graphics

recognition.
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1 INTRODUCTION

AUTOMATED recognition of mathematical notation is a
challenging pattern recognition problem of great

practical importance. Applications include the conversion
of scientific papers from printed to electronic form and the
reading of scientific documents to visually impaired users.
Recognition of handwritten expressions permits users to
write mathematical expressions on a data tablet; this is a
convenient alternative to input methods such as typing
LATEX expressions or using a structure-based editor for
mathematical notation.

Over the past 30 years researchers have investigated
many approaches to recognizing mathematical notation.
Surveys are available in [1] and [2].

1.1 Challenges

This section briefly reviewssomeof thechallenges thatarise in
recognition of mathematical notation. First, expressions must
be located in a document image that contains a mix of text,
expressions, and figures. Expressions can be offset or inline.
Various approaches to this problem have been studied [3], [4].

Recognizing mathematical symbols is difficult because a
large number of symbols, fonts, typefaces, and font sizes are
used [5]. Care must be taken to distinguish between noise and
small symbols such as periods and commas.

Recognizing the spatial relationships between symbols
(the symbol layout) is challenging, particularly for handwritten

notation. The blurry distinction between inline and super-
script relationships, illustrated by Fig. 1b, makes it difficult to
define robust methods for recognizing relationships. A
statistical study of superscript versus inline versus subscript
relationships in handwritten mathematics expressions is
reported in [6]. Fig. 1 shows expressions for which ambiguous
layout confuses the order, scope, and even presence of
operations. The inexact symbol placement that is common
in handwritten notation (Fig. 2a) compounds this problem.

Ambiguous spatial relationships and symbol identities
need to be resolved using contextual analysis [7], [8]. Also,
contextual analysis is needed to disambiguate the roles of
mathematical symbols. For example, a horizontal line may
act as a fraction line, subtraction symbol, or as an overbar
for Boolean negation. Exploitation of redundancy is a
common technique for resolving ambiguities; an example
is the redundancy between city name and postal code in
address recognition [9]. However, mathematics uses a
concise notation, one which provides little redundancy.

Finally, mathematics notation is not formally defined
and many dialects are in use. Similar to natural languages,
mathematical symbols and structures are invented or
redefined as needed by the users of the notation. Publica-
tions about the formatting of mathematical notation are
available [10], [11], [12]. However, these are not in a form
that can be used as a specification for a mathematics
recognition system.

1.2 Mathematics Recognition via
Tree Transformation

In this paper, we describe the design and implementation of
a mathematics recognition system that makes extensive use
of tree transformation. The ideas underlying this approach
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may be relevant in any application where syntactic pattern
recognition is appropriate. The following strategies are used
to structure the recognition system.

We analyze symbol layout in mathematical expressions
by searching for linear structures (baselines) in the input
and then using these as the basis for finding secondary
linear structures. Intelligent search functions are applied in
image subregions; the subregions are defined in a symbol-
specific way, as described in Section 3. This strategy allows
us to exploit the left-to-right reading order of mathematical
notation, thereby analyzing layout efficiently without back-
tracking. Similar layout analysis techniques have been used
in applications including parsing of visual languages [13]
and recognition of mathematical notation [14], [15]. One of
our contributions is to generalize the technique to make it
robust enough to handle the irregular symbol layouts
present in handwritten expressions (Fig. 2a).

The linear structures (baselines) are organized into a
Baseline Structure Tree (BST). This tree forms the basis for
subsequent, compiler-style processing. Processing is di-
vided into three major passes: 1) The Layout Pass builds an
initial BST, 2) the Lexical pass groups and labels compound
symbols (e.g., “sin”) and structure symbols (e.g., fraction
lines), and 3) the Expression Analysis Pass analyzes
expression syntax (operator precedence and associativity)
and produces an operator tree. The operator tree describes an
ordered application of operators to operands. This repre-
sents the semantics of the mathematical expression, as is
needed for evaluating the expression or translating the
expression into a Computer Algebra System format.

The use of passes results in robust processing of input:
The Layout Pass processes all inputs, even those that
contain syntax errors or unknown constructs. This produces
useful partial results for any input. Also, the use of passes is
a helpful structuring tool for recognizing various dialects of
mathematical notation. While the core of the Layout Pass is
fixed, the symbol class definitions used in the Layout Pass
may be easily redefined. Additionally, the Lexical Pass and
Expression Analysis Pass may be provided with dialect-
specific rules.

All of the processing in our approach is performed using
tree manipulations called tree transformations. Tree transfor-
mations allow the computations we perform to be expressed
in a convenient and compact form (see Section 1.3). Our
decision to make use of tree transformations stemmed from
the observation that both the layout and syntax of mathema-
tical expressions are hierarchical and, as a result, are usually
expressed as trees. Trees are used in formatting languages
such as LATEX, for representing the parse of mathematical
expressions in compilers [16], and in many other approaches
to mathematics recognition (as surveyed in [8]).

Our implementation is called the Diagram Recognition
Application for Computer Understanding of Large Alge-
braic Expressions (DRACULAE) [8], [17]. For processing
online input, DRACULAE is packaged with a user interface
and a third-party symbol recognizer, both of which are
provided by the Freehand Formula Entry System [18], [19].

DRACULAE obtains linear or close to linear perfor-
mance on many inputs. The worst case time complexity of
DRACULAE, when processing an input of n symbols is
Oðn2 lgnÞ. Worst case inputs are unsyntactic or unlikely. For
example, one worst case input consists of a series of

P

symbols, each placed to be a superscript of the preceding
one. Most inputs are processed in near linear time. This is
particularly impressive because DRACULAE handles hand-
written inputs with irregular symbol placements. Many
alternative approaches designed to cope with ambiguous
layout, such as stochastic grammars [20] and graph
transformation [21], involve extensive amounts of search
or backtracking. DRACULAE currently recognizes a single
dialect of mathematics notation, but has been constructed to
allow multiple dialects to be accommodated in the future.

