Resolution of Static Clonesin Dynamic Web Pages

Nikita Synytskyy, James R. Cordy, Thomas Dean
School of Computing, Queen’s University
Kingston, Ontario, Canada K7L 3N6
nikita@mondenet.com, cordy @cs.queensu.ca, thomas.dean@ece.queensu.ca

Abstract

Cloning is extremely likely to occur in web sites, much
more so than in other software. While some clones exist for
valid reasons, or are too small to eliminate, cloning per-
centages of 30% or higher—not uncommon in web sites—
suggest that some improvements can be made. Finding and
resolving the clones in web documents is rather challeng-
ing, however: syntax errors and routine use of multiple
languages complicate parsing the documents and finding
clones, while lack of native code reuse tools forces the ana-
lyst to rely on other technologies for resolution.

Here we present a way to find clones in multilingual
web documents, and resolve them using one of several code
reuse techniques that are available in a dynamic web site.
Rather than picking a single resolution technique and rely-
ing on it exclusively, we pick it based on the clone in ques-
tion, to minimize disruption to the structure of original doc-
uments.

1 Removing Clones From Web Pages

Previous research indicates that all software contains
cloned code[1, 4]. Web sites and web applications contain
a higher proportion of cloned code than other software—
on average duplicated code amounts to 5-15% of the total
amount of code in an application[9, 10], whereas cloning ra-
tios of 30% and higher are not uncommon for web sites[3].
The main reason for high cloning ratios in web documents
is HTML’s lack of code reuse tools. Boldyreff and Kewish
point out[3] that HTML lacks even an “include” directive,
which is available in many programming languages. There-
fore developers are forced to reuse code by cloning simply
because no other alternative is available—if a piece of con-
tent must appear on several pages, the only way to do it is
to place a copy in every page.

As Brereton et al.[11] point out, HTML lacks many ab-
stractions employed by other languages to ease maintenance

and promote code reuse. The concept of a library does not
exist. While links to other sites may serve as a surrogate, the
absence of flow control tools and use of parameters inhibits
the ability to reuse code. The concept equivalent of encap-
sulation is absent, and separation of page tags from page
text is difficult to achieve. Since both encapsulation and use
of parameters are absent, HTML lacks any equivalent of a
subroutine i.e. a potentially parameterized code unit that
can be reused as needed. Emergence and popularization of
Cascading Style Sheets (CSS) has contributed towards a so-
lution of these problems, but by no means eliminated them.

Reducing the number of clones in a web site has undeni-
able benefits for its maintainability: the size of software to
maintain is reduced, and update anomalies that clones nec-
essarily cause are eliminated. Furthermore, related work
suggests[8] that as purely static sites are migrated to dy-
namic platforms, both the opportunities and the needs to
identify and eliminate duplicated content are present. At the
same time, removing clones has the potential to make soft-
ware worse by disrupting locality and linearity, which are
important for code readability and understandability[12].
Overzealous clone elimination has the potential to turn soft-
ware into spaghetti code. Clone resolution must be done
with extreme care to be successful, and clones must be re-
solved with proper methods for software to remain under-
standable afterwards.

To attack this problem, we have developed a method of
automated clone resolution that is suitable for web sites.
In the absence of native code reuse methods, we rely on
a number of tools that are provided either by languages that
are used alongside HTML—typically server-side scripts—
or by software that handles HTML on its way from source
to destination—web servers and browsers. Rather than re-
lying on one method exclusively to resolve all clones, we
attempt to match the clones being resolved to the method in
use, so that each clone is resolved using the method most
suited for it. This matching minimizes the disruption made
to the structure of the original web site, so that the resulting
code is still familiar to its maintainers. After the clone res-

olution process is done, it is still be possible to maintain the
site by hand.

Structure of the paper. Section 2 presents the back-
ground for this work. Section 3 briefly discusses our ap-
proach to robustly parsing multilingual web documents.
Section 4 describes the clone detection method we use. Sec-
tion 5 explains our method of clone resolution and shows
a walk-through of a resolution process applied to a simple
example. Section 6 discusses practicality and scalability of
our work. Finally, Section 7 shows some future work direc-
tions, and Section 8 concludes the paper.

