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Abstract—In Model Driven Engineering (MDE), models are
first-class citizens, and model transformation is MDE’s ”heart and
soul” [1]. Since model transformations are executed for a family
of conforming models, their validity becomes a crucial issue. This
paper proposes to explore the question of the formal verification
of model transformation properties through a tri-dimensional
approach: the transformation involved, the properties of interest
addressed, and the formal verification techniques used to es-
tablish the properties. This work allows a better understanding
of the expected properties for a particular transformation, and
facilitates the identification of the suitable tools and techniques
for enabling their verification.

I. INTRODUCTION

Model-Driven Engineering (MDE) promotes models as first
class citizens of the software development process. Models are
manipulated through model transformations (MTs), which is
considered to be the ”heart and soul” of MDE [1]. Naturally,
dedicated languages based on different paradigms emerged
during the last decade to express MTs. Since they are executed
on a family of conforming models, the validity of such model
transformations becomes a crucial issue.

From the MDE point of view, a transformation has a dual
nature [2]: seen as a transformation model, a transforma-
tion can denote a computation, whose expression relies on
a particular model of computation (MOC) embedded in a
transformation language; and seen as a model transformation,
emphasis focuses on the particular artefacts manipulated by a
transformation (namely, metamodels for its specification and
models for its execution). The computational nature will re-
quire that the underlying language ensures desirable properties
(like termination and determinism) needed for the purpose
of the transformations, independently of what a particular
transformation expresses. On the other hand, manipulating
models implies that specific properties of interest will be
directly related to the involved models as well as the intrinsic
intention behind the transformation: e.g., one may be interested
in always producing conform models by construction, or
ensuring that target models still conserve their semantics.

This paper proposes a preliminary classification of MT
verifiable properties. Applied on a significant corpus of pub-
lications, this classification provides an interesting “snapshot”
of the current state of the art in the area of MT verification,
thus enabling reasoning about the evolution and trends of this
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Fig. 1. Taxonomy overview: the tri-dimensional approach.

research domain. In order to provide a comprehensive inter-
pretation, we propose a tri-dimensional approach (cf. Fig. 1)
that allows locating each contribution regarding the following
characteristics: the transformation involved (cf. Sec. II); the
property kinds addressed III; and the verification technique
used IV. These dimensions are closely related but clearly
interdependent. This work allows a better understanding of
the expected properties for a particular transformation, and
facilitates the identification of the suitable tools and techniques
for enabling their verification.

II. TRANSFORMATIONS

Figure 2 presents the general idea of model transformation.
A model, conforming to a source metamodel, is transformed
into another model, itself conform to a target metamodel,
by the actual execution of a transformation specification.
The transformation specification is defined at the level of
metamodels whereas its execution operates on the model level.
Since in MDE, everything is modelled, both source and target
metamodels, as well as the transformation specification, are
themselves models, conform to their respective metamodels:
for metamodels, this is the classical notion of meta-metamodel;
for transformations, a transformation language (TL) (or meta-
model) allows a sound specification of transformations. Notice
here that a transformation can also acts on several source
and/or target models.

This section starts by discussing existing definitions for the
concept of transformation; and then reviews essential charac-
teristics of transformation languages; and ends by recalling
basic elements for classifying transformations.
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Fig. 2. Model Transformation: the big picture (adapted from [3])

A. Definition

We quickly discuss several definitions for the concept of
model transformation proposed in the literature to highlight
their main characteristics from the verification viewpoint.

Historically, one of the first definition was proposed by
the OMG, in straight line with the Model-Driven Architecture
view. The OMG perceives transformations as ”the process of
converting one model to another model of the same system”
[4]. Immediately after, the system-centric view was enlarge
by Kleppe et al.: ”a model transformation is the automatic
generation of a target model from a source model, accord-
ing to a transformation definition” [5]. This definition shifts
from the system-centric view in order to consider general
source/target models, insisting on the fact that transformations
are mostly perceived as directed and automatic (i.e. without
users’ intervention) manipulation of models. Tratt describes
a transformation as ”a program that mutates one model
into another” [6], insisting on the computational aspect of
transformations. More recently, two contributions widened the
perspective with two important aspects: Mens et al. proposed
to see transformations as ”the automatic generation of one
or multiple target models from one or multiple source mod-
els, according to a transformation description” [7], whereas
Syriani re-introduced the crucial importance of the specific
intention behind transformations (”the automatic manipulation
of a model with a specific intention” [3]).

