Today’s Topics

Last Time

• The parsing problem
• Bottom-up parsers - right sentential forms (RSF), handles, the shift-reduce parsing algorithm, LR parsers

This Time

• Top-down parsers - predictive parsing, backtracking, recursive descent, LL parsers, relation to S/SL
Top-down Parsing

• Opposite of bottom-up (obviously)

• Start with the start symbol (at the top of the parse tree) and attempt to find a leftmost derivation of the input string, working from the top down

• The choice of which production to use next is predictive - based on the next input symbol, we must guess which of a set of possible productions might apply
Top-down Parsing

• Top-down parsing tries to predict (guess) which productions will be needed by looking at the next symbol(s) in the input

• Recall that leftmost derivations have only terminals on the right at each left sentential form (LSF) in the derivation (like RSF’s in reverse, this is consistent with reading input left-to-right)

• A top-down parse does a (forward) leftmost derivation in which at any point in the parse the input symbols that have yet to be read will be in the rightmost part of the LSF
Top-down Parsing - Example

• Example: Given the grammar

\[
\begin{align*}
S & \Rightarrow (A) \\
& \Rightarrow \text{a b} \\
& \text{S S} \\
& \text{b a} \\
& \text{A A}
\end{align*}
\]

and input string (abba)

• Starting with S, we can predict that we need:

\[
\begin{align*}
S & \Rightarrow (A) \Rightarrow (ab) \Rightarrow (ab)
\end{align*}
\]
Top-down Parsing - Example

- Example: Given the grammar

 \[
 S \Rightarrow (A) \\
 A \Rightarrow a b \\
 \]

 \[
 S \Rightarrow S S \\
 A \Rightarrow b a \\
 \]

 \[
 S \Rightarrow A A \\
 \]

 and input string \((abba)\)

- Starting with \(S\), we can predict that we need:

 \[
 S \Rightarrow (A) \Rightarrow (ab) \Rightarrow (ab) \quad \text{Oops! Maybe not ...}
 \]
Backtracking

- As we go along, we may discover that things don’t work out - that is, a guess we made must have been incorrect!

- If so, we have to backtrack to try another guess

- When we backtrack, we must undo input as well as production choices to “rewind” and try another possibility
Backtracking - Example

• Example:

\[
S \Rightarrow (A) \quad A \Rightarrow ab
\]

<table>
<thead>
<tr>
<th>S S S</th>
<th>b a</th>
</tr>
</thead>
<tbody>
<tr>
<td>A A</td>
<td></td>
</tr>
</tbody>
</table>

and input string (abba)

• Starting with S, we predicted that we needed:

\[
S \Rightarrow (A) \Rightarrow (ab) \Rightarrow (ab) \quad \text{Oops! Maybe not}...
\]

• But the A \Rightarrow ab guess didn’t work, so backtrack to try another

\[
S \Rightarrow (A) \quad \text{Backtrack and try again}
\]

\[
S \Rightarrow (A) \Rightarrow (AA) \quad \text{Try } A \Rightarrow AA
\]

\[
S \Rightarrow (A) \Rightarrow (AA) \Rightarrow (abA) \Rightarrow (abA) \Rightarrow (abba) \Rightarrow (abba)
\]
Backtracking Problems

• Backtracking may in general require that many production applications be reversed, not just one - sometimes must backtrack all the way to the start symbol and beginning of input

• As we backtrack, we eventually must try all of the other possible choices at each level of the grammar - a given input symbol may match the beginning of many possible productions, making backtracking exponentially expensive in general

• Some (recursive) grammars may involve an unbounded number of possible productions for some leading inputs

• Top down parsing is (of course) not normally used in this general form (although sometimes it is - e.g. in source code transformation systems such as TXL, ANTLR and COLM)
Recursive Descent Parsers

- A simple implementation of top-down parsers involves implementing each nonterminal directly as a recursive boolean function

\[
S \rightarrow 1 \ B \ 0 \\
| \ 0 \ B \ 1
\]

\[
B \rightarrow 10 \\
| \ 11
\]

```plaintext
function S : boolean
  if (next = "1") then \% 1B0
    advance
    if B then
      if next = "0" then
        advance
        return true
      end if
    end if
  end if
  elsif next = "0" then \% 0B1
    advance
    if B then
      if next = "1" then
        advance
        return true
      end if
    end if
  end if
  return false
end S
```

```plaintext
function B : boolean
  const save := pointer
  if next = "1" then \% 10
    advance
    if next = "0" then
      advance
      return true
    end if
  end if
  elsif next = "0" then \% 0B1
    pointer := save \% backup
    if next = "1" then \% 11
      advance
      if next = "1" then
        advance
        return true
      end if
    end if
    pointer := save \% backup
    return false
  end if
end B
```
Problems with Top-down Parsers

- *Left recursion* in the grammar causes problems for top down parsers
 \[E \rightarrow E + T \]
 \[\mid T \]

- In a recursive descent implementation this would result in the infinite
 recursion
 \[\text{function } E : \text{ if } E \text{ then } \ldots \]

- As with shift-reduce LR parsers, this situation can be resolved by
 changing the grammar to adapt to limitations of the method
 \[E \rightarrow T E' \]
 \[E' \rightarrow + T E' \]
 \[\mid \varepsilon \]

- More generally, for any *direct* left recursion, we replace
 \[A \rightarrow A X \quad \text{with} \quad A \rightarrow Y A' \]
 \[\mid Y \]
 \[A' \rightarrow X A' \]
 \[\mid \varepsilon \]

- *Indirect* left recursion has a more complex solution
Avoiding