2 Background

A large amount of work has already been done in the area
of clone research in general, and in web clones in particular.

The work that is most closely related to ours is by
Boldyreff and Kewish[3], who introduce a system for re-
ducing duplication in web sites. They propose to store com-
ponents of web site pages in a relational database, with each
component being stored only once, and instrumenting orig-
inal pages with scripts to retrieve appropriate content from
the database. This approach has the potential to remove the
highest proportion of clones, at the expense of disrupting
its structure. Modifying the pages by hand after it has been
processed is unadvisable, and all changes have to be made
to the elements stored in the database.

Ricca and Tonella[8] present a related system for identi-
fying web pages with similar structure for creation of a page
template for later dynamic generation of individual pages.
They rely on clustering for identifying similar pages, and
store details of individual pages in a database, relying on
server-side scripts to assemble the final page from its com-
ponents.

Baxter et al.[1] present a way to locate clones and se-
quences of clones in a C program, and eliminate them with
preprocessor macros. Their method of clone detection re-
lies on detecting similarities in parse trees built from the
code, and performing additional analysis on them to find
sequences of clones. The paper also presents solutions to
the problem of finding and removing sub-clones, which is
often encountered in clone detection efforts, and some opti-
mization techniques to make the task of finding and resolv-
ing clones tractable in a large system. Some of the tech-
niques described could be used to improve our clone detec-
tion method.

Ducasse et al.[2] present an approach to clone detection
that does not rely in parsing, and is therefore easily adapted
to any language. Similarities in code are detected by string-
matching with some initial preprocessing to remove com-
ments and whitespace. Meaningful clone resolution, how-
ever, is difficult to achieve in a language-independent way
because it is hard to guarantee that clones found represent a

cohesive unit in the language being analyzed. The process
of resolution itself also depends on the language in question.

3 Parsing Web Applications

Any effort directed at automated maintenance or modi-
fication of software must be preceded by its understanding
by the computer; this generally means parsing of the source
code. The code that makes up web applications presents
several challenges to parsing. First of all, the code is of-
ten multilingual. While applications written in several lan-
guages are certainly nothing new, multilingualism is taken
to a new level by web applications. A single file can con-
tain code written in several languages. These languages
are intertwined, sometimes to the point where statements
in one language appear as part of statements of another lan-
guage. Second parsing obstacle that web documents rou-
tinely present is the presence of syntax errors. HTML fre-
quently contains errors, and does not usually conform to
any of the published specifications for the language. Be-
cause web browsers nevertheless consider such code valid
and process it, any analysis effort directed at web docu-
ments must do the same.

To analyze web documents despite these difficulties, we
have developed an approach to robustly parsing several lan-
guages simultaneously into a single parse tree. The ap-
proach is based on the use of island grammars to describe
multiple languages while at the same time using their fea-
tures to deal with errors in the code. Island grammars have
been used for partial source code analysis in the past [5, 7]
and are described extensively by Moonen[6]. Island gram-
mars view input as belonging to one of two categories—
interesting “islands”, and uninteresting “water”; these can
be nested, i.e. an island might contain a lake, which will
in turn contain another island, and so on. Definitions of is-
lands, which are the focus of the analysis, are usually quite
restrictive. Definitions of water productions, on the other
hand, are liberal enough to describe any uninteresting con-
tent the input might contain. By tuning individual island
and water definitions, it is possible to select from the input
only the productions of interest, while ignoring everything
else—including syntax errors, if the definition of water is
liberal enough.

The island parsing paradigm lends itself well to simulta-
neous parsing of multiple languages. Our grammar contains
one island type for each language. The concept of nest-
ing of islands and water can be used to process instances
of language nesting, and since the islands can be arbitrarily
small, even the most closely intertwined languages can be
processed. Finally, syntax errors in languages, together with
any productions which are of no interest in current analysis
can be treated as water. Water is not acted upon during the
analysis, but preserved in the final output, so that content

which is not understood by the analyzer is not changed by
it.

