
The Recognition Strategy Language

Richard Zanibbi
Centre for Pattern Recognition and

Machine Intelligence
Concordia University, Montreal, Canada

zanibbi@cenparmi.concordia.ca

Dorothea Blostein and James R. Cordy
School of Computing

Queen’s University, Kingston, Canada
{blostein,cordy}@cs.queensu.ca

Abstract

The table recognition literature contains many strate-
gies specified informally as a sequence of operations, ob-
scuring both models of table structure and the effects of
individual decisions. Decision making is more transparent
in formal model-based approaches (e.g. grammar-based)
but these approaches are less flexible than informal ones.
We propose an intermediate level of formalization, defin-
ing strategies as a sequence of basic graph transformations
that correspond to recognition operations (e.g. classifica-
tion, segmentation). Transformations are parameterized by
logical types and decision functions, which together define
structure models and executable strategies for interpreting
input graphs. We provide an overview of our first attempt
at this intermediate level of formalization, the Recognition
Strategy Language (RSL). As a proof-of-concept, we reim-
plement two informally specified table recognition strate-
gies from the literature in RSL. The RSL implementations
capture descriptions of the formerly implicit table structure
models, and automatically capture all decision making.

1. Introduction

The vast majority of table recognition strategies in the
literature are specified informally as a sequence of opera-
tions [10]. This has the undesirable side effects that mod-
els of table structure are implicit, defined generatively by
the sequence of operations, and that the effects of interme-
diate decisions are often lost, as usually a single interpreta-
tion is modified in-place.

We wished to compare the Handley [5] and Hu et al. [6]
table structure recognition algorithms, and the complete set
of table cell hypotheses they each generated, including any
rejected in the final result. This was going to be impossi-
ble if we simply rebuilt the systems using procedural code,
transforming data structures for interpretations in-place.

We first tried translating the strategies to a formal model-
based (specifically grammar-based) framework. A well-
designed model-driven system (such as those of Coüasnon
[3] or Klein and Fankhauser [7]) makes it easier to observe
and record decision making, and can be ‘programmed’ suc-
cinctly by a model specification. However, we found map-
ping the sequence of operations in the strategies to a model-
based description was difficult, and our formal system was
requiring frequent and substantial reconfiguration to in-
corporate unanticipated requirements. Bagdanov has made
similar observations for highly formal systems in computer
vision research settings [1].

We then considered an intermediate level of formaliza-
tion, based on the idea of formal strategies for a ‘structure
recognition’ game. We reasoned that using a small set of ba-
sic graph transformations corresponding to standard recog-
nition operations (e.g. classification: label nodes, segmenta-
tion: partition a set of nodes, and define a relation between
a new node and the partition members), we could define ab-
stract ‘moves’ of a sequential recognition strategy, captur-
ing relationships between logical types in the process. We
also wished to record the effects of ‘moves’ made at run
time. Our resulting formalization is the Recognition Strat-
egy Language (RSL [9]).

2. RSL Strategies and Commands

An RSL specification or strategy is comprised of one or
more strategy functions. Each strategy function contains a
sequence of RSL commands and strategy function names.
Following convention, execution begins with the main strat-
egy function, which must be defined (e.g. Figure 1 lines 14-
31). An RSL strategy manipulates adaptive parameters, a set
of interpretation graphs (the current interpretations), and a
set of accepted interpretations, which is initially empty. The
set of current interpretations contains only the input graph at
the beginning of a strategy’s execution (e.g. input.g in Fig-
ure 2).

1 model r eg i on s
Image Word C e l l Row % ’ Region ’ t y p e d e f i n e d by d e f a u l t

3 end reg i on s

5 model r e l a t i o n s
a d j a c e n t r i g h t % ’ con t a i n s ’ r e l a t i o n d e f i n e d by d e f a u l t

7 end r e l a t i o n s

9 r e c o g n i t i o n parameters
a R e s o l u t i o n 300 % dp i ; i n i t i a l v a l u e

11 sMaxRowSeparat ion 2 % m i l l i m e t r e s
end parameters

13

s t r a t e g y main
15 adapt a R e s o l u t i o n us ing % 1 . ge t scan r e s o l u t i o n from

g e t S c a n R e s o l u t i o n () % the (ob s e r v ed) i n p u t Image
17 observ ing