Therefore, as a broader definition, we consider transforma-
tions as the automatic manipulation, conform to a description,
of (a) source model(s) to produce (a) target model(s) ac-
cording to a specific intention. This definition clearly embeds
the dual nature of model transformation, distinguishing its
specification from its execution (cf. Fig. 2), and places the
transformation’s intention at its core.

B. Languages

TLs allow designers specify their transformations. Given
the plethora of TLs, tools and frameworks, it is impossible
to review them exhaustively in such limited space. We only
highlight some hints interesting for our purpose.

Graph-Based Transformation Languages (GBT(L)s) rely
technically on graph rewriting and formally on Category
Theory [8]. Despite their long existence, some native MDE
constructs like inheritance and containment have been in-
tegrated only recently [9]. GBTLs provide a natural visual
syntax due to the use of graphs, and can be further customised
[10][11], or can be used with textual syntax (e.g., [12]). MDE-
dedicated verification techniques were only recently addressed,
but GBT share with Petri Nets a common formal background,
making verification techniques and tools easily adaptable [13].

Meta-Programming Languages (MPLs) [14] provide an Ac-
tion Language (AL) for directly manipulating metamodels’
concepts. They are by nature operational, meaning that each
computation step is precisely described by using the AL’s
constructions. Formally, they make use of existing seman-
tic foundations available for imperative or object-oriented
programming languages [15] and thus directly benefit from
advances in formal verification. Among others, we refer the
readers to Kermeta [16], which weaves an object-oriented AL
within the MOF, or the Action Semantics for MOF [17] and
UML [18], or the xOCL [19].

C. Classification

Model transformations differ in expression, i.e. in the chosen
transformation language they are specified, but also in nature,
i.e. according to the intention behind the model manipulation.
Therefore, the properties of interest for transformations are
naturally related to both dimensions.

Two works [7][20] addressed the model transformation
classification issue. Czarnecki and Helsen [20] proposed a
hierarchical classification of the model transformations speci-
fication (mainly centered on graph transformations), whereas
Mens and Van Gorp [7] focused more on providing a multi-
dimensional taxonomy, thus covering as well formalisms and
tools underlying model transformations. The latter helps cap-
turing the syntactic aspects behind transformations’ intentions
(readers should refer to the original work for complementary
information and examples). The authors identified several
dimensions: the heterogeneity between the source and target
metamodel, qualifying a transformation as endogeneous if it
refers to the same metamodels, and exogeneous otherwise; the
abstraction level of the source and target models involved,
qualifying as vertical a transformation that adds or reduces
the detail level, and horizontal if it remains the same; the
transformation arity refers directly to the respective numbers
of input / output models; and the source model conservation,
qualifying as in-place a transformation that directly alters the
source model, and out-place otherwise.

However, this classification does not help for our purpose: a
classification based on the transformations’ intentions is more
helpful for identifying which properties should be verified.
As an example, consider a Domain-Specific Model (DSM) for
which one needs to define its semantics through a transfor-
mation. If the designer chooses a translational approach, in
which the semantics is expressed by translating DSM concepts
into a target semantic domain, the transformation is out-place,



exogeneous and vertical (with arity 1:1). On the other hand,
if a behavioral approach is chosen, the semantics is expressed
directly on the source model, by showing its evolution over
time, which makes the transformation in-place, endogeneous
and horizontal. Although the transformations cover the same
intention, i.e. providing a semantics, their expression differs
radically. However, the associated properties of interest will be
conceptually the same, e.g. proving the correctness, but will
be expressed differently w.r.t. the transformation’s expression:
in the first case, the semantic correctness can only be assessed
through properties relating both metamodels; whereas in the
second case, behavioural properties (also called ”dynamic”,
generally expressed through temporal logic formulæ) will be
checked on the transformation’s execution.

Consequently, beyond already existing syntatic classifica-
tion, i.e. describing the transformations’ expression, it is cru-
cial to have at disposal a semantic classification, i.e. describing
transformations’ intention, in order to relate transformations’
meaning with related properties of interest. For our example,
whatever form the transformation holds, it expresses in both
cases a DSL semantics specification that necessitates to prove
its correctness. This work is partially addressed in this paper:
Sec. III documents the properties one needs to verify, given a
transformation’s intention; and Sec. IV reviews the verification
techniques, which rely on the TL one uses to express the
transformation.