4 Clone Detection

Figure 1 shows the overall conceptual architecture of our
system. This section describes the functioning of the clone
detector. Since the primary focus of this work is on clone
resolution rather than detection, we used a simplistic detec-
tion algorithm. The issues of finding the clones and of doing
something with them once they are found—such as resolv-
ing them—are for the most part orthogonal. A more sophis-
ticated clone detection algorithm, such as the one proposed
by Baxter et al.[1] may be inserted later with minimal dis-
ruption to other parts of our system.

A single island is the smallest clone we are willing to
consider. All islands in our grammar correspond to sizeable
HTML constructs, such as tables and forms, which min-
imizes the likelihood that insignificant clones only a few
characters long will be resolved. HTML <scr i pt > tags
are one type of island the grammar recognizes, which al-
lows us to find and resolve JavaScript clones.

The clone detection algorithm performs its task in three
major steps—Iist building, comparisons, and list trimming.

List Building. All islands contained in the files to be
analyzed for cloning are extracted into a master island list.
The list contains each island found in the files exactly once,
except for islands that are nested inside other islands (e.g. a
table nested inside another table). These are listed several
times—once on their own, and once as part of their parent
island. This permits us to find the clones of both the parent
and the child islands.

Comparisons. To find the clones, all files under analysis
are searched for every item that occurs in the list. Whenever
an island is found in a file that is different from the file of
its origin, the conclusion is made that the island is cloned
across several files, and is annotated as such.

List Trimming. Finally, the resulting clone list is
trimmed to remove unnecessary items. These items can be
of two kinds:

e |tems that occurred only once, and are therefore not
clones;

o Items that are children of other clones in the list, i.e.
sub-clones.

The result of algorithm execution is a list of cloned is-
lands, each one annotated with a list of files in which the
clone has been found. This list serves as a starting point for
our clone resolution efforts.

5 Clone Resolution

HTML provides no native code reuse facilities, making
clone resolution in HTML extremely difficult. It is however
possible to reuse code by relying on tools provided by other
languages, or by servers which are used to serve HTML
pages to the browsers.

5.1 Resolution methods

The three techniques which are employed in this paper—
all commonly used—are described below.

Server side includes. The simplest, and the most gener-
ally applicable method of code reuse on a web site relies on
a feature called server-side includes. The includes are not
part of HTML,; rather, they are a feature provided by web
servers that deliver the site to the browsers. The includes
are very similar to C-style #i ncl ude statement. A server
side include statement can appear anywhere within a web
page, and looks like this:

<l--#include file="foo.htm" -->

The functionality of the command is rather straightforward:
the content of f 00. ht nl is read by the server and inserted
in the place of the include statement before the file is sent
to the web browser. Nearly all web servers support the
server side include feature. Because server side includes are
processed before any other instructions a web page might
contain, they are the most general of all clone resolution
techniques—they can be used to resolve any clone.

Executable subroutines. When HTML is being used
in a dynamic web page, it usually appears in conjunction
with a programming language, such as Visual Basic (VB)
or Java. In this case it is possible to rely on code reuse fea-
tures provided by these languages. All discussion that fol-
lows talks about using Visual Basic, but the concepts apply
to most other programming languages as well. It is possi-
ble, for example, to define a Visual Basic subroutine which
prints the cloned HTML and does nothing else. All occur-
rences of the clone are then replaced by a call to that sub-
routine. Server-side executable code is entirely transparent
to browsers, so VB subroutines can be used to resolve any
static clone.

This method may seem almost identical to using server
includes, but this is not really the case—the use of VB sub-
routines for clone resolution has several advantages over
server-side includes.

When using the includes, every clone has to be housed
in a separate file, which is the file that is included by the
server. There is no such restriction on clone-resolving VB
subroutines—they can be all contained in one file, or orga-
nized into an arbitrary number of files according to some
criterion. This affords greater flexibility in performing the

Resolution method

M~ [

(\
Clone —> ‘ ’ |:| ‘ DI:I
detector . Raw Resolved
Filename Clone clone Post- clone storage
annotat.ed resolver files processing files
clone list scripts
. >
___J -/
HTML 1
S%‘;;Ze Clone Clone
tagged resolved

sources source

Figure 1. Conceptual architecture of the clone resolution system.

clone resolution, since the clones may be organized by func-
tion, size, content, or other criterion.