{ Image} r eg i on s
19

c l a s s i f y {Word} r eg i on s as {C e l l} % 2 . c l a s s i f y a l l Words as C e l l s
21

r e l a t e {C e l l} r eg i on s with { a d j a c e n t r i g h t } us ing % 3 . d e f i n e r i g h t ad j a c en c y
23 d e f i n e R i g h t A d j a c e n c y (sMaxRowSeparat ion , a R e s o l u t i o n) % between C e l l s

25 segment {C e l l} r eg i on s i n t o {Row} us ing % 4 . segmen t C e l l s i n Rows ,
mergeRowsFromCells () % obse r v i ng C e l l s and

27 observ ing % a d j a c e n t r i g h t r e l a t i o n
{ a d j a c e n t r i g h t } r e l a t i o n s

29

accept i n t e r p r e t a t i o n s % 5 . ac c ep t a l l i n t e r p r e t a t i o n s
31 end s t r a t e g y

Figure 1. Recognition Strategy Language (RSL) specification Strategy.rsl for detecting table cells
and rows within a list of Word regions. Comments are indicated using the percent symbol (%)

As a strategy progresses, the current interpretations and
adaptive parameters are updated; transformations that pro-
duce intermediate states are recorded in a log file (infer-
ences.log in Figure 2). Using the accept command, one
or more current interpretations may be moved to the set
of accepted interpretations and returned in the output (ac-
cepted interps.txt in Figure 2). The simplest form of this
command is used in Figure 1 at line 30.

RSL commands perform five tasks: updating adaptive
parameters, transforming current interpretations, accepting
and rejecting current interpretations, producing terminal
and file output, and controlling strategy function applica-
tion. A complete summary of RSL commands is available
elsewhere [9]; the commands in the main strategy function
of Figure 1 (lines 14-31) will be described in Section 4.

Our initial RSL prototype is written in the functional lan-
guage TXL [2]. Decision functions called in an RSL strat-
egy (inference functions: see Section 4) are TXL functions
defined separately in user libraries (e.g. MyFunctions.Txl
in Figure 2). The RSL Compiler combines the RSL lan-
guage library, user libraries, and an RSL strategy to create
another TXL program, which may then be interpreted us-
ing the TXL interpreter, or compiled to a stand-alone exe-
cutable (Strategy.x in Figure 2). To date, we have nearly al-
ways opted to interpret the TXL program, as this allows for
faster prototyping.

3. RSL Data: Logical Types, Global Parame-
ters, and Interpretation Graphs

There are four main types of data in RSL: the set of log-
ical region types, the set of logical relation types, a sin-
gle global set of static and adaptive recognition parameters,
and directed graphs representing interpretations of the in-
put (which we will call interpretations for brevity). In Fig-
ure 1, region types are defined at lines 1-3, relation types at
lines 5-7, and recognition parameters at lines 9-12.

Currently parameters may be string or floating point
number-valued. Parameter types are determined by initial-
ization values in the recognition parameters section (e.g.
Figure 1, lines 9-12). Adaptive (variable) parameter names
begin with an a, while static (constant) parameter names be-
gin with an s.

As shown in Figure 2, the input to an RSL specification
is a graph (input.g). The output of an executed specification
is a pair of text files. One contains the set of accepted inter-
pretation graphs (accepted interps.txt), and the other a com-
plete log of executed RSL commands and their results (in-
ference.log), including the complete history of adaptive pa-
rameter values.

For the strategy in Figure 1, interpretation graphs may
contain nodes labeled with region types Image, Word, Cell,
Row, and Region, and edges labeled with relation types ad-
jacent right and contains. In RSL, nodes represent phys-

User RSL Program
(Strategy.rsl)

RSL Compiler

User Library
(MyFunctions.Txl)

TXL Program
(Strategy.Txl)

RSL Library Includes
(RSLHeader.Txl)

Input Graph
(input.g)

TXL Interpreter
Executable Strategy

(Strategy.x)

TXL Compiler

Accepted Interpretations
(accepted_interps.txt)

Log File
(inference.log)

Figure 2. Running Strategy.rsl from Figure 1
on graph input.g containing an Image region
and a list of Word regions

ical locations (e.g. bounding boxes in a document page)
which may be associated with region types. The default re-
gion type Region includes all nodes in an interpretation, as
it defines the set of physical regions. Region composition
is defined using the contains relation, also defined by de-
fault. The contains relation is normally manipulated using
RSL commands (e.g. segment; see Section 4). As an exam-
ple, a Cell region c1 containing two word regions w1 and
w2 would be represented as the pairs (c1,w1), (c1,w2) in
the contains relation, where c1, w1, and w2 are graph nodes
(i.e. physical locations).