III. PROPERTIES

Expressed in a particular TL, model transformation specifi-
cations relate source and target metamodel(s) and execute on
models. Considering only conforming models for transforma-
tions to be valid is not enough: due to the large number of
models transformations can be applied on, one has to ensure
their validity by carefully analysing their properties to provide
modelers a high degree of trustability when they use automated
transformations to perform their daily tasks.

This Section explores properties one may be interested in
for delivering proper and valid transformations. Following
the dual nature of transformations, we identified two classes
of properties: the first class in Sec. III-A relates to the
computational nature of transformations and targets properties
of TLs; whereas the second class in Sec. III-B deals with the
modelling nature where models plays a prominent role. Table
I summarises the reviewed papers according to the property
kinds identified hereby.

A. Transformation Models: Language-Related Property

From a computational perspective, a transformation spec-
ification conforms to a transformation language (cf. Fig. 2),
which can possess properties on its own. In the MDE context,
two properties are interesting at execution time: termination,
which guarantees the existence of target model(s); and deter-
minism, which ensures uniqueness. These properties qualify
the execution of transformations written in such languages.
Another property, namely typing, relates to design time: it

LANGUAGE-RELATED TRANSFORMATION-RELATED

Termination

[21], [22]
[23], [24]
[25], [26]
[27]

Source/Target [28], [29]
[30], [31]

Determinism
[24], [27]
[32], [33]
[34]

Syntactic Rel. [35], [36]
[37], [38]

Typing [39], [40] Semantic Rel.
[41], [42]
[43], [44]
[45]

TABLE I
CLASSIFICATION OF CONTRIBUTIONS ACCORDING TO PROPERTY KINDS

ensures the well-formedness of transformation specification,
and can be seen as the TL’s static semantics.

Because they hold at the TL’s level, these properties di-
rectly impact the execution and design of all transformations.
Therefore, formally proving them cannot be done by relying on
one particular transformation’s specifics. TLs adopt one of the
following strategies for proving execution time properties hold:
either the TL is kept as general (and powerful) as possible,
making these properties undecidable, but the transformation
framework provides capabilities for checking sufficient con-
ditions ensuring them to hold on a particular transformation;
or these properties are ensured by construction by the TL,
generally by sacrificing its expressive power.

1) Termination: Termination directly refers to Turing’s
halting problem, which is known to be undecidable for suf-
ficiently expressive, i.e. Turing-complete, TLs: GBTs have
already been proven to not terminate in the general case [46];
whereas MPLs often use loops and (potentially recursive) op-
eration calls, making them able of simulating Turing machines.

a) Termination Criteria: A large literature for GBT al-
ready exists, which makes exhauste coverage beyond this pa-
per’s scope. In [21], Ehrig et al. introduce layers with injective
matches in the rewriting rules that separate deletion from non-
deletion steps. In [22], Varrò et al. reduce a transformation to a
Petri Net, where exhaustion of tokens within the net’s places
ensures termination, because the system cannot pursue any
more. In [23], Bruggink addressed a more general approach by
detecting in the rewriting rules infinite creating chains that are
at the source of infinite rewritings. In [24], Küster proposes
termination criteria with the same base idea, but on graph
transformations with control conditions.

Termination Criteria for MPLs directly benefit from the
large and active literature on imperative and object-oriented
programming languages. They usually rely on abstract in-
terpretations built on top of low-level programming artefacts
(like pointers, variables and call stacks). For example, Spoto
et al. detect the finiteness of variable pointers length in
[25]; and Berdine et al. use separation logics for detecting
effective progress within loops in [26]. Since these techniques
are always over-approximations of the TL’s semantics, they
are sound but not complete, and can potentially raise false
positives.

b) Expressiveness Reduction: Reducing expressivity re-
garding termination generally means avoiding constructs that



may be the source of (unbounded) recursion. For example,
DSLTrans [27] uses layered transformation rules and an in-
place style: rules within a layer are executed until they cannot
match anymore, which occurs because models contain a finite
amount of nodes that are deleted in the process, preventing
recursions and forbidding loops syntactically.

