
1

A Framework for Composing Web Resources

Abstract

Large amount of heterogeneous Web resources,
such as SOAP-based Web Service and RESTful
service exist on the Internet. It is labor-intensive
and inefficient for an end-user to search and com-
pose different Web resources in order to fulfill
his/her requirement. To support the end-user’s
various activities, we propose a Web resources
composition framework. This framework can
help end-user: 1) discover available Web re-
sources to fulfill the end-user’s goal, despite of
their types; 2) represent the relation between dif-
ferent resources to allow them to be used collabo-
ratively; 3) automatically compose required Web
resources to fulfill the goal specified by the end-
user.

1 Introduction
Various types of Web resources, such as SOAP-
based Web Service and RESTful service, exist on
the Web to provide various functionalities, such
as information access and online banking. There
are large amount of Web resources available on
the Internet. Not all Web resources are highly
relevant to a user’s requirement. Only a subset of
Web resources can fulfill an end-user’s require-
ment. It is difficult for the Web end-users to sift
through the sheer volume of Web resources to
fulfill their goals. Without the aid from a service
composition tooling, an end-user has to manually
discover and compose different Web resources.
For example, a person planning a conference trip
needs to locate the Web resources for transporta-
tion, accommodation and other activities separate-
ly and integrate the results from these Web
resources. This is a time-consuming and tedious
process and may not produce the optimal outcome.
For example, the end-user may not be able to dis-
cover the Web resource that provides the most
economical air ticket.

To support the end-user’s social, professional,
recreational and other activities, it is essential to
create a Web-based service composition frame-
work that can 1) discover all available Web re-
sources to fulfill the end-user’s goal, despite of
their types; 2) represent the relation between dif-
ferent resources to allow them to be used collabo-
ratively; 3) automatically compose required Web
resources to fulfill the goal specified by the end-
user. It is challenging to realize such a service
composition framework. In particular, The Web
resources are described in heterogeneous formats.
For example, Web Service Description Language
(WSDL) [2] is used to describe SOAP (Simple
Object Access Protocol) based Web Services that
makes remote procedure calls. HTTP-based APIs
are simpler Web resources, implemented as a set
of standard HTTP requests. Examples of HTTP-
based APIs are twitter, Flickr and various Yahoo
APIs. The HTTP-based APIs can be described
using Web pages or WSDL 2.0. Informational
Websites are implemented by various technolo-
gies, such as Ajax, HTML and XML. Some of the
descriptions, such as HTTP-based APIs are not
machine readable. This hinders the ability to dis-
cover the most suitable resource to satisfy the goal
of a particular end-user.

In this paper, we propose a framework to help
end-users compose various Web resources. Our
framework uses a unified description schema to
describe the heterogeneous Web resources and a
resource graph model to represent the relations
among different Web resources. Representati
tional State Transfer (REST) [9] is an architectur-
al style for network-based systems. REST was not
introduced as an approach to designing Web ser-
vices, yet the non-corporate Web Service com-
munity as alternative to SOAP/WSDL has
adopted it. Although not always adhering to the
all of REST’s constraints [10], RESTful Web
Services are gaining popularity and are adopted

Hua Xiao
School of Computing
Queen’s University

Kingston, Ontario, Canada
huaxiao@cs.queensu.ca

Bipin Upadhyaya, Ran Tang, Ying Zou
Dept. of Electrical and Computer Engineering

Queen’s University
Kingston, Ontario, Canada

{9bu, ran.tang, ying.zou@queensu.ca}

Joanna Ng, Alex Lau
IBM Toronto Lab

Markham, Ontario, Canada
{jwng, alexlau}
@ca.ibm.com

2

Figure 1: Steps for composing Web resource

by major service providers like Google, Amazon
and Yahoo. RESTful service provides uniform
interface which is immutable (no problem of
breaking clients). HTTP/POX is ubiquitous (goes
through firewalls). Since it adheres to the prin-
ciple of Web, it naturally has proven scalability
with caching, clustered server farms for Quality of
Service (QoS). End user just need browser to get
started, no need to buy WS-* middleware. More-
over, we provide an approach to compose re-
sources for end-users using the resource graph.
The composite resources are represented as ad-
hoc processes. An ad-hoc process contains a set of
tasks without strict execution order.