VB subroutines are the only resolution method discussed
here that can resolve near-miss clones, i.e. clones that
are the same except for some small difference. A clone-
resolution subroutine can be parameterized, so that the
needed clone will be generated from a generic template de-
pending on the value of the parameter. The template can be
held in the routine itself, or read from a file on the server.
Server-side includes, on the other hand, can not resolve near
miss clones because they do not support parametrization.

The price for this versatility is extra work that has to
be done during page serving. Unlike inclusion of a file,
which is a relatively simple operation, the routines have to
be executed by the server before being sent to the browsers.
The precise mechanics involved in execution differ from
language to language, but all are more complex and time-
consuming than the handling of a server-side include.

External script files. HTML does provide the tools to
reuse existing client-side scripts—including JavaScript—
which means that clones containing nothing but JavaScript
can be resolved in yet another way, not available for HTML
in general.

One way to include JavaScript code in an HTML page is
to embed it in that page. In that case the code is available for
execution only to the page it is embedded in. An equivalent,
but superior from the point of view of code reuse, method is
to house the script in a separate file, and include a reference
to it in the HTML file. The reference takes the form of an
empty <scri pt > tag, with a parameter to indicate where
to take the source code of the script from. The functional-
ity remains the same, but since the script now exists as a
separate entity, it is possible to re-use a single instance of it

across multiple HTML pages, thus reducing the amount of
duplication in a web site. Unsurprisingly, this clone resolu-
tion method only works for cloned client-side scripts.

Use of resolution methods. In principle, either the
server-side includes or the VB subroutines can resolve all
static clones found. It would be better, however, to match
up resolution methods and clones, so that for each clone re-
solved, the most appropriate method is used to resolve it.
This will minimize the inevitable disruption to code local-
ity and linearity that clone resolution must make to do its
work.

5.2 Cloneresolution algorithm

The key to achieving the best match between the reso-
lution method and the clone it is used to resolve is to per-
form several passes on the files being analyzed, resolving
some clones during each pass. During each pass, only the
clones that match the resolution method are resolved, while
the other ones are skipped over.

We employ a two-pass approach. We use clone resolu-
tion via external script files as our method of resolution for
the first pass, and resolution via Visual Basic subroutines
for the second pass. The external script files method is the
least general of the two—it is able to resolve only JavaScript
clones; it is also the most appropriate method for resolving
such clones, because that is its express goal. By employing
it first, we can make sure that all JavaScript clones are re-
solved using only this method—after the first pass there will
be no JavaScript clones left for other methods to resolve.

In this application, we limit ourselves to only two passes,
because Visual Basic subroutines can resolve all remaining
clones; in fact, server side includes could have been used

advertisement.html

contact.html

<htm >
<script>
dNow = new Dat e()
docurent . write(dNow. toString())
</script>
<t abl e border=1>
<tr>
<t d>
Wel cone t o SnowSt orm
</td>
</[tr>
</tabl e>
Buy CQur
</htn >

I nc.

Pr oduct s!!

<htm >
<scri pt>
dNow = new Dat e()
docunent . wite(dNow. toString())
</script>
<t abl e border=1>
<tr>
<t d>
Wl conme to SnowSt orm
</td>
</tr>
</t abl e>
Contact us by e-nail!
</htm >

I nc.

Sample input files to the clone resolver system. A simple JavaScript program and a table with a welcome

message are cloned across these two files.

Figure 2. HTML files with cloned content.

in their place—both are appropriate enough. Depending on
the situation, more than two passes could be used; for ex-
ample, if near-miss clones were being resolved, three passes
could be employed. The first, relying on external script file
resolution, would handle JavaScript clones; the second, us-
ing server-side includes, would resolve the identical clones;
finally, VB subroutines could be used to resolve near-miss
clones.