2) Determinism: Determinism ensures that transformations
always produce the same result. Generally, this property is
only considered up to the interactions with the environment or
the users. Considering this, MPLs are considered deterministic
since they directly describe the sequence of computations
required for the transformation.

a) Determinism Criteria: Determinism directly refers to
the notion of confluence (often called the Church-Rosser, or
diamond, property) for GBTLs, which has also been proved
as undecidable [47]. Confluence and termination are linked
by Newman’s lemma [48], stating that confluence coincides
with local confluence if the system terminates. This offers a
practical method to proove it by using the so-called critical
pairs. The GBT community is very active and already pub-
lished several results. In [49], Heckel et al. formally proved
the (local) confluence for Typed Attributed Graph Grammars,
and Küster in [24] for graph transformations with control
conditions. In [32], Lambers et al. improved the efficiency
of critical pairs detection algorithms for transformations with
injective matches, but without addressing pairs of deleting
rules. More recently, Biermann extended the result to EMF
(Eclipse Modelling Framework), thus preserving containment
semantics within the transformations in [33]. In another area,
Grønmo et al. addresses the conformance issue for aspects in
[34], i.e. ensuring that whatever order aspects are woven, it
always leads to the same result.

b) Expressive Reduction: Reducing expressivity regard-
ing confluence means either suppressing the possibility of
applying multiple rules over the same model, or providing
a way to control it. In DSLTrans for example [27], the
TL controls non-determinism occuring within one layer by
amalgamating the results before executing the next layer. This
ensures confluence at each layer’s execution, and thus for a
transformation.

3) Typing: A crucial challenge for transformation specifi-
cation is the detection of syntactic errors early in the speci-
fication process, to inform designers as early as possible and
avoid unnecessary execution that will irremediably fail. This
property primarily targets visual modelling languages, since
textual modelling already benefits from experience gathered
for building IDEs for GPLs, where a type system (usually
static) reports errors by tagging the concerned lines. All syn-
tactic errors cannot be detected, but a framework possessing
this feature will considerably ease the designers’ work.

To achieve this goal, tools must rely on an explicit modelling
of transformations [2]. Kühne et al. studied in [39] the
available alternatives for this task and their implications: either
using a dedicated metamodel as a basis for deriving a spe-
cialised transformation language, or directly using the original
metamodel and then modulating the conformance checkings

accordingly, for deriving such a language. Studying the sec-
ond alternative, they proposed the RAM process (Relaxation,
Augmentation, Modification) that allows the semi-automatic
generation of transformation specification languages. On the
other hand, Levendovszky et al. explored in [40] the other al-
ternative by proposing an approach based on Domain-Specific
Design Patterns together with a relaxed conformance relation
to allow the use of model fragments instead of plain regular
models.

B. Model Transformations: Transformation-Related Property

From a modelling perspective, a transformation refers to
source/target models (cf. Fig. 2) for which dedicated properties
need to be ensured for the transformation to behave correctly.
Of course, the properties of interest range over a large scale
of nature, precision, and complexity.

This section provides a comprehensive overview of prop-
erties of interest based on their kinds: properties involving
transformations’s source and/or target models were historically
the first to be considered; then, syntax-guided properties,
which relate models’ syntaxes (i.e. their metamodels) provide
a first level of analysis; and finally, properties involving the
underlying semantics of models are discussed.

1) On the Source/Target Model(s): A first level of prop-
erties verification concerns the source and/or targetmodel(s)
a transformation refers to. The conformance property is his-
torically one of the first addressed formally, because it is
generally required by transformations to work properly (cf.
Sec. II-A). Transformations admitting several models as source
and target require other kinds of properties, either required for
transformations or simply desirable.

a) Conformance & Model Typing: Conformance ensures
that a model is valid w.r.t. its metamodel, and is required
for a transformation to run properly. Usually, structural con-
formance, involving only the model, is distinguished from
constrained conformance, which is an extended property
that includes structural constraints, otherwise referred to as
metamodels’ static semantics or well-formedness rules (see
e.g. [31]). Nowadays, this property is well understood and
automatically checked within modeling frameworks. How-
ever, proving that a transformation always outputs conform
target model(s) is not trivial, especially when using Turing-
complete frameworks. Most of the time, an existing procedure
for checking conformance is programatically executed after
the transformation terminates. Model Typing [50] extends
the notion of type beyond classes, by defining a subtyping
relation on models. This enables better reuse for modelers:
transformations defined for particular models also works for
any sub-model.

b) N-Ary Transformations Properties: Unsurprisingly,
transformations operating on several models at the same
time, e.g. model composition, merging, or weaving, require
dedicated properties to be checked.