The remainder of this paper is presented as
follows. Section 2 gives an overview of the pro-
posed framework. The details of the unified de-
scription schema, the resource graph to model the
relation among resources, and the technique to
construct ad-hoc process using the resource graph
are presented in section 2. Section 3 concludes
this paper.

2 Overview of Framework
Figure 1 provides an overview of our framework.
To describe the heterogeneous Web resources, we
collect heterogeneous Web resources from the
Internet and represent them in a unified resource
description schema. We identify the relations
among different resources and construct a re-
source graph. HTTP-based APIs are generally
described using plain, unstructured HTML docu-
ments which are only useful to human developers.
Nowadays, using Web resources, such as finding
suitable services, composing services, mediating
between different data formats, are mainly manual
tasks. To maximize the interoperability among the
resources, we need a common data model to de-
scribe the resources and their relations. There are
two requirements for interoperability: (1) the Web
resources themselves must be able to program-
matically interoperate. For example, they must be
able to invoke one another and pass data among
themselves; (2) there must be a user interface me-
chanism for the user to orchestrate the Web re-

sources to work together toward some complex
goal. End-users should be able to compose and
define the flow between the Web resources. RDF
is designed specifically for exchanging and inte-
grating Web data. In our framework, we wrap the
unified Web resources into RESTful services then
adopt Description Framework (RDF) [1] to de-
scribe RESTful services and their relations. While
we construct the resource graph, the unified re-
source descriptions are used to help us identify
resources and their relations.
 When an end-user wants to fulfill a goal, the
end-user simply describes the desired goal using
keywords. We map the keywords into resources
described by the resource graph. and infer an ad-
hoc process from the resource graph to help the
end-user fulfill the goal. In the following sub-
sections, we discuss the details in unifying the
description of various types of resources, con-
structing a resource graph, and inferring ad-hoc
processes from the resource graph.
2.1 Unifying Resource Descrip-

tion
To assist the automatic discovery of various Web
resources, we propose a schema to uniformly de-
scribe different types of Web resources. The uni-
fied representation provides a better chance to
discover Web resources than limiting the service
discovery within the Web resources of a single
type.

As shown in Figure 2, we define two parts in
the unified schema: the general description part
and the operation description part.
The general description of a Web resource pro-
vides a bibliographic description about the Web
resource: the type, the name, the provider and the
URI of the Web resource. Such descriptions are
common to all types of Web resources. There are
standards suitable for representing the general
description. For example, using 15 text fields (e.g.,
title, type and publisher), the Dublin Core metada-
ta schema can describe various resources, e.g.,
books and Web pages [3]. We adopt the Dublin
Core format to represent the general description.

3

Among the four fields of general description,
the type, the name, the provider fields are self-
descriptive. The URI field of the general descrip-
tion refers to the URI that identifies the Web re-
source on the Internet. The URI of a SOAP-based
Web Service points to its WSDL file. For an
HTTP-based API, the URI field is filled by the
URI of its description Web page. To invoke a
particular functionality of the Web resource,
another URI may be required because each opera-
tion of the Web resource may have a different
URI, which is described in operation description
part.

The operation description describes the
functionalities offered by a Web resource. A Web
resource can deliver one or more functionalities.
An operation represents a primitive unit of func-
tionality used to compose a service-oriented ap-
plication. Different types of Web resources
contain varied number of operations. Most SOAP-
based Web Services and HTTP-based APIs pro-
vide complex functionalities and contain multiple
operations.