Fig. 2 provides an overview of the processing performed
by DRACULAE. Tree transformation, which is used
throughout the implementation, is discussed in Section 1.3.
The symbol layout model and Baseline Structure Trees are
defined in Section 2. The symbol layout model is used by
the Layout Pass (Section 3) to convert the input into a
Baseline Structure Tree. The Lexical Pass (Section 4)
converts this to a Lexed BST. Finally, the Expression
Analysis Pass (Section 5) produces an operator tree.
Experimental results on handwritten and typeset input
are presented in Section 6.

1.3 Tree Transformation

DRACULAE uses trees as its central data structure. The
recognition process begins by building a tree that encodes
low-level baseline structure. This tree is successively refined
and restructured to represent higher levels of understand-
ing at each stage of the process. Tree restructurings are
implemented using a programming language construct
called tree transformation. A tree transformation is a
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Fig. 1. These expressions illustrate that ambiguous layout can confuse

the order, presence, and scope of operators. (a) Which division is

performed first? (b) Is a superscripted? (c) What is the extent of the

scope of the summation?

Fig. 2. Overview of processing in DRACULAE.



restructuring rule that searches a host tree (the scope) for
subtrees with a particular shape and attribute values (the
pattern); each matching subtree is replaced with a new
subtree (the replacement) restructured from the original.
Fig. 3 shows a tree transformation rule.

We use the tree transformation language TXL to specify
tree transformations in a compact, abstract manner [22],
[23]. Originally designed for programming language pro-
cessing tasks, TXL specifies tree transformations in ASCII
text using a by-example style of rule specification (Fig. 3),
and provides an efficient, robust parser to rapidly convert
trees to and from ASCII text form. TXL transformation
rules can be combined and controlled using functional
programming constructs and are directly and efficiently
executed by the TXL interpreter. The amount of code
needed to describe a complex tree transformation in TXL is
orders of magnitude less than in a general purpose
programming language such as C. DRACULAE is imple-
mented by less than 3,500 lines of TXL code.

2 SYMBOL LAYOUT IN MATHEMATICAL

EXPRESSIONS

Mathematical notation uses symbol layout to convey which
operators are used and what the arguments to these operators
are. An analysis of operator dominance and baselines can be
used to recover this information. The following sections
define operator dominance, baselines, Baseline Structure
Trees, and symbol classes. These define the symbol layout
model which forms the basis of the Layout Pass.

2.1 Operator Dominance and Baselines

Operator dominance [24] is a concept used to determine the
precedence and arguments of operators.

Range: The range of an operator is the expected location of
its argument(s) [24]. The ranges DRACULAE uses are
described in Section 2.3.

Operator Dominance: Operator A dominates operator B if
B is in the range of A and A is not in the range of B [24].
An operator dominates the symbols that constitute its
arguments.

If operator A dominates operator B, then A is of lower
precedence than B. For example, in the expression xþ y�z�d

a

the “+” dominates the fraction line because the fraction line
is in the range of the addition sign and the converse is false.
Similarly, the fraction line dominates the subtraction and
multiplication operators and their arguments. Neither the
subtraction or multiplication operator dominates the other,
because both are in the range of the other.

Fig. 1a is ambiguous because the operator dominance
(and, as a result, precedence) is unclear: The fraction lines are
of equal length and arranged vertically, so neither appears to
dominate the other. Different dialects of mathematical
notation use varying definitions of operator range and
dominance. For instance, the ambiguity in Fig. 1a can be
resolved by choosing a definition of operator dominance that
results in selection of either the top or bottom line.

Baseline and Start Symbol are defined using operator
dominance and the left-to-right ordering of mathematical
notation.

Baseline: A baseline in mathematical notation is a linear
horizontal arrangement of symbols, intended to be
perceived as adjacent.

For example, there are two baselines in the expression
x2þa � y. One baseline contains the symbols ðx;�; yÞ and the
other contains ð2;þ; aÞ. In handwritten expressions, the
placement of baseline symbols may deviate far from the
ideal horizontal arrangement (Fig. 2a).

Nested Baseline: A nested baseline is a baseline that is
either vertically offset from a symbol or contained by a
symbol (as in the case of a square root containing an
expression comprised of one or more baselines). Nested
baselines are used to indicate operator dominance. For
example, in the expression 1

2 , the two baselines, 1 and 2,
are nested relative to the fraction line. Similarly, in the
expression x2þa � y, the superscripted baseline ð2;þ; aÞ is
nested relative to the x.

Dominant Baseline: The dominant baseline of a mathema-
tical expression contains the symbols that are not nested
relative to any other symbols in the expression. The
dominant baseline of a mathematical expression begins
with the Start Symbol of the expression.

Start Symbol: In a mathematical expression, the Start
Symbol is the leftmost symbol of the expression which
is not on a nested baseline.

Examples of Start Symbols are shown in Fig. 4. The
Layout Pass (Section 3) contains algorithms for locating the
Start Symbol and subsequent baseline symbols.
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Fig. 3. A tree transformation rule from the Expression Analysis Pass.
The rule is shown graphically (a) and as TXL code (b). This rule finds all
parse subtrees for subexpressions that use an infix binary + operation.
Each of these parse subtrees is replaced by an operator subtree
explicitly indicating that addition is intended.



2.2 Baseline Structure Trees

A Baseline Structure Tree represents the hierarchical struc-
ture of baselines in an expression [17]. The Baseline Structure
Tree explicitly captures important aspects of symbol layout
without committing to any particular syntactic or semantic
interpretation. For instance, a Baseline Structure Tree can be
used to represent the symbol layout of “2þ ” despite the fact
that this expression is syntactically and semantically invalid.
Similarly, a Baseline Structure Tree represents the symbol
layout of “fðxÞ” regardless of whether function application or
multiplication of variables is intended.

A Baseline Structure Tree (or BST) contains two types of
nodes: symbol nodes and region nodes, defined below. These
nodes are arranged in levels; any path through the tree
encounters symbol nodes and region nodes in alternation.
The root of the tree, EXPRESSION , is a region node
representing the entire image.

Symbol Node: A symbol node represents a mathematical
symbol. The symbol node stores the identity of the symbol
(as provided by symbol recognition), the class of the
symbol (as defined in Table 1), and the attributes of the
symbol (the bounding box and centroid coordinates). A
symbol node is the root of a subtree of the BST. Suppose S

is a symbol represented by symbol node snode. The
children of snode are region nodes representing image
subregions that contain baselines nested relative to S.