Concerning merging, Chechik et al. follow an interesting
research line in [28]: they enunciate several properties merge
operators should possess: completeness means no information



is lost during the merge; non-redundancy ensures that the
merge does not duplicate redundant information spread over
source models; minimality ensures that the merge produces
models with information solely originating from sources;
totality ensures that the merge can actually be computed
on any pair of models; idempotency, which ensures that
a model merged with itself produces an identical model.
These properties are not always desirable at the same time:
for example, completeness and minimality become irrelevant
for merging involving conflict resolution. Beyond merging,
they can potentially characterise other transformations, not
necessarily involving several source models.

Concerning aspect weaving, Katz identifies in [29] temporal
logics to characterise properties of aspects: an aspect is spec-
tative if it only changes variable within this aspect without
modifying other system variables or the control flow; it is
regulative if it affects the control flow, either by restricting
or delaying an operation; it is invasive if it changes system
variables. Static analysis techniques enriched with dataflow
information or richer type systems are generally used to detect
these properties. Despite their textual programming orienta-
tion, these properties should apply equally in MDE. In [30],
Molderez et al. present DELMDSOC, a language for Multi-
Dimensional Separation of Concerns implemented in AGG
[10]. Ultimately, this framework will allow the detection of
conflicts between aspects by model-checking, typically when
multiple advices must be executed on the same joinpoints.

2) Model Syntax Relations: A model transformation con-
sists in general of a computation that applies repeatedly a set
of rewriting rules to a models, where the model represents the
structure of a sentence in a given formal language, defined by
a metamodel. Because transformation execution is in general
a complex computation, the production of a given output
model cannot in general be inferred by just looking at the
individual transformation rules. It thus becomes important to
make sure that certain elements, or structures, of the input
model will be transformed into other elements, or structures,
of the output model. By abstracting these structural relations
between input and output models and expressing them at
the level of the graphs defining those model’s languages (or
metamodels), it is possible to express relations between all
input models of a transformation and their expected outputs.
We call this type of properties model syntax relations, because
they relate the shape of a (set of) input model(s) with the shape
of a (set of) output model(s). Given that the models we are
transforming do not in general include an explicit description
of their own semantics, these structural relations regard the
actual meaning (formally called semantics) of those models
in an implicit fashion. In [35] Akehurst and Kent formally
introduce a set of structural relations between the metamodels
of the abstract syntax, concrete syntax and semantics domain
of a fragment of the UML. In order to achieve this they
create an intermediate structure that relates the elements of
both metamodels as well as the elements of the intermediate
structure itself. Despite the fact that they only apply it to
an academic example, the proposed technique appears to

be sufficiently well founded be applied in the general case
where one would wish to express structural relations between
two metamodels. Narayanan and Karsai also define in [36]
a language for defining structural correspondence between
metamodels that takes into consideration the attributes of an
entity in the metamodel. In particular they apply their approach
to verifying the transformation of UML activity diagrams into
the CSP (Communicating Sequential Process) formalism. In
the same paper they point out the fact that the formalism used
to define model transformations in Triple Graph Grammars
(TGGs) [37] could also be used to encode structural relation
properties between two metamodels. Lúcio and Barroca for-
mally define in [38] a property language to express structural
relations between two language’s metamodels and propose a
symbolic technique to verify those relations hold, given an
input and an output metamodels, and a transformation.

3) Model Semantics Relations: Beyond structural relation-
ships between source and target models, it may be interesting
to relate their meaning, which implies to dispose of at least a
partial explicit representation of the models’ semantics, or a
way of computing it.

An example of such a semantics relation property could the
fact that a statechart is transformed into a bisimilar statechart.
In this case the relation between the semantics of these two
behavioral models is bisimulation – which is a strong variant
of a simulation relation – where both systems are able to
simulate each other from an observational point of view. In
order to prove automatically such a relation is enforced by a
transformation it is necessary to build, explicitly or implicitly,
the labelled transition systems corresponding the semantics of
both the input and the output model.

Narayanan et al in [41] show how to verify that a trans-
formation outputs a statechart bisimilar to an input statechart.
Combemale et al. [14] formally prove the weak simulation of
xSPEM models transformed into Petri Nets, in the context of
the definition of translational semantics of Domain-Specific
Languages, thus enabling trustable verification of properties
on the target domain.