To describe each operation, we use the tag-
based description, the formal interface and the
excerpt of existing description. The tag-based
description uses a set of descriptive tags (i.e.,
keywords) to informally represent an operation,
including the functionality description, the input
description and the output description. The in-
put/output descriptions help describe different
operations with the same name or similar functio-
nality description. For example, two operations
are named as “displayOrders”. One operation with
the parameter “productID” is different from the
other one with the parameter “custormerID”. The
tag-based description can concisely convey the
functionality of the operation to the resource con-
sumers. In addition, it facilitates automatically
compare the functionalities of operations in order
to discover similar Web resources.

The formal interface provides information to
support the invocation of an operation. The formal
interface is intended for machine consumption in
order to facilitate automatic invocation. The
SOAP-based Web Service is originally described
with a formal interface. Hence, a client program
can be automatically generated to invoke opera-
tions in a SOAP-based Web Service. In contrast,
other Web resources (e.g., the HTTP-based APIs)
do not have a formal interface and the SOA pro-
fessionals need to manually write the request to
invoke the operation. The fields contained in the

formal interface depend on the type of Web re-
sources. To invoke an HTTP-based API operation
and a Web form, the URI, the HTTP verb, and the
input parameters of the operation are required.
The formal interface is described in an XML for-
mat which can be interpreted by a machine to
automatically invoke the operation.
An excerpt is taken from the existing description
of an operation. It provides more readable and
detailed information, such as examples and dem-
onstrations. It also offers a shortcut for a SOA
professional to understand the operation without
having to search for the operation in the entire
document. The excerpt is available only for
SOAP-based Web Services and HTTP-based
APIs.

Figure 2: A unified resource description scheme
2.2 Constructing Resource

Graph
A resource graph represents all resources using
RDF model. It is a semantic network model,
which consists of entities and relationships. Enti-
ties are identified globally with URIs. We want to

Figure 3:Conceptual model for RESTful Services

represent all the service in REST style. RESTful
Service and RDF both represent “Resource,”
which is the main motivation behind using RDF.
RDF provides a common framework for express-
ing information so it can be exchanged between
applications without loss of meaning.
 Figure 3 shows the conceptual model of the
RESTful services. We model all SOAP based
Web Services, HTTP-based API in terms of

4

RESTful services. As shown in figure 3, each
service has one or more resource and service itself
can be treated as resource. Each resource is uni-
quely identifiable and can have one or more than
one representation. The information about the
service is stored in the meta-data and resources
have links to other resources. The input and out-
put message has one or more parameter which is
defined by the schema. Resource may link to oth-
er resources. We used link specification [7] to
indicate the relationship between the resources.
The “rel” attribute in the link specification give
the information about the semantics of the link. In
addition to types of “rel” defined by IANA [8],
we introduced few other types that helps to
represent resource in RESTful services more easi-
ly.
 see-also recommends another service
 same–as provides the similar services
 is-a defines is-a relation between the resources
 contains defines different service as in the case
of composite service.
 is-container-of defines the resource-to-
container relationship.

 These relations help recommend services, iden-
tify similar services, and define the relationship
between the resources. Semantic relationship
helps to abstract the resource representation. Fig-
ure 4 shows the different resource and the seman-
tic and data-link relations between the different
resources. Since double bedroom and single bed-
room has is-a relationship with room all the data
link and semantic relation from room is carried
over to those two different categories of the room.
In addition to that, we added “method” attribute in
the link. Thus, the user agent can know next poss-
ible resources to visit and along with method used
to visit that resource. The information provided by
the method attributes helps to define the flow. It
also tells about the data required by another re-
source that end-user wants to visit. For example in
Figure 4, “review” resource requires the informa-
tion regarding the resource hotel. Hence, this type
of relationship is called data-link relations. The
small circle represents which method to can be
invoked on resources from the current state. In
Figure 4 the user can invoke only GET method in
the resource review from the hotel resource. This
substantially increases the user agents’ capability
of discoverability of resource. In our resource
graph, the resource from where end-users can start
consuming service (a starting point) is defined as

initial node. In Figure 4, hotel is represented in
different color and it denotes the initial node.
When a user requests a service this node is re-
turned and from that node, user can start using the
service.