The algorithm used to resolve the clones is the same for
every pass. As its input, the algorithm takes an annotated
clone list generated by the clone detection algorithm, a list
of files to resolve the clones in, and a parameter that speci-
fies in what way the clones will be resolved—via server-side
includes, Visual Basic subroutines, or JavaScript importing.

Consider two files shown in Figure 2. The files contain
two clones: a JavaScript program for printing the date, and
an HTML table with a welcome message. Similar (although
considerably larger and more complex) files can be found
on web sites of many companies. In analyzing these two
files, the first pass of our clone resolution scheme would re-
ceive as input the filename annotated clone list, consisting
of two clones, annotated with the files they occur in:

<script>

dNow = new Dat e()

docurent . write(dNow.toString())
</script>
advertisement.html, contact.html

and

<t abl e border=1>
<tr>
<td>
Vel cone to SnowStorm | nc.
</td>
</[tr>
</t abl e>
advertisement.html, contact.html

The resolver algorithm will also receive the list of HTML
source files under analysis: advertisement.html, con-
tact.html, and a parameter telling it to employ external script
files for clone resolution.

As a first step, clones which are not worth resolving, or
which can not be resolved via the chosen method are re-
moved from the clone list. In this case, the second clone in
the list (i.e. the table with the welcome message) will be
removed from the list and not considered further, because it
is impossible to eliminate this clone with the chosen resolu-
tion method. The only kind of clone we consider not worth
resolution at the moment is a cloned <scr i pt > tag without
a body. These tags are in fact references to external scripts,
and can hardly be treated as clones.

Each clone is then given a unique identifier, a “name”
to distinguish it from another clones. Currently the
names carry no further meaning and take the form of
uni que_i d_1, uni que_i d_2 and so on. The input files
are then searched for occurrences of the cloned islands, and
each occurrence is replaced with an HTML-like clone iden-
tifier tag, with the name of the clone it replaced as a parame-
ter. The resulting files are shown as “Clone tagged sources”
in Figure 1. In our example the entire script tag will be
replaced by the following:

advertisement.html

contact.html

<htm >
<script src="uniqueidl.js">
</script>
<t abl e border=1>
<tr>
<t d>

</td>
</[tr>

</t abl e>
Buy CQur
</ htm >

Pr oduct s!!

Wel cone to SnowStorm | nc.

<htm >
<script src="uniqueidl.js">
</script>
<t abl e border=1>
<tr>
<td>
Wl come to SnhowStorm | nc.
</td>
</[tr>
</tabl e>
Contact us by e-nail!
</htm >

The analyzed files after the first pass through the clone resolution system. Cloned JavaScript code has
been resolved. The newly inserted lines used for resolution are highlighted in bold.

Figure 3. HTML files with JavaScript clone resolved.

<clone_identifier "unique_id_1">

Each clone in the clone list is then written to a file; these
correspond to “Raw clone files”, as pictured in Figure 1.
In case of clone resolution by Visual Basic subroutines, all
clones are written to one file, and the necessary text is later
added to make clones into separate subroutines. The clone
names are then re-used as the names of the subroutines. For
resolution by server-side includes or—as in our example—
JavaScript importing, each clone is written out to a separate
file; in this case clone names are used to name the files that
hold the clones. JavaScript files are further modified to re-
move the unnecessary

<script> ... </script>

tags. In our example, only one file will be generated. It
will be named uni que_i d_1. j s and will contain the code
of the JavaScript program the cloned <scr i pt > tag origi-
nally contained:

dNow = new Dat e()
docunent . write(dNow. toString())

Finally, the analyzed files are searched for the clone iden-
tifier tags like the one above, and each tag is replaced by a
call to a subroutine, a server-side include statement, or—as
in this case—a script tag importing the appropriate script
file.

Ease of implementation is the reason for using interme-
diate clone identifier tags and not replacing clones with their
replacements directly. The replacement step is done with
sed, a Unix tool for automated text editing. These scripts
are lexical in nature and do not have to follow the grammar
being used to parse and analyze the input, and therefore en-
counter fewer restrictions in modifying the files.