Each accepted graph returned in the output (ac-
cepted interps.txt in Figure 2) is annotated with a complete
history of the creation, rejection, and reinstatement of phys-
ical regions, region types, and relation pairs during the
interpretation’s construction. We call this the hypothe-
sis history of the interpretation [9].

4. Example: Detecting Table Cells and Rows
from Words

The strategy in Figure 1 starts by obtaining the scan reso-
lution of the input Image region, recording this in the adap-
tive parameter aResolution (via the adapt command, lines
15-18). Next, all Word regions are labeled as Cell regions
using the classify command (line 20); this occurs because

only one class is given (‘as { Cell }’), and no inference func-
tion is associated with the command.

When present, inference functions are used to provide
decisions made at run time for RSL operations (e.g. what
value to assign adaptive parameters, what classes to assign,
which segments to define, and which pairs of regions to re-
late). Inference functions always follow the keyword using,
and are called from lines 16, 23, and 26 in Figure 1. They
must be defined separately in a user library (e.g. MyFunc-
tions.Txl in Figure 2). Inference functions return structured
text records that are recorded by RSL at run time in a log
file (e.g. inference.log in Figure 2).

Next, at lines 22-23 the relation adjacent right is defined
on Cell regions using the relate command. At run-time, the
inference function defineRightAdjacency() will return one
or more sets of Cell region pairs, to define right adjacency
for Cell regions. If defineRightAdjacency() returns two or
more alternative results (sets), then copies of the current in-
terpretation graph are made, and each alternative result is
applied to a copy. All RSL commands that manipulate in-
terpretation graphs handle alternative results returned by an
inference function in this way, creating a tree of interpreta-
tions.

At lines 25-28 Cell regions are segmented into Row
regions by defining new pairs of physical regions in the
contains relation (e.g. (r1,c1), (r1,c2)). If the previous re-
late command produced multiple alternatives, the segment
command will be applied separately to each, calling merg-
eRowFromCells() each time. The entire set of current inter-
pretations is then returned as output at line 30 (using ac-
cept).

Both the adapt command at lines 15-18 and the segment
command at lines 25-28 use observation specifications, in-
dicated by the keyword observing. These control the vis-
ibility of logical types for inference functions. By default,
only logical types in the scope type of an RSL command
are visible to an inference function (e.g. aResolution for the
adapt command, and Cell regions for the segment com-
mand in Figure 1). Otherwise, regions and relations must be
explicitly named to be visible. Image regions are made vis-
ible to the inference function getScanResolution() at lines
17-18, and the adjacent right relation is made visible to
mergeRowsFromCells() at lines 27-28.

5. Proof of Concept

Starting with an initial definition and implementation,
we iteratively improved RSL until we were able to imple-
ment both the Handley and Hu et al. table structure recogni-
tion strategies to our satisfaction. Including spaces and com-
ments, our Handley strategy in RSL is nine pages long, and
the Hu et al. strategy is three pages long (a page contains

roughly sixty lines) [9]. Libraries were also created for the
inference functions called in each strategy.

The RSL syntax allowed us to automatically capture the
models of table structure used by each strategy, shown in
Figures 3a and 4. These models describe the types of re-
gions that a region type may contain (shown with solid ar-
rows), types which a region class may be further classified
as (dashed arrows), and relations on region types (dotted ar-
rows with labels, such as for the indexes defining indexing
structure from headers to columns in Figure 3a).

We also managed to capture dependencies defined by ob-
servation specifications and parameters passed to inference
functions, such as shown for the Hu et al. strategy in Fig-
ure 3b. There we can see that Cell regions are defined mak-
ing reference to Row and Column regions, each of which
have their own dependencies (e.g. both depend on the para-
meter sScanResolution).

The original Handley and Hu et al. strategies and our
RSL reimplementations manipulate and produce single in-
terpretations. We could modify inference functions to return
multiple interpretations (alternatives) if we wanted, with-
out having to modify the RSL strategies themselves. New
strategies could also be created by replacing inference func-
tions, or by reordering RSL operations. We could even com-
bine the two strategies by cutting and pasting from the two
existing RSL strategies into a new strategy specification.