Figure 4: Resource and their relations

 For example, if we want to book a room we
need information regarding the resource room,
Thus using REST approach it can be used as
shown in following example:
As shown in Figure 5, when the resource room is
requested, the output contains information about
the next resource. The next state in this example
can be one of the room types which are single
bedroom and double bedroom. The semantic rela-
tion between these resources is give by “rel”
attribute .After knowing the next resource user
agent also needs to know which method to use. It
is provided in method attribute in the link.

Figure 5: Example of RESTful Service

 WSDL/SOAP based services are lifted to re-
source level by identifying the resource and the
HTTP method for each operation and then de-
scribed in RESTful approach. When the end-user
uses these resources the corresponding WSDL
operations have to be invoked which can be iden-
tified using the mapping information for operation
and resources. Converting every service in REST
style helps the end users to see everything as re-
source and each resource is associated with the
corresponding four methods. End-users are ex-
posed to only the resource model of the service
described in RDF. It is easier to deal with one

GET /hotel
HOST: foo.org
<various HTTP headers>
Output
<rooms>
<room id="singlebed" rate="40" currency="USD">
<link rel="isa" method=”GET” href="/rooms/singlebed/">
</room>
<room id="doublebed" rate="40" currency="USD">
<link rel="isa" method=”GET” href="/rooms/doublebed/">
</room>
</rooms>

5

model than dealing with different kinds of hetero-
geneous specification. Once the service is
represented in the RDF form, it adds a lot of ex-
pressiveness with query languages (e.g., SPARQL
[4]), transformation languages (e.g., GRDDL [5]),
and rule languages (e.g., RIF [6]).

2.3 Inferring Ad-hoc Processes
from Resource Graphs

Figure 6 illustrates the definition of ad-hoc
processes. An ad-hoc process is characterized by a
set of work items and sub ad-hoc processes per-
formed by end-users to fulfill a goal. A work item
in the ad-hoc process is a set of tasks which are
collaborated together to accomplish a transaction.
The work items in an ad-hoc process are con-
nected through the relation defined by users or the
semantic relations defined in the resource graph.
A task is the combination of resource and opera-
tions. The resource in a task is defined in the re-
source graph. The operation in a task processes
the resource. In RESTFul services, we can use
operations Get, Post, Put and Delete. For example,
the task “search for flight ticket” could be de-
scribed as the resource “flight ticket” and the as-
sociated operation “get”. Eventually, a task can be
performed by one or several concrete Web servic-
es. Web services can be represented as resources
in the resource graph. Therefore, we can trace the
resource graph to find the associated Web servic-
es.
 In our definition, work item is different from ad-
hoc process although they both contain tasks. The
resources related to the tasks in a work item are
connected by data-link relations in the resource
graph. The relations of tasks in a work item are
very closely coupled. To fulfill a transaction, the
user needs to execute all the tasks linked by the
data. For example, the work item “buy flight tick-
ets” includes tasks “search ticket”, “choose ticket”
and “pay the bill”. In order to accomplish the goal
of “buy flight tickets”, the user has to perform all
the three tasks in the work item. On the contrary,
the relations of work items in an ad-hoc are loose-
ly coupled. Different users can have different ad-
hoc processes for the same goal. For instance,
when planning a trip, some users may prefer tak-
ing flight than driving car, but other users may
prefer driving instead of taking flight. The ad-hoc
process of planning a trip for these two groups of
users is different since the ad-hoc process for the

former group contains the work item “buy flight
tickets” and the latter does not have.