The fact that two systems are able to simulate each other
pertains to the observational behavior of those systems. One
may wish to enforce a relation between the actual states of
the behavioral input and output models. In [42] Varro and
Pataricza are able to prove that CTL (Computation Tree Logic)
properties are preserved when transforming statecharts into
Petri Nets. Several contributions addressed in the recent years
the formal verification of temporal properties. The idea con-
sists in representing metamodels, models and transformations
in an external formal framework already equipped with ver-
ification capabilities, generally delegated to a dedicated tool.
Among others, Gargantini et al. use Abstract State Machines
within the ASMeta to perform CTL verification using SPIN;
Rivera et al. [51] use the Maude rewriting system and its
embedded LTL model-checker to verify semantic properties
of Domain-Specific Languages.

An interesting subset of CTL are safety properties, which are
expressed as invariants over the reachable states of the system.



The idea is that certain conditions can never be violated
during execution. In this sense, Becker et al are able to prove
in [43] that safety properties (expressed as invariants) are
preserved during the evolution of a model representing the
optimal positioning of a set of public transportation shuttles
running on common tracks. Given the evolution of the model is
achieved by transformation, the safety properties will enforce
that the shuttles do not crash into each other during operation.
Padberg et al introduce in [44] a morphism that allows
preserving invariants of an Algebraic Petri Net when the net
is structurally modified. Although this work was not explicitly
created for the purpose of model transformation verification,
it could be used to generate a set of model transformations
that would preserve invariants in Algebraic Petri Nets by
construction.

Models may have a structural semantics, rather than a
behavioral semantics. This is the case of UML class diagrams,
which semantics is given by the instanceOf relation. In this
case, although the behavioral properties mentioned above
do not apply, relations between the structural semantics of
input and output models may still be established. Massoni et
al present in [45] a set of refactoring transformations that
preserve the semantics of UML Class diagrams.

IV. FORMAL VERIFICATION (FV) TECHNIQUES

In this section, we discuss FV techniques proposed in the
literature to prove MT properties implemented in various
TLs. Table II captures our classification of MT verification
techniques, which fall into one of three major types: Type I FV
techniques guarantee certain properties for all transformations
of a TL, i.e. they are transformation independent and input
independent. Techniques of Type II prove properties for a
specific transformation when executed on any input model,
i.e. they are transformation dependent and input independent.
Techniques of Type III prove properties for a specific trans-
formation when executed on one instance model, i.e. they are
transformation dependent and input dependent. When a FV
technique is transformation independent, it implies that no
assumption is made on the specific source model: this explains
why, in Table II, the case representing FV techniques that are
transformation-independent and input-dependent is empty.

Although applicable to any transformation, Type I verifica-
tion techniques are the most challenging to implement since
they require expertise and knowledge in formal methods. Type
III verification techniques are the easiest to implement and
are considered ’light-weight’ techniques since they do not
verify the transformation per se; they verify one transformation
execution. Across all the three types of verification techniques,
the approaches used often take the form of model checking,
formal proofs or static analysis.

Different properties discussed in section III were verified
in the literature using different techniques from the three
types. Some properties (e.g. termination) were proved only
once by construction of the model transformation or the
TL. Proving such properties required less automation and
more hand-written mathematical proofs, although some studies

Transformation
Independent

Transformation
Dependent

Input In-
dependent

Type I: [27], [44],
[45], [52], [21],
[22], [24]

Type II: [53],
[38], [43], [54],
[55], [56], [42]

Input De-
pendent

Type III: [41],
[57], [36], [58]

TABLE II
CLASSIFICATION OF VERIFICATION TECHNIQUES.

used theorem provers to partially automate the verification
process. Type I verification techniques were used to prove such
properties. Other properties (e.g. model typing and relations
between input/output models) were proved repeatedly for
different transformations and for different inputs. Proving such
properties required more automated and efficient verification
techniques from Type II and Type III techniques. In the
following subsections, we discuss examples of each type of
verification technique from the literature.

A. Type I: Transformation-Independent and Input-Independent

Some studies verified that any transformation preserved
certain properties for any input model by proposing a TL that
preserves the properties by default. Other studies proposed
approaches to follow to develop any transformation that pre-
serves certain properties for any input model.

By Construction of the TL: Barroca et al. [27] proposed
DSLTrans and formalized its syntax and semantics using typed
graphs. DSLTrans guarantees termination and confluence for
any MT by construction.