Region Node: A region node represents an image region
which contains a baseline, possibly with nested baselines.
The image region is defined relative to the symbol that is
the parent of this region node; the spatial relationship is
captured by the region label, defined below. The region
node is the root of a subtree; the children of the region node
are symbols that form the region’s dominant baseline.

Region Label: All region nodes in a BST have a region label,
one of ABOV E, BELOW , SUPER, SUBSC, UPPER,
LOWER, TLEFT (top-left), BLEFT (bottom-left),
CONTAINS, and EXPRESSION . As shown in Fig. 5,
the class of a symbol determines what regions are
defined relative to the symbol.

In a Baseline Structure Tree, region nodes represent all
mathematically important spatial relationships other than
horizontal adjacency. Horizontal adjacency has special status
because it defines baselines. Symbols that are on the same
baseline are represented in the tree as ordered siblings.

These definitions are illustrated using the Baseline
Structure Tree shown in Fig. 2b. This tree contains four
region nodes (EXPRESSION , SUPER, ABOV E, and
BELOW ) and eight symbol nodes (A + � � D C B 2). The
dominant baseline of the whole expression is (A +��D). The
“2” is the sole symbol in the baseline located BELOW the first
“�.” The “C” is the sole symbol of the baseline that is
superscripted (SUPER) relative to the “A.”

2.3 Symbol Classes

In the Layout Pass, Symbol classes and the parameters c
(centroid ratio) and t (threshold ratio) are used to define
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TABLE 1
Symbol Classes and Their Associated Attributes

The ABOVE, BELOW, SUPER, and SUBSC thresholds are used to define the regions associated with each symbol, as shown in Fig. 5. The values
maxY and minY are bounding box coordinates and H is the bounding box height (maxY-MinY). The centroid ratio, c, and the threshold ratio, t, are
both in range [0, 0.5], with t � c.

Fig. 4. Examples of Start Symbols. In (a) the leftmost symbol is not on a
nested baseline and is the Start Symbol. In (b), the Start Symbol is the
wider fraction line. This operator dominates the remaining symbols,
which are all located on baselines nested relative to it. Similarly, in (c),
the integral is the leftmost nonnested symbol and is the Start Symbol.



image regions around symbols. A variety of c and t values are

tested on the UW-III database in Section 6.1. As described in

Section 3, the Layout Pass recognizes the symbols in the

dominant baseline of a region, defines subregions around

these symbols, and searches for nested baselines in these

subregions. This section defines the symbol classes and

regions that are used and defines the test for determining

whether a symbol lies in a region. These definitions comprise

the symbol layout model.
The centroid of a symbol is a point used to test whether a

symbol lies within a region. This is a common technique in the

literature on recognition of mathematical notation, first used

in the work of Anderson [25]. Collapsing a symbol to a single

point allows for simpler geometric analyses. The centroid X-

location is always centered in the bounding box, at (minX +

maxX)/2. As shown in Table 1, the computation of the

centroid Y-location depends on the centroid ratio c and on

whether the symbol is an ascender, descender, or centered.
A region is an axis-parallel box. The region includes the

left and bottom edges of the box, but not the right and top

edges. The Layout Pass tiles the image with regions. All

points in the image belong to exactly one region, so each

symbol’s centroid is located in exactly one region.
Every symbol is assigned a symbol class, as defined in

Table 1. The symbol class determines where nested base-

lines can be located relative to the symbol. This is illustrated

in Fig. 5.
Ambiguity, in the form of overlapping regions, can arise

in the region definitions shown in Fig. 5. Consider two

adjacent baseline symbols, where the symbol on the left has

a SUPER or UPPER region and the symbol on the right

has an UPPER region (i.e., is in class Variable Range). The

SUPER or UPPER region of the left symbol overlaps the

UPPER region of the right symbol. Similarly, the SUBSC

or LOWER region of the left symbol overlaps the LOWER

region of the right symbol. For example, in the expression

x2
X10;000

i¼1
i

the symbols “2” and “1” may fall in both the SUPER region
of the “x” and the UPPER region of the

P
. This ambiguity

is resolved in the Layout Pass using analysis of local context
(function CollectRegions in Section 3.1).

3 LAYOUT PASS

The Layout Pass produces a Baseline Structure Tree from a
list of symbols with bounding boxes. It identifies the
dominant baseline of the expression, partitioning any
symbols not on the dominant baseline into regions relative
to the dominant baseline symbols. This process is applied
recursively in the partitioned regions. The left-to-right
reading order of mathematical notation is exploited to
construct the BST efficiently without backtracking, even
when symbol layout is irregular. Extensive research went
into defining the search functions Start and Hor, discussed
below. The inspiration for this directed search came from
the linear positional grammar work of Costagliola et al. [13],
where syntax-driven linear scanning of the input is used to
parse visual languages. The directionality present in
mathematical notation made it possible for us to adapt
these ideas for use in the Layout pass.

Each input symbol s has bounding box coordinates
denoted minXðsÞ, minY ðsÞ, maxXðsÞ, and maxY ðsÞ. The
Layout Pass begins with a preprocessing step, in which
Table 1 is used to assign each input symbol a symbol
class classðsÞ, a centroid (centroidXðsÞ, centroidY ðsÞ), and
region thresholds (aboveThresholdðsÞ, belowThresholdðsÞ,
superThresholdðsÞ, subscThresholdðsÞ). After this prepro-
cessing, function BuildBST creates the BST. Section 3.1
defines BuildBST and the most important functions it
uses: ExtractBaseline, Start, Hor, and CollectRegions.
Supporting functions are defined in Section 3.2.

The major steps in the Layout Pass are as follows. They
are illustrated in Fig. 6.

1. The initial Baseline Structure Tree consists of a root
EXPRESSION node, with a sorted list L of
symbols as children. Symbols are sorted by minX
coordinate. R is the image region that contains the
entire expression.

2. Find the symbol which begins the dominant baseline
in region R. This is computed as S1 ¼ StartðLÞ. The
Start function checks for cases in which symbol S1 is
not the leftmost symbol in list L. For example, the
limits of a

P
can begin to the left of the

P
.