After the first pass of the algorithm, the JavaScript clone
has been resolved, while the “welcome table” has remained.
Figure 3 shows the results of this initial algorithm applica-
tion.

The second application of the algorithm follows the same
general execution pattern, except that the algorithm is in-
structed to use VB subroutines as its resolution tool. As
Figure 1 shows, the clone resolved source from the first ap-
plication is used as the new input to the clone resolver. The
clone list received from the clone detection algorithm this
time contains the “welcome table” and the body-less script
tag that replaced the original cloned script.

<script src="unique_id_1.js">
</script>

The script tag is eliminated from the clone list as being
too small to resolve, and the algorithm proceeds with reso-
lution of the cloned table. The table is again issued a unique
name, and then eliminated from all the files in which it oc-
curs, replaced by a pseudo-HTML tag with a reference to
the clone name. All the clones—in this case, only one—are
written out to a file subrouti nes. vb. The file is modi-
fied to change it from a simple clone listing to a sequence
of Visual Basic subroutines; the clone names are re-used as
names of generated VB subroutines.

<% sub unique_id_1 %
<t abl e border=1 >
<tr>
<t d>
Wel cone to SnowStorm I nc.
</td>
</[tr>
</t abl e>
<% end sub %

advertisement.html

contact.html

<!--#include file="subroutines.vb"-->
<htm >

<script src="unique_id_ 1.js">
</script>

<% uni que.i d.1 %

Buy Qur Products!!

</htm >

<!--#include file="subroutines.vb"-->
<htm >

<script src="unique_id 1.js">
</script>

<% uni que.i d_1 %

Contact us by e-nail!

</htm >

The final output files with all clones resolved. The newly inserted code that implements the resolution of the

“welcome table” is highlighted in bold.

Figure 4. HTML files with all clones resolved.

Finally, all the files in which the clone has occurred have
the temporary clone ID tags replaced by calls to the appro-
priate subroutines, and an include statement is added to the
beginning of each file to make the subroutines available for
use. Figure 4 shows the final result of the second, and final,
iteration of the algorithm; all the found in the originals were
removed.

6 Practicality and Scalability

Our system performs well for small inputs, taking ap-
proximately one minute to complete the analysis and clone
resolution of a 5-7 page subset of a student pre-registration
web site. Analysis of smaller examples, like the one shown
in this paper, is nearly instantaneous. Because our naive de-
tection algorithm compares every potential clone to every
other, the performance is quadratic in the number of poten-
tial clones. The performance can be significantly improved
by using performance optimizations such as pre-sorting or
hashing of potential clones. The resolution algorithm on
the other hand is linear in the number of detected clones,
and should scale well to larger tasks.

7 Future Work

Improved clone detection. The most promising way
to improve the quality and usefulness of our program is to
switch to a better clone detection algorithm. While the al-
gorithm in use now works, it is not efficient enough to work
on sites that consist of more than a dozen or so pages. Op-
timizing the steps of clone detection and deletion of redun-
dant sub-clones can significantly boost the performance of
the algorithm, thus putting larger, more realistic web sites
within its reach.

Near-miss clones. Our program only finds and resolves
identical clones. A good number of clones are in fact not
identical, but similar, differing by only a few features. A
good example of such a near-miss clone would be a navi-

gation bar of a web site that displays the link to the current
page in a different color. The navigation bar is substantially
the same across all the pages of a site, with the color of
individual links being the only difference. Currently, our
program would not consider the navigation bar a clone. An
interesting and useful addition to our program would be an
ability to resolve such a near-miss clone, perhaps by storing
a generic template for it in a file, and replacing all instances
of the clone with a call to a VB subroutine, which would re-
create the needed version of the clone based on the template
and the place it was called from.

Clone evaluation. Not all clones in a web site are worth
resolving. A substantial number of the clones are too small,
or too insignificant to be of interest, and their resolution
would only complicate the existing structure of the site un-
necessarily. Size a good first indicator of whether a clone is
worth resolving, but it is by no means perfect. Large clones
may not be worth replacing if they are only cloned a few
times; and clones only a few lines long are worth resolving
if they are cloned extensively and are important to the site’s
functionality.