By Construction of the Model Transformation: Several stud-
ies used graph rewriting to formalize MT and verify that they
preserve certain properties by construction. Ehrig et al. [21]
and Küster [24] proposed criteria for building GBT rules to
ensure that a GBT terminates and is confluent by construction.

Other studies used Petri Nets to formalize model trans-
formations and to reason about their properties. Padberg et
al. [44] proposed morphisms for Algebraic Petri Nets that
preserved by construction safety properties expressed through
invariants, by transferring them from the source to the tar-
get model. Rule-based modification was integrated with the
proposed morphisms resulting in safety-preserving rule-based
refinement. In [22], GBT are formalized as Petri Nets; and
termination is verified if the corresponding Petri Net runs out
of tokens in finite steps.

Massoni et al. [45] proposed an approach to develop model
refactorings for UML class diagrams that preserve semantics
by construction. A set of basic, semantic-preserving transfor-
mation laws were used to compose more complicated model
refactorings which would be, in effect, semantics-preserving.
The laws were verified by translating them and the class
diagrams using Alloy to reason about their soundness.

B. Type II: Transformation-Dependent and Input-Independent

For this type of verification, usual tool-assisted tech-
niques are generally used: model-checking, static analysis and
theorem-proving.



1) Model-Checking: Rensink et al. compared in [53] two
approaches for the model-checking of GBTs. The first ap-
proach used the CheckVML Tool to transform a GBT system
to a Promela model, further verified using SPIN. The sec-
ond approach used the Groove Tool to simulate GBT rules
and build a state space of graphs for model-checking. The
second approach was found more suited for dynamic and
symmetric problems. Lucio et al. [38] implemented a model-
checker for the DSLTrans Tool that builds a state space for a
transformation where each state is a possible combination of
the transformation rules of a given layer, combined with all
states of the previous ones. The generated state space is then
used to prove if properties hold for all input models of the
transformation. Várro and Pataricza [42] used model checking
to prove that dynamic consistency properties were preserved
in a model transformation from statecharts to Petri Nets.

2) Static Analysis: Becker et al. [43] proposed a static
analysis technique to check whether a model transforma-
tion (formalized as graph rewriting) preserved constraints
expressed as (conditional) forbidden patterns in the output
model. The study proved that the structural adaptation does
not transform a safe system state to an unsafe one by verifying
that the backward application of each rule to each forbidden
pattern cannot result in a safe state.

3) Theorem Proving: Asztalos et al. [54] proposed de-
duction rules that can be applied to model transformation
rules (formalized as graph rewriting) to prove or disprove a
property. The deduction rules were implemented as a ver-
ification framework in Visual Modeling and transformation
System and was used to verify a refactoring transformation
on business process models. Paige et al. [55] compared two
approaches for the verification of model conformance checking
and multi-view consistency checking (MVCC): with PVS, a
popular theorem prover based on set theory; and with Eiffel,
an object-oriented language. In Eiffel, the verification requires
an actual execution: Eiffel specifications are generated from
class diagrams whereas Eiffel unit tests are generated from
dynamic diagrams, making an executable Eiffel code that
allows performing the MVCC verification. Giese et al. [56]
proposed formalizing Model to Code transformations using
Triple Graph Grammars in the Fujaba tool suite, verified with
the help of the Isabelle/HOL theorem-prover.

C. Type III: Transformation-Dependent and Input-Dependent

1) Using Traceability Links: To prove that a specific trans-
formation preserved certain properties for a specific input
model, some studies proved that input-output relationships
are maintained for a transformation instance. Narayanan and
Karsai used GReAT for both structural and semantic relation-
ships between source and target models. In [36], they generate
crosslinks between source and target models to check struc-
tural correspondence between source and target models. In
[41], they check state reachability in a transformation between
StateCharts to Extended Hybrid Automata, by checking the
existence of a bisimulation with the help of crosslinks between
source and corresponding target models.

2) Using Petri Net Analysis: Lara and Vangheluwe [57]
formalized the operational semantics of a visual TL using
graph rewriting. The transformations and the manipulated
models were transformed into Petri Nets to benefit from
existing FV techniques. The study further proposed extending
graph rewriting rules with timing information and transforming
them into timed Petri Nets for formal verification.