3. Find S2 . . .Sn, the rest of the symbols in the baseline
that begins with symbol S1. This is done by function
Hor. Care is taken to handle irregular symbol layout,
such as in the expression in Fig. 6.

4. Add S1 . . .Sn, the symbols in the dominant baseline
in region R, to the Baseline Structure Tree. The
symbol nodes are inserted as offspring of the region
node representing R.

5. The symbols of the dominant baseline, S1 . . .Sn, are
used to partition region R into subregions, using the
region definitions from Fig. 5. All the symbols in
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Fig. 5. Regions associated with the different symbol clases. The right
end of the HOR, SUPER, SUBSC, UPPER, and LOWER regions is
located at the minX coordinate of the next baseline symbol. The left end
of the LOWER and UPPER regions is the maxX coordinate of the
previous baseline symbol. Y-thresholds for each region are defined in
Table 1.



list L that are not part of the dominant baseline are
assigned to one of these subregions.

6. For each nonempty subregion found in the previous
step, add a Region Node to the Baseline Structure Tree.
Recursively apply Steps 2 to 6 to each of these regions.

In summary, the Layout pass recursively applies search
functions and image partitioning to recognize dominant
and nested baselines. The search function Start is used to
locate the leftmost symbol of the dominant baseline and
Hor is used to locate successive symbols in a baseline.

3.1 Top Level Functions in the Layout Pass

This section and the next section provide a functional
specification of DRACULAE’s Layout Pass. The input, which
is passed to function BuildBST , is a list of symbol nodes,
annotated with bounding box coordinates. The output is a
Baseline Structure Tree describing the layout of these
symbols.

Function names are followed by a type specification. The
parameter and return value types are BST (Baseline
Structure Tree), SNODE (a symbol node, which may be the
root of a subtree), RNODE (a region node, which may be the
root of a subtree), REGION LABEL (one of the 10 region
labels defined in Section 2.2), SNODE LIST (a list of
symbol nodes), RNODE LIST (a list of region nodes),
REGION LABEL LIST (a list of region labels), BOOLEAN,
and INTEGER. When several arguments have the same type,

integer subscripts are added. Arguments are referenced
using the same names, written in lower case.

For list notation, jlistj is the number of items in a list,
list� item denotes removal of an item from a list, and
(item) denotes a list consisting of a single item.

BuildBST (SNODE LIST ! BST 0): Construct a Baseline

Structure Tree from snode list, the input list of symbol

nodes.

1. Let root be a region node labeled EXPRESSION . If
jsnode listj ¼ 0 Return root.

2. Let snode list0 ¼ SortSymbolsByMinXðsnode listÞ.
3. Make each symbol node in snode list0 be a child of

root.
4. Return ExtractBaselineðrootÞ.

ExtractBaseline (RNODE ! RNODE 0): Find the domi-
nant baseline in the region represented by rnode and
update the part of the BST that is rooted at rnode. Make
recursive calls to add nested baselines.

1. Let snode list ¼ SymbolsðrnodeÞ. If jsnode listj � 1
Return rnode.

2. Let sstart ¼ Startðsnode listÞ.
3. Let baseline symbols ¼ Horðsstart; snode listÞ.
4. Let updated baseline ¼ CollectRegions
ðbaseline symbolsÞ.

5. Update the tree rooted at rnode by discarding the
children of rnode and replacing them by the symbol
nodes in updated baseline. (Each symbol node in
updated baseline is itself the root of a subtree.)

6. Now, use recursion. For each region node childrnodei

that is a child of a symbol node in updated baseline,
replace childrnodei by ExtractBaselineðchildrnodeiÞ.

7. Return rnode.

Start (SNODE LIST ! SNODE0): Find the symbol node

which begins the dominant baseline in snode list.

Compare the last two symbols in snode list, remove the

dominated symbol, and recurse. Symbol sn dominates

the previous symbol, sn�1 if 1) Overlapsðsn; sn�1Þ, or

2) Containsðsn; sn�1Þ, or 3) classðsnÞ ¼ Variable Range

and :IsAdjacentðsn�1; snÞ. Otherwise, sn�1 dominates sn.

Hor (ðSNODE LIST1; SNODE LIST2Þ !
SNODE LIST 0): Find the symbols of the baseline that

begins with the symbols in snode list1 and continues

with a subset of the symbols in snode list2. The symbols

of the baseline are returned as snode list0. Nonbaseline

symbols in snode list2 are partitioned into TLEFT ,

BLEFT , ABOV E, BELOW , and CONTAINS regions.

Symbols in TLEFT and BLEFT regions are later

reassigned by the CollectRegions function.

1. If jsnode list2j ¼ 0 Return snode list1.
2. Let current symbol be the last symbol node in

snode list1.
3. Letðremaining symbols; current symbol0Þ¼ Partition
ðsnode list2; current symbolÞ

4. In snode list1, replace current symbol by
current symbol0.

5. If jremaining symbolsj ¼ 0 Return snode list1.
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Fig. 6. BST construction by the Layout Pass for the expression in
Fig. 2a. (a) The initial BST. This is created in function BuildBST
before invoking ExtractBaseline. The Start function locates the
leftmost symbol in the dominant baseline, indicated here by a circle
around the “A.” (b) The tree after Hor has found the next baseline
symbol (“+”); region partitioning places the “C” into the TLEFT
region of the “+.” (c) The tree after the third baseline symbol (“-”) is
located by Hor. (d) The final tree, after the last two baseline
symbols have been found, and the TLEFT partitioning has been
refined. In this example, the nested baselines do not require further
processing as they are single symbols.



6. If classðcurrent symbol0Þ ¼ Nonscripted then Return
HorðConcatListsðsnode list1;
ðStartðremaining symbolsÞÞÞ; remaining symbolsÞ.

7. Let SL ¼ remaining symbols.
8. While jSLj 6¼ 0,

a. Let l1 be the first symbol in SL.
b. If IsRegularHorðcurrent symbol0; l1Þ then Return

HorðConcatListsðsnode list1;ðCheckOverlapðl1;
remaining symbolsÞÞÞ; remaining symbolsÞ.

c. Let SL ¼ SL� l1.
9. Let current symbol0 ¼ PartitionFinal
ðremaining symbols; current symbol0Þ.

