CISC 327 - Software Quality Assurance

Lecture 4

Software Process Evaluation
Software Process Evaluation

• How can we measure software processes?
 – Today we look at methods for evaluating and improving software processes, regardless of which process is being used
 – There are several methods and standards for software process evaluation
 – Most are aimed at improving existing development processes as they are applied, calling maturing them
 – Idea is that as a company or team gains experience with a process, they continually improve it to make it better in their use
The Defect Prevention Process

• DPP - Defect Prevention Process
 – DPP is not itself a software development process, but rather a process for continually improving the development process
 – Modelled on quality assurance techniques used in Japan for decades
The Defect Prevention Process

• Based on three simple steps:
 – Analyze existing defects or errors to trace their root causes in the process (i.e., how they were missed)
 – Suggest preventive actions to eliminate the defect root causes from the process
 – Implement the preventive actions to improve the process
The Defect Prevention Process

- **Formal DPP Reviews**
 - First used at IBM Communications Programming Lab (1985)
The Defect Prevention Process

• 1) Defect Causal Analysis Meeting
 – At end of each stage of development, review and analyze defects that occurred in that stage in a short meeting
 – Developers trace root causes of errors, suggest possible actions for preventing similar errors in future

• 2) Action Team
 – Action team has cross-organization members
 – Evaluates suggested actions, initiates actions across the organization, including development team actions
The Defect Prevention Process

• 3) Process Improvement Team
 – Members of the development team
 – Implements process changes and provides advice for next stage of development

• 4) Stage Kickoff Meeting
 – Development teams meet to review process changes and re-emphasize focus on quality
DPP Applied to Waterfall Model
Process Quality Standards

• **Software Process Assessments and Standards**
 – There are two kinds of process quality standards
 – **Maturity Models**
 • Maturity models attempt to measure how well developed (mature) the software process in a particular organization is, and thus how likely it is to produce quality results
 – **Certification Standards**
 • Certification standards measure an organization's software process against a defined standard, and certify the organization if its process meets the standard
Capability Maturity Model (CMM)

• The SEI Process Capability Maturity Model
 – CMM defines a five-level scale of process maturity, and an organization's software process is assessed as "CMM-1", "CMM-3", "CMM-5" indicating it level on the scale
 – Used by government agencies and companies in the U.S.
 – Assessed using an 85-item questionnaire
Capability Maturity Model (CMM)

• CMM Level 1 - "Initial"
 – Characteristics: chaotic; unpredictable cost, schedule, and quality

• CMM Level 2 - "Repeatable"
 – Characteristics: intuitive; cost and quality highly variable, reasonable control of schedules, ad hoc methods and procedures
 – Key elements: requirements management, project planning, configuration management, quality assurance procedures
Capability Maturity Model (CMM)

- CMM Level 3 - "Defined"
 - Characteristics: qualitative; reliable costs and schedules, improving but unpredictable quality
 - Key elements: process definition and improvement, training program, integrated software management, product engineering, intergroup coordination, peer reviews
Capability Maturity Model (CMM)

• CMM Level 4 - "Managed"
 – Characteristics: quantitative; reasonable statistical control over product quality
 – Key elements: process measurement and analysis, quality management

• CMM Level 5 - "Optimizing"
 – Characteristics: quantitative basis for continual process automation and improvement
 – Key elements: defect prevention, technology innovation, process change management
The CMM Integration (CMMI)

- Integrate practices from four CMMs to generalize (not just for software maturity)
 - Maturity Level 1: Initial
 - Processes are ad-hoc and chaotic
 - Maturity Level 2: Managed
 - Focuses on basic project management
 - Maturity Level 3: Defined
 - Focuses on process standardization
 - Maturity Level 4: Quantitatively Managed
 - Focuses on quantitative management
 - Maturity Level 5: Optimizing
 - Focuses on continuous process improvement
SPR Maturity Assessment

• **Software Productivity Research (SPR) Assessment**
 – Much like [CMM](#), but focuses more broadly on corporate **strategy** and **tactical** issues as well as CMM's issues of software organization and process
 – Also uses a questionnaire, but has **400 questions** as opposed to CMM's 85, and uses a five-point **scale** instead of yes-no answers
 • Excellent, Good, Average, Below Average, Poor
SPR Maturity Assessment

• **SPR Assessment**

 – Assessment uses measures such as:

 • Quality and productivity measurements

 • Experience of programmers in defect removal and testing

 • Project quality and reliability targets

 • Defect removal history in each phase (design, coding, testing, release)
Baldrige Assessment Standard