We used the hypothesis histories recorded by RSL (see
Section 3) to revert interpretation graphs to earlier states,
and to compare the recall and precision of all cell hypothe-
ses generated by the two strategies, including any rejected
in the final result. We call these new metrics historical re-
call and historical precision. In addition, the hypothesis his-
tories made debugging and error analysis easier [9].

From this experience, we feel that RSL provides a useful
intermediate level of formalization between informal opera-
tion sequences and model-based specifications for recogni-
tion strategies. RSL strategies are transparent similar to the
model-based approaches, while keeping much of the flexi-
bility of informal operation sequences.

6. Conclusion

We expect RSL to be a useful tool for our research, at
least in the short term. A limitation of RSL is that it is poorly
equipped to deal with pixel-level information (each pixel
would have to be defined as a graph node). We are inter-
ested in incorporating lower-level transformations and fea-
tures into RSL in some sensible way [1, 4, 8]; the appropri-
ate level of abstraction for this is not yet clear to us. We are
also interested in knowing whether RSL can be usefully ap-
plied in other, very different domains (e.g. with one (audio)
and three (CT slice) dimensional data).

Nothing prevents inference functions from returning user
interface results, and so the approach outlined in this paper
may also be useful for defining ground truth protocols (ob-
servation specifications might control the visibility of logi-
cal types, for example). RSL might also be used to formal-
ize human interpretation of inputs obtained by a graphical
user interface.

Acknowledgements

We wish to thank Dr. C.Y. Suen and CENPARMI for pro-
viding the resources to write this paper. This research was
funded by the Natural Sciences and Engineering Research
Council of Canada.

References

[1] A. Bagdanov. Style Characterization of Machine Printed
Texts. PhD thesis, University of Amsterdam (Netherlands),
May 2004. Chapter 6, pp. 89–130.

[2] J. Cordy. TXL - a language for programming language tools
and applications. In Proc. LDTA 2004, ACM 4th Interna-
tional Workshop Language Descriptions, Tools, and Appli-
cations, pages 1–27, Barcelona (Spain), Apr. 2004.

[3] B. Coüasnon. DMOS: A generic document recognition
method, application to an automatic generator of musical
scores, mathematical formulae and table recognition sys-
tems. In Proc. Sixth Int’l Conf. Document Analysis and
Recognition, pages 215–220, Seattle (USA), 2001.

[4] P. Dosch, K. Tombre, C. Ah-Soon, and G. Masini. A com-
plete system for analysis of architectural drawings. Int’l
J. Document Analysis and Recognition, 3(2):102–116, Dec.
2000.

[5] J. Handley. Table analysis for multi-line cell identifica-
tion. In Proc. Document Recognition and Retrieval VIII
(IS&T/SPIE Electronic Imaging), volume 4307, pages 34–
43, San Jose (USA), 2001.

[6] J. Hu, R. Kashi, D. Lopresti, and G. Wilfong. Table structure
recognition and its evaluation. In Proc. Document Recog-
nition and Retrieval VIII (IS&T/SPIE Electronic Imaging),
volume 4307, pages 44–55, San Jose (USA), 2001.

[7] B. Klein and P. Fankhauser. Error tolerant document struc-
ture analysis. Int’l J. Digital Libraries, 1(4):344–357, Dec.
1997.

[8] J. Rendek, G. Masini, P. Dosch, and K. Tombre. The search
for genericity in graphics recognition applications: Design
issues of the Qgar software system. In Proc. Sixth Int’l Work-
shop Document Analysis Systems, pages 366–377, Florence
(Italy), Sept. 2004.

[9] R. Zanibbi. A Language for Specifying and Comparing Ta-
ble Recognition Strategies. PhD thesis, Queen’s University,
Kingston (Canada), Dec. 2004.

[10] R. Zanibbi, D. Blostein, and J. Cordy. A survey of ta-
ble recognition: Models, observations, transformations, and
inferences. Int’l J. Document Analysis and Recognition,
7(1):1–16, Sept. 2004.

(a) table model for Hu et al. RSL implementation

(b) region and relation dependencies for Hu et al. RSL implementation

Figure 3. Table model (a) and dependencies of regions and relations (b) for RSL implementation of
the Hu et al. table recognition strategy [6]

Figure 4. Table model for RSL implementation of the Handley table structure recognition strategy [5]