10. Return ConcatListsðsnode list1; ðcurrent symbol0ÞÞ.
CollectRegions ðSNODE LIST!SNODE LIST 0Þ:

snode list is a list of symbol nodes whose subtrees

contain temporary regions labeled TLEFT and BLEFT ,

created by function Hor. The symbols in a TLEFT

region are reassigned to SUPER (a region associated

with the preceding baseline symbol) or UPPER (a

region associated with the current baseline symbol);

similarly, symbols in BLEFT regions are assigned to

SUBSC or LOWER regions. For brevity, we show only

the TLEFT case here.

1. If jsnode listj ¼ 0 Return snode list.
2. Let s1 be the first symbol of snode list. Let s01 ¼ s1.

Let snode list0 ¼ snode list� s1.
3. If jsnode listj > 1 then

a. Let s2 be the second symbol of snode list. Let
s02 ¼ s2.

b. Let ðsuperList; tleftListÞ ¼ PartitionShared
RegionðTLEFT; s1; s2Þ.

c. Let s01 ¼ AddSuperðsuperList; s1Þ.
d. Let s02¼ AddTleftðtleftList; RemoveRegions
ððTLEFT Þ; s2ÞÞ.

e. In list snode list0 replace s2 by s02
4. If classðs01Þ ¼ V ariableRange

a. Let upperList¼ ðTLEFT; ABOV E; SUPERÞ.
b. Let s01¼MergeRegionsðupperList; UPPER; s1Þ.

5. Return ConcatListsððs01Þ; CollectRegions
ðsnode list0ÞÞ.

3.2 Supporting Functions in the Layout Pass

The following functions, listed in alphabetical order, are used

by the top-level functions shown in the previous section.

AddAbove, AddBelow, etc. ððSNODE LIST; SNODEÞ
! SNODE0Þ: The symbol nodes in snode list become

grandchildren of snode. For AddAbove, they are placed as

children of an ABOVE region node. Functions AddBelow,

AddSuper, AddSubsc, AddContains, AddTleft, and

AddBleft are defined analogously.

CheckOverlap ððSNODE; SNODE LIST Þ ! SNODE0Þ:
Look through snode list for Nonscripted symbols which

horizontally overlap snode, tested via the Overlaps

function. Return the widest such symbol if one exists.

If there are no such symbols, return snode.

ConcatLists ððSNODE LIST1; SNODE LIST2Þ
! SNODE LIST 0Þ: Concatenate the symbol node lists
snode list1 and snode list2, returning the resulting list.

Contains ððSNODE1; SNODE2Þ ! BOOLEAN 0Þ: Return
true if snode1 6¼ snode2; class ðsnode1Þ ¼ Root; minX
ðsnode1Þ � centroidXðsnode2Þ< maxXðsnode1Þ, and
minY ðsnode1Þ � centroidY ðsnode2Þ < maxY ðsnode1Þ.

HasNonEmptyRegion ððSNODE; REGION LABELÞ
! BOOLEAN 0Þ: Return true if snode has a child region
node rnode with region label region label, and
jSymbolsðrnodeÞj > 0.

IsAdjacent ððSNODE1; SNODE2Þ ! BOOLEAN 0Þ: Test
whether snode1 is horizontally adjacent to snode2, where
snode1 may be to the left or right of snode2. Return true if
classðsnode2Þ 6¼ Nonscripted, snode1 6¼ snode2, and
subscThresholdðsnode2Þ � centroidY ðsnode1Þ
< superThresholdðsnode2Þ.

IsRegularHor ððSNODE1; SNODE2Þ ! BOOLEAN 0Þ:
R e t u r n t r u e i f a ) IsAdjacentðsnode2; snode1Þ, o r
b) maxY ðsnode1Þ � maxY ðsnode2Þ and minY ðsnode1Þ
 minY ðsnode2Þ, or c) classðsnode2Þ is Open Bracket or
Close Bracket and minY ðsnode2Þ � centroidY ðsnode1Þ
< maxY ðsnode2Þ.

MergeRegions ððREGION LABEL LIST;
REGION LABEL; SNODEÞ ! SNODE0Þ: For every
region label in region label list, find all children of snode
that have this label. All of these region nodes are then
merged into a single region node labeled region label.

Overlaps ððSNODE1; SNODE2Þ ! BOOLEAN 0Þ: Test
whether snode1 is a Nonscripted symbol that vertically
overlaps snode2. For example, in Fig. 2a, the fraction
line overlaps the centroid of the “B.” Return true if

a. snode1 6¼ snode2 and
b. classðsnode1Þ ¼ Nonscripted, and
c. minXðsnode1Þ � centroidXðsnode2Þ < maxX
ðsnode1Þ, and

d. :Containsðsnode2; snode1Þ; and
e. each of i) and ii) are false: i) classðsnode2Þ is Open

Bracket or Close Bracket, minY ðsnode2Þ � centroidY
ðsnode1Þ< maxY ðsnode2Þ a n d minXðsnode2Þ �
minXðsnode1Þ ii) classðsnode2Þ is Nonscripted or
Variable Range and maxXðsnode2Þ �minXðsnode2Þ
> maxXðsnode1Þ �minXðsnode1Þ:

PartitionððSNODE LIST; SNODEÞ ! ðSNODE LIST 0;
SNODE0ÞÞ: The symbol nodes in snode list are tested for
belonging in regions of snode. Symbol nodes that fail the
test are returned in list snode list0. Symbol nodes that pass
the test are placed below the appropriate child region
nodes of snode; the updated subtree is returned as snode0.

PartitionFinal ððSNODE LIST; SNODEÞ ! SNODE0Þ:
The symbol nodes in snode list are placed below super-
script or subscript region nodes relative to snode, where
snode is the last symbol on a baseline.

PartitionSharedRegion ððREGION LABEL; SNODE1;
SNODE2Þ ! ðSNODE LIST 01; SNODE LIST 02ÞÞ:
If region label is TLEFT , the symbols in the TLEFT
region of snode2 are partitioned into two lists: snode list01
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consists of the symbols in the SUPER region of snode1 and

snode list02 consists of the symbols in the UPPER region of

snode2. Analogous computation is done when region label

is BLEFT , this time partitioning the BLEFT region into a

SUBSC and LOWER region (not shown).