• Malcolm Baldrige National Quality Award (MBNQA)
 – Originally U.S. Department of Commerce award, given to recognize outstanding achievement in quality management and achievement in any industry
 – Also basis of IBM's Market Driven Quality strategy and the European Quality Award
 – An "examination" for award criteria, companies get a "mark" out of 1,000
Baldrige Assessment Standard

• **MBNQA**

 – 28 examination items, in seven categories: leadership, information and analysis, quality planning, human resources, quality assurance, quality results, customer satisfaction

 – Three evaluation dimensions of each item

 • **Approach**: methods used to achieve the examination item

 • **Deployment**: how well approach is actually applied

 • **Results**: quality of outcome in examination item
Malcolm Baldrige, Jr.

• 26th United States Secretary of Commerce
 – In his prior career as a businessman, he led the conversion of a troubled brass mill to a highly diversified manufacturer of industrial goods
 – His experience with process improvement led to the guidelines in the National Quality Improvement Act of 1987
Impact of the MBNQA

- Evaluated in 2001 for economic benefit
 - Social costs of the program were $119 million
 - Net private benefits to the economy were conservatively estimated at $24.65 billion
 - The social benefit-to-cost ratio was 207-to-1
 - Prior to the quality improvement act, many U.S. businesses either did not believe that quality mattered for them or they did not know where to begin
ISO 9000 Standard

• ISO 9000
 – A set of standards and guidelines for quality assurance management
 – Many customers, especially in Europe, require ISO 9000 registration of their suppliers
 – Companies become ISO 9000 "registered" as a result of a formal audit by ISO
 – ISO 9000 standards are documentation-based

 • Every aspect of every step of every process must be backed up by formal documents in a precisely defined format keeping records of how processes are applied
ISO 9000 Standard

• ISO 90003
 – ISO 90003 gives the standards for software development, supply, and maintenance
 – ISO 90003 specifies 20 elements to be assessed, with detailed requirements for each element
ISO 90003

<table>
<thead>
<tr>
<th>Management responsibility</th>
<th>Inspection, measuring, and test equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality system</td>
<td>Inspection and test status</td>
</tr>
<tr>
<td>Contract review</td>
<td>Control of nonconforming products</td>
</tr>
<tr>
<td>Design control</td>
<td>Corrective action</td>
</tr>
<tr>
<td>Document control</td>
<td>Handling, packaging, delivery</td>
</tr>
<tr>
<td>Purchasing</td>
<td>Quality records</td>
</tr>
<tr>
<td>Purchaser-supplied product</td>
<td>Internal quality audits</td>
</tr>
<tr>
<td>Product identification and traceability</td>
<td>Training</td>
</tr>
<tr>
<td>Process control</td>
<td>Servicing</td>
</tr>
<tr>
<td>Inspection and testing</td>
<td>Statistics</td>
</tr>
</tbody>
</table>
ISO 9000 Standard

• ISO 9000
 – Standards are complex, detailed, and stringent
 – "Say what you do, do what you say, and prove it."

• Example:
 – The documentation standard goes so far as to specify:
 • owner of document must be specified on title page
 • distribution of document must be controlled with an archived master copy, distribution record book, etc.
 • version level must be clearly identified
 • all pages must be consecutively numbered
 • total number of pages must be indicated on title page
 • procedure for destruction of obsolete documents must be documented
ISO 9000 Standard

• ISO 9000
 – Most companies (60-70%) fail the ISO audit the first time
 – Most software companies are deficient in corrective actions and document control
 – Companies take steps to meet the standards in these areas and usually can be registered on the second try
 – Over a million organizations worldwide are independently certified
Criticisms of ISO 9000

• Companies may misunderstand the goal
 – ISO 9000 certification is desirable for getting customers
 – A company must want to apply the knowledge gained from obtaining ISO 9000 certification to improve quality processes
 • It is not enough to simply get the certificate and be done with it!
 • "A company can produce a poor quality product consistently, and with the proper documentation can put an ISO 9000 stamp on it."
Summary

• Software Process Evaluation
 – Software processes can be continually improved using meta-processes such as the Defect Prevention Process
 – Software processes can be evaluated with respect to their maturity or by comparison with a process standard
 – Maturity models include CMM and SPR
 – Process quality standards include Baldrige and ISO 9000
Summary

• Today's References
 – Kan, Metrics and Models in Software Quality Engineering, ch. 2.

• Next Time
 – The 2015 CISC 327 software project
 – Then: The eXtreme Programming software process