Figure 6: Definition of ad-hoc process

2.4 Inferring Work Item Rela-
tions from Resource Graphs

The work items in an ad-hoc process can be con-
nected together using different relations. The rela-
tions of work items in ad-hoc processes are shown
as follows.
 Group indicates that a set of work items should
be performed together. The group relation can
be further described as “And”, “Or”, “Se-
quence” or “Parallel” relations.
 And means that all the work items need to be
performed. “And” relation does not provide the
detailed information about the execution order.
Thus the work items can be executed in any or-
der by default. When we have more information
about the execution order of work items, we can
use “Sequence” and “Parallel” relations to de-
scribe “And” relations with the execution order
information of the work items.
 Sequence means that the work items need to be
executed following an order.
 Parallel means that the work items can be ex-
ecuted at the same time.
 Or indicates that the user only needs to execute
one of the work items in the group.
 Ungroup releases the existing “group” relation.
When a user does not like an existing group of
work items, the user can use this relation to
show that he/she does not agree to group these
work items together.

Our framework analyzes the relations in resources
graph and infers the work item relations from the
resource graph. Table 1 shows the mapping from
the resource graph to work item relations.
 In Table 1, the “See_also” relation in resource
graph can be use to recommend work items to
users. The user has the option to perform it or

6

ignore it. The “Same_as” relation in the resource
graph indicates that two resources are equal.
Therefore, we convert the “Same_as” relation into
“Or” relation of work items. The siblings of
“Is_a” relation in the resource graph are converted
to “Or” relation since “Is_a” relation shows that
one resource is an instance of another and these
instances have the same features. The elements in
a “Contains” relation in the resource graph is con-
verted to “And” relation in the ad-hoc process.
 Figure 7 gives an example to illustrate the main
idea of inferring work item relations from the
resource graph. In Figure 7, the resources “Hil-
ton”, “Holiday_Inn”, “Flight”, and “Restaurant”
are converted to work items in the ad-hoc process.
In this example, if we trace entire resource graph,
these work items can be implemented by several
tasks which are associated with detailed resources.

Table 1: Infer work item relations from resource
graphs

Relation in resource graph Work item relation

Figure 7: An example of relation inference

3 Conclusion
This paper presents a framework to compose hete-
rogeneous resources on the Web. In our frame-
work, Web resources can be described by the

unified description schema and can be wrapped to
RESTful services. The resources in our frame-
work have semantic relationship and data link
relations between them and can be described in
RDF. RDF also adds a lot of expressiveness with
query languages, transformation languages, and
rule languages bringing more participation from
end-users side. Thus we provide a framework
whereby Internet end-users can compose their
own Internet space, which is defined as a collec-
tion of resources that can be used to feed, filter,
compose, disseminate, and reference information,
data, and services to end-users according their
profile, context, and mode of operation. By ana-
lyzing the relations among services, we can infer
the ad-hoc processes to compose resources. The
way of describing everything in terms of re-
sources solves the integrating issues and drives
the innovation in the end user side.

References

[1] D. Beckett, B. McBride (editors),
“RDF/XML Syntax Specification (Revised),”
W3C Recommendation (2004)

[2] R. Chinnici, J. Moreau, A. Ryman, S. Wee-
rawarana, “Web Service Description Lan-
guage,” W3C Recommendation (2007)

[3] Dublin Core Metadata Initiative,
http://dublincore.org/, last accessed on Octo-
ber 12, 2010

[4] SPARQL Query Language for RDF,
http://www.w3.org/TR/rdf-sparql-query/, last
accessed on October 12, 2010

[5] Gleaning Resource Descriptions from Di-
alects of Languages (GRDDL),
http://www.w3.org/2004/01/rdxh/spec, lat ac-
cessed on October 12, 2010

[6] RIF In RDF, http://www.w3.org/TR/rif-in-
rdf/, last accessed on October 12, 2010

[7] Web Linking, http://tools.ietf.org/html/draft-
nottingham-http-link-header-10#section-4,
last accessed on October 12, 2010

[8] Link Relations, http://www.iana.org/assignm
ents/link-relations/link-relations.xhtml, last
accessed on October 12, 2010

[9] R. Fielding. “Architectural Styles and The
Design of Network-based Software Architec-
tures,” PhD thesis, University of California,
Irvine (2000)

[10] Vinoski, S.: RESTful Web Services Devel-
opment Checklist. Internet Computing,IEEE
12, 96–95 (2008)