3) Using Constraint Solvers: Anastasakis et al. [58] used
Alloy for simulation and assertion checking. Source and target
metamodels, as well as transformations, are represented as
Alloy models. The Alloy Analyzer then generates possible
instances of the source metamodel and the transformation; the
Analyzer is then used to check if the corresponding target
model satisfies assertions. If no instance is found, it reveals
inconsistencies in the transformation specification.

V. DISCUSSION AND CONCLUSION

This paper proposed to analyse the question of formal
verification of properties for MDE applications according to
a tri-dimensional approach, based on the core ingredients
involved in verification: transformations, properties and formal
verification techniques. Several contributions can be identified
in our work : (i) it broadened the transformation concept
definition and discussed the necessity of a classification based
on transformations’ intention; (ii) it proposed a comprehensive
taxonomy of property kinds, supported by many contributions
from the literature; (iii) it proposed a review of the available
verification techniques supported by the contributions in the
literature to ensure such properties. By performing this study,
we make a first attempt at identifying how our three dimen-
sions relate when a transformation is to be verified. In the
paragraphs that follow we revisit our work by relating the
three dimensions we’ve studied in this paper. In order to be
precise in what has been achieved we will, at a time, discuss
the relation between each two of the three dimensions:

It is to be expected that a transformations’ intention in-
dicates which properties one may want to verify about it.
However, given the fact that a proper classification of the
intentions of model transformations is currently unavailable,
the work of relating these two dimensions is unfinished. We
were however able to identify in section III a number of prop-
erties of transformations associated to specific transformation
intentions, as found in the literature.

In what concerns the relation between transformations and
FV techniques, it seems likely that the type of transformation
language used (graph based or meta-programming) will have
an influence on the pragmatically usable proof techniques. The
form of the transformation (endogenous vs. exogenous, inplace
vs. outplace, etc) may also be relevant for such a choice. This
topic remains largely to be explored in future work.

The best explored relation in this paper is the one between
properties and FV Techniques. We were able to identify that
formal (mathematical) proofs are typically more related to
properties that hold for all the transformations expressible
in a given TL, such as termination or confluence. Model
checking, static analysis and theorem proving are used when



a transformation is to be verified for all its possible inputs.
When both the transformation and its input is fixed, lighter
techniques such as traceability links, translation into petri nets
or constraint solvers can be used.

As a concrete continuation of this work, we would like
to propose the community to contribute for a comprehensive
benchmark for FV of transformations: it consists of storing
pairs constituted by a transformation together with its proper-
ties of interest. This benchmark can help researchers as well
as practitioners, and could provide a common referential for
playing with verification of transformations by easily targeting
a technique, a property kind among those identified in this
paper, and comparing efficiency and scalability of approaches.
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[22] D. Varró, S. Varró-Gyapai, H. Ehrig, U. Prange, and G. Taentzer,
“Termination Analysis of Model Transformations by Petri Nets,” in
ICGT, vol. 4178, 2006, pp. 260–274.

[23] H. S. Bruggink, “Towards a Systematic Method for Proving Termination
of Graph Transformation Systems,” ENTCS, vol. 213(1), 2008.
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[37] A. Schürr and F. Klar, “15 Years of Triple Graph Grammars,” in ICGT,
2008, pp. 411–425.
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[42] D. Varró and A. Pataricza, “Automated Formal Verification of Model
Transformations,” in CSDUML, 2003, pp. 63–78.

[43] B. Becker, D. Beyer, H. Giese, F. Klein, and D. Schilling, “Symbolic In-
variant Verification For Systems With Dynamic Structural Adaptation,”
in ICSE, 2006.

[44] J. Padberg, M. Gajewsky, and C. Ermel, “Refinement versus Verification:
Compatibility of Net Invariants and Stepwise Development of High-
Level Petri Nets,” Technische Universität Berlin, Tech. Rep., 1997.

[45] T. Massoni, R. Gheyi, and P. Borba, “Formal Refactoring for UML Class
Diagrams,” in BSSE, 2005, pp. 152–167.

[46] D. Plump, “Termination of Graph Rewriting is Undecidable,” Funda-
menta Informaticæ, vol. 33, no. 2, pp. 201–209, 1998.

[47] ——, “Confluence of Graph Transformation Revisited,” in Processes,
Terms and Cycles: Steps on the Road to Infinity, vol. 3838, 2005.

[48] M. H. A. Newman, “On Theories With a Combinatorial Definition of
”Equivalence”,” Annals of Mathematics, vol. 43(2), pp. 223–243, 1942.
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