The difficulty in finding the answer to the question
“What is a worthwhile clone to resolve?” is that it is to a
certain degree subjective, and varies from site to site and
from developer to developer. And yet, answering this ques-
tion even vaguely would benefit clone resolution in two im-
portant ways. The first and most important benefit would
be the ability to detect, and remove from consideration, in-
consequential clones—the clones that for some reason are
not worthwhile to resolve. This will reduce the amount of
computational effort required, because uninteresting clones
won’t be analyzed, and minimize the disruption that clone
resolution causes, because they will not be resolved.

An interesting aspect of clone evaluation is the task of
clone naming. Our present clone naming technique only
ensures that names given to clones are unique—they serve
as identifiers only, and carry no information about the clone.
This technique can be improved by letting a human analyst
view and name the clones after they are found but before

any resolution efforts begin. As the size of web site under
analysis grows, however, the amount of clones becomes too
large for a human to name and review, so automated evalu-
ation remains a necessary first step.

8 Conclusion

This paper presents a system for resolution of static
clones in web sites. Unlike most web-oriented clone res-
olution efforts to date, our system does not rely on one
method of clone resolution exclusively. Instead, it uses a
multi-pass approach to resolve clones incrementally, using
several different resolution methods, resolving each clone
encountered with the most appropriate resolution method
available. The aim of the matching efforts is to minimize
disruptions to the structure of the original HTML files being
analyzed, thus reducing the negative effects of clone reso-
lution as much as possible.

References

[1] Ira D. Baxter, Andrew Yahin, Leonardo Moura,
Marcelo SantAnna, Lorraine Bier, “Clone Detection
Using Abstract Syntax Trees”, Proceedings of Interna-
tional Conference on Software Maintenance, Novem-
ber 1998.

[2] Stephane Ducasse, Matthias Rieger, Serge Demeyer,
“A Language Independent Approach For Detecting
Duplicated Code”, Proceedings of International Con-
ference on Software Maintenance, August-September
1999.

[3] Cornelia Boldyreff, Richard Kewish, “Reverse Engi-
neering To Achieve Maintainable WWW Sites”, Pro-
ceedings of Eighth Working Conference on Reverse
Engineering, October 2001.

[4] G. Antoniol, U. Villano, M. DiPenta, G. Casazza,
E. Merlo, “ldentifying Clones in the Linux Ker-
nel”, Proceedings of International Workshop on
Source Code Analysis and Manipulation, November-
December 2001.

[5] A.van Deursen, T. Kuipers, “Building Documentation
Generators”, Proceedings of International Conference
on Software Maintenance, August-September 1999.

[6] Leon Moonen, “Generating Robust Parsers Using
Island Grammars”, Proceedings of Eighth Working
Conference On Reverse Engineering. October 2001.

[7] Leon Moonen, “Lightweight Impact Analysis Using
Island Grammars”, Proceedings of Tenth International
Workshop On Program Comprehension. June 2002.

[8] F. Ricca, P. Tonella, “Using Clustering to Support the
Migration from Static to Dynamic Web Pages”, Pro-
ceedings of International Workshop on Program Com-
prehension, May 2003.

[9] G. Antoniol, U. Villano, M. DiPenta, G. Casazza,
E. Merlo, “ldentifying Clones in the Linux Ker-
nel”, Proceedings of International Workshop on
Source Code Analysis and Manipulation, November-
December 2001.

[10] B.S. Baker, “On finding duplication and near-
duplication in large software systems”, Proceedings of
Second Working Conference on Reverse Engineering,
July 1995.

[11] Pearl Brereton, David Budgen and Geoff Hamilton,
“Hypertext: The Next Maintenance Mountain”, IEEE
Computer, Vol. 31, No. 12. pp 49-55, 1998.

[12] Gerald M. Weinberg, “The Psychology of Computer
Programming”, pp. 229-232, Van Nostrand Reinhold
Ltd. New York, New York. 1971.