1. Let rnode = the child region node of snode2 that has
region label TLEFT . Let SL ¼ SymbolsðrnodeÞ.

2. If classðsnode1Þ = Nonscripted, then Let snode list01
be an empty list.

3. E l s e i f classðsnode2Þ 6¼ V a r i a b l e R a n ge , o r
classðsnode2Þ = Variable Range and HasNonEmpty
Regionðsnode2; ABOV EÞ is false, then Let snode list01
¼ SL.

4. Else if classðsnode2Þ=Variable Range and HasNon
EmptyRegions ðsnode2; ABOV EÞ then snode list01 ¼
l1; l2; . . . ; liÞ where l1 is the first symbol of SL and
li is the rightmost symbol in SL such that
IsAdjacent ðli; snode2Þ holds.

5. Return ðsnode list01; SL� snode list01Þ.

RemoveRegions ððREGION LABEL LIST; SNODEÞ !
SNODE0Þ: Remove all child region nodes from snode

that match any of the labels in region label list.

SortSymbolsByMinX ðSNODE LIST ! SNODE LIST 0Þ:
Sort snode list, a list of symbol nodes, into order of

increasing minX bounding box coordinate.

Symbols ðRNODE ! SNODE LIST 0Þ: Returns the chil-

dren of rnode as a list.

4 LEXICAL ANALYSIS

Following the construction of the Baseline Structure Tree in

the Layout Pass, the Lexical Analysis pass transforms the BST

into a Lexed BST using a set of tree transformations that

recognizes groups of adjacent input symbols that represent

single mathematical symbols. Two kinds of groups of input

symbols are recognized in this pass: compound symbols,

which are single-baseline groups of input symbols that
represent a single mathematical symbol (e.g., equal signs,
decimal numbers, function names), and structure symbols,
multibaseline groups of input symbols that imply a
mathematical symbol by its local structural context (e.g.,
fractions, limits, accents on symbols). The result of the
Lexical pass is a tree in which these mathematical symbols
are explicitly identified for parsing by Expression Analysis
in the next pass.

Some example Lexical Analysis transformation rules are
shown in Fig. 7. Each of these rules searches the BST for the
pattern of a particular mathematical symbol and restruc-
tures the tree to provide an explicit label and grouping of
the input symbols for the mathematical symbol. As each
group of symbols is recognized and relabeled as a
mathematical symbol, the bounding box of the recognized
unit is computed from its component symbols. Among
other uses, these bounding boxes may be used to provide
feedback in user interfaces or resolve ambiguities. (Cur-
rently, DRACULAE does not make use of these values).

The Lexical Analysis pass is designed to easily accom-
modate different dialects of mathematics simply by adding
or replacing transformation rules for the mathematical
symbols of the dialect. For some dialects and mathematical
symbols, attention to the ordering of the rules is necessary
because the patterns of two or more transformation rules
may contain shared symbols or structures or because the
pattern of one transformation is only produced after the
application of another transformation.

4.1 Compound Symbols

The Lexical Pass begins by applying a set of tree
transformation rules to search the BST for compound
symbols. Compound symbols are sequences of input
symbols on a single baseline that are to be treated as single
mathematical symbols, for example the “s,” “i,” and “n” of
the mathematical function name “sin,” the grouping of
sequences of digits into numbers, and the collection of one
line above another into an equals sign (Fig. 7a). These
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Fig. 7. Examples of Tree Transformation Rules in the Lexical Pass. The pattern (left side) of each rule is searched for depth-first in a BST. If the
pattern matches a subtree, the subtree is replaced by the right side of the rule and then searching continues. We use [Region Node] and [Symbol
Node] to represent any region node or symbol node respectively. [Baseline] represents a list of symbol nodes, while “...” represents an arbitrary list of
region or symbol nodes. Rules (b) and (e) are complementary. There is a complement for rule (f) to recognize simple choice notation where the
bottom symbol is found first.



correspond to the treatment of pairs of characters such as

“< ” and “¼ ” as the single operator “<¼ ” in programming

language compilers.
For the mathematical dialect currently recognized by

DRACULAE, the Lexical pass recognizes the following

compound symbols: decimal numbers (e.g., 1.00, 0.01, .01),

function names (e.g., ln, lg, log, exp, sin, cos, tan), and

oversegmented symbols (e.g., any of ¼;�;ffi; k;�;�;!; ).
DRACULAE currently does not use any whitespace

analysis. Analysis depends only on input symbol adjacency,

not on the amount of whitespace between them. As a result,

Lexical Analysis locates function names simply by search-

ing baselines for adjacent letters which form one of the

known function names, replacing the group of letters with a

single symbol node labeled with the function name. This is

adequate when variables and constant names consist of

single letters. However, consider “cost ¼ a � x,” where the

current system would identify “cost” as as “cos” and “t.” In

the future we plan to employ whitespace analysis to

improve recognition of multiletter function and variable

names.
The Lexical pass uses local adjacency to recognize

compound symbols. For instance, the two unconnected lines

of an equals sign may be represented as two separate lines in

the BST, one above or below the other. The Lexical pass uses a

tree transformation to search the BST for this pattern, and

replaces it with a single symbol node labeled “=” (Fig. 7a). A

similar method is used in [26] to detect compound symbols.

4.2 Structure Symbols

Following the recognition of compound symbols, the

Lexical pass applies a set of transformation rules to detect

structure symbols (Fig. 7b, Fig. 7c, Fig. 7d, Fig. 7e, and

Fig. 7f). A structure symbol is a symbol whose role depends

on the structure between multiple baselines. Examples are

horizontal lines (interpreted as fractions or accents), limits,

root signs, and accents. This is analogous to a programming

language compiler using context to recognize that a

parenthesized subexpression represents an argument list

or array index.
Fig. 7b, Fig. 7c, Fig. 7d, Fig. 7e, andFig. 7f show example

tree transformation rules used to identify and relabel square

roots, fractions, accents, and simple mathematical choice

notation in a BST in DRACULAE. At the end of the Lexical

pass, normally no region labels remain unless the input BST

contains compound and structure symbols not defined in

the dialect.

5 EXPRESSION ANALYSIS

After Lexical Analysis has identified compound and

structure symbols in the Lexed BST, the Expression

Analysis pass uses a mathematical expression grammar

and a set of tree transformations to create the final operator

tree. In an operator tree, internal tree nodes are operators

and leaf nodes are operands. Operator trees encode all the

information necessary to evaluate the represented mathe-

matical expression in the semantics of the dialect.

5.1 Expression Syntax Analysis

The expression grammar specifies the precedence and
associativity of mathematical operators in the mathematical
dialect using a modification of the traditional context-free
expression grammars used in programming language
compilers [16]. The Lexed BST produced by the Lexical
pass is first linearized into a text string and then parsed
using the TXL parser to create an expression parse tree
analogous to those produced by the syntax pass of a
compiler. At present, the DRACULAE expression grammar
parses only a subset of the dialect of mathematics
recognized by the Lexical pass, but this subset can easily
be extended by adding new grammatical forms to the
expression grammar.

Expression Analysis returns an error if the parse fails.
This could be either because the expression is malformed or
because it is outside of the current dialect. Although the
expression can always be displayed to the user (because the
Layout and Lexical Passes always produce a result), it is
inappropriate to evaluate it in these circumstances.

5.2 Expression Semantic Analysis

Semantic analysis consists of analyzing the parsed expres-
sion to recognize implied operators (such as adjacent
operands meaning multiplication), to analyze the types of
operands and infer type conversion operators, and to
reorder operands so that they precede their operators in
the textual output of the Expression pass. These tasks are
achieved using a set of tree transformation rules that search
for these patterns in the expression parse tree and then
restructure the tree to add the implicit operators and
reorder operands. These rules are simplified by the fact that
analysis and labeling of structure symbols was already
handled in the Lexical pass.

The operator tree output by the Expression Analysis pass
is in a form that can be more or less directly translated and
executed by a Computer Algebra System such as Mathe-
matica [27] or Maple [28].

6 TEST RESULTS

At the time of this writing, the only publicly available
ground-truthed set of mathematical expressions is in the
University of Washington English/Technical Document
Images Database III (UW-III) [29]. The mathematical
notation component of UW-III is comprised of 25 ground-
truthed document images containing mathematical expres-
sions. Developing methods for evaluating document recog-
nition systems is an active area of research (e.g., [30]). Most
of these methods require a large representative corpus of
documents with ground truth. In addition to facilitating
evaluation, such corpora allow automatic deduction of
language definitions and probabilistic contextual informa-
tion (as has been done for natural language understanding
[31], [32]). In contrast, the lack of further corpora of
mathematical expressions has resulted in researchers
designing recognition systems that describe only a single
mathematical dialect, defined using sample expressions and
(perhaps largely) introspection. Work is ongoing to estab-
lish another corpus of typeset and handwritten mathema-
tical expressions [33].
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Results for mathematical notation recognition have most
commonly been presented in terms of recognition success
or failure on a small set of sample expressions or using the
percentage of correctly recognized expressions in a set of
test expressions (e.g., [26], [34]). Recently, some new metrics
have been proposed to better characterize errors in baseline
structure [35], expression syntax [36], and overall system
performance [36].

In Section 6.1, we assess DRACULAE’s Lexed BST
recognition performance on the UW-III database using
two new metrics for baseline structure accuracy, namely,
1) the ratio of correctly recognized baselines to total
baselines in the ground truth representation of an expres-
sion and 2) the percentage of symbols or tokens in a BST
that are located on their correct baselines. In Section 6.2, we
describe some informal results concerning the performance
and usability of DRACULAE, using the user interface and
symbol recognizer provided by the Freehand Formula
Entry System [18], [19].

6.1 Results for Typeset Expressions in UW-III

We used the UW-III symbol and bounding box ground
truth data to test DRACULAE’s Lexed BST output (see
Section 4). This test data was not used during system
development. The test set was made using the symbol
and bounding box ground truth for 23 of the 25 pages in
the database (pages 20 and 21 were removed as they
contained matrix expressions). Expressions spanning
multiple lines were manually broken into separate
subexpressions. The final test set contained 73 expressions
comprised of 1,917 input symbols, with a mean of 26.3
symbols per expression. The LATEX ground truth for these
expressions contained 648 baselines with 1,919 tokens,
with means of 3.0 tokens per baseline and 8.9 baselines
per expression. Tokens do not always correspond to input
symbols, primarily due to groupings of letters in function

names (e.g., “sin,” “ln”) and to accented symbols.

Symbols and their accents are often ground truthed as a

single symbol in UW-III, though they are represented as

two tokens (symbol and accent) in the LATEX ground

truth. Most baselines contain few symbols: 62 percent are

comprised of a single token, while 84 percent are

comprised of three tokens or less.
We ran DRACULAE using a series of values for the

two layout model parameters, t and c. For each test

expression we compared DRACULAE’s LATEX output to

the UW-III ground truth LATEX. This comparison was

done using a TXL program, as explained below. Table 2

shows the parameter values that were used. No test was

performed for c ¼ 1=4; t ¼ 1=3 as this results in subscript

regions that are higher than the Y-centroid for symbol

classes such as Plain Ascender and Descender.
For each test expression, a context-free grammar speci-

fied in TXL is used to parse the DRACULAE output and

UW-III ground truth LATEX representations. The parse trees

are then compared. Identical trees correspond to perfect

structure (Lexed BST) recognition. For nonmatching trees,

the TXL program outputs a list of baseline pairs corre-

sponding to the two trees, starting with the first mismatch-

ing pair. This list is used, along with images corresponding

to the LATEX strings produced by DRACULAE and the

original document images, to manually locate additional

errors.
We count errors of two types. The first is the number of

incorrect baselines, where an incorrect baseline is one in

which any of the following are true: 1) The list of tokens on

the baseline do not match ground truth, 2) the baseline is

nested relative to a token which does not match the ground

truth token, or 3) the depth in the BST or region of the

baseline does not match ground truth. Table 2 shows the

number of properly recognized baselines.
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TABLE 2
UW-III Database Test Results

Each table entry shows the result of running DRACULAE with different centroid and threshold ratio values c and t (see Table 1). Given are the
number of correctly placed tokens, number of correct baselines, number of incorrect baselines, and the number of correct expressions. There are
1,919 tokens, 648 baselines, and 73 expressions in the ground truth. We report the percentage of correct tokens to total ground truth tokens and
correct baselines to total ground truth baselines.



The second type of error is the number of misplaced tokens. A
token is misplaced if it appears on a baseline other than that in
the ground truth. A properly placed token appears on the same
baseline, at the same depth, in the same region (e.g., super-
scripted or subscripted), and nested relative to the same
parent token as in the ground truth. According to this
definition, a token may be properly placed on an incorrect
baseline. Table 2 shows the number of properly placed tokens.
Measuring tokens provides a more informative measure than
measures based on entire expressions or baselines.

The total number of expressions recognized without
error is low. However, the percentage of properly placed
tokens is 86-90 percent. This means that DRACULAE places
most symbols in the test set on their proper baseline.

The most common source of errors is misdetection of
scripted and horizontally adjacent symbols. The definition
of superscript, subscript and horizontal regions for des-
cending class symbols in our current symbol layout model
appears to be particularly poor. For example, when a “p” is
followed on a baseline by a Plain Ascender symbol, this is
often misdetected as a superscript.

Other errors include:

1. misdetection of kerned symbols as below rather than
subscripted relative to the parent symbol,

2. misdetection of a close bracket as below instead of to
the right of a fraction line, because the centroid of the
bracket is below the fraction line,

3. a bug in the partitioning routines that yields two
additional tokens for one of the expressions, and

4. a small number of additional tokenization errors.

The tests consist of 73 expressions, run for seven
combinations of t and c values, for a total of 13,419 input
symbols. These tests took 206 seconds to execute as a batch
process on a 900MHz Pentium III with 256MB of RAM

running Linux. This rate of 65 symbols per second includes
the time taken for TXL to reinterpret the DRACULAE
source code seven times.

A number of researchers have recently reported properly
recognizing the symbol layout of over 90 percent of the
mathematical expressions in their test sets [26], [33], [37], [38],
[39], [40]. It is difficult to meaningfully compare these results.
The test sets used by other authors are generally not publicly
available. Also, different authors use different metrics. We
view our metrics as an important new tool for evaluating
recognition results at a level that is between symbol
recognition and operator trees.

A system that makes use of more layout information,
such as whitespace and point size information, and/or
more sophisticated contextual analyses would perform
better than our current system. It is interesting how well
DRACULAE is able to perform without such information.
In the future we plan to extend our layout model. Some
alternative approaches to analyzing layout in mathematical
expressions include penalty functions [38], projection
profiles [26], defining “strong” and “weak” region areas
using a training set [37], virtual link networks [37], [39],
convex hulls [7], the generation of multiple interpretations
to cope with ambiguity [41], and the incorporation of
probabilistic information [20], [42].

We are also beginning to explore recognition of tabular
structures such as matrices and lists of expressions [43].
Existing approaches to matrix recognition include [37],
[39], [40], [44].

6.2 Testing DRACULAE on Handwritten
Expressions Using FFES

We have informally tested DRACULAE’s recognition cap-
abilities for handwritten mathematical notation. These tests
use the user interface and symbol recognition portions of the
Freehand Formula Entry System (FFES) [18], [19]. This
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Recognition Results for Sample Expressions Created Using the Freehand Formula Entry System (FFES)

For these expressions, threshold ratio t ¼ 1=6 and centroid ratio c ¼ 1=4 were used.



interface allows a user to enter, delete, move, and relabel
symbols. DRACULAE is given the current list of symbols
with bounding boxes and provides an interpretation of the
current expression. Sample expressions are provided in
Table 3. Each of the expressions in this table are processed
by DRACULAE in well under a second.

Table 3 shows that DRACULAE is robust: All inputs are
mapped to LATEX output. Lexed BST (and LATEX) output is
produced, even if an expression contains unknown and/or
unsyntactic baseline structures, as in Table 3b, Table 3d, and
Table 3e. The use of operator dominance in the search
functions provides some skew tolerance (Table 3b). Large,
deeply nested expressions (Table 3e) and nested accents
(Table 3b) are handled.

Operator trees are produced for expressions that fall
within the dialect defined in the current Expression Analysis
pass. In Table 3a, the implicit multiplication of “a” and “b” is
made explicit in the operator tree.

The disambiguat ion of SUPER=UPPER and
SUBSC=LOWER regions is fragile. For example, the
limits of adjacent Variable Range Symbols are improperly
segmented in Table 3d, where the “1” is mistakenly
grouped with the second “

P
” symbol. (The LATEX string

has been altered to make this error easily visible.)
Analysis of whitespace would correct many such errors.

Some usability results for FFES/DRACULAE were ob-
tained in an experiment comparing online expression entry
time using different feedback mechanisms [19]. All 27
participants in the experiment successfully entered the trial
expressions and all reported that they found bitmaps
produced from DRACULAE’s LATEX output to be useful.
Twenty four of the participants (89 percent) reported that
they were interested in using a similar system again.

7 CONCLUSION

We have presented a methodology and implementation
(DRACULAE) for rapid, robust recognition of typeset and
handwritten mathematical expressions. DRACULAE makes
use of search functions that exploit the left-to-right reading
order of mathematical notation and operator dominance to
recursively and efficiently extract baselines in a mathema-
tical expression.

The Baseline Structure Tree (BST) is a simple hierarchical
description of symbol layout in mathematical expressions.
Tree transformation is used as an efficient, compact means
to express a series of restructurings from an initial list of
symbols to an initial BST, to a Lexed BST (translatable to
LATEX), and, finally, to an operator tree (translatable to
Computer Algebra System languages).

DRACULAE’s architecture is similar to that of a
compiler. This provides a framework for coping with
dialects, by separating symbol layout analysis, lexical
grouping, syntax analysis, and semantic analysis. This
architecture also makes the system easy to reconfigure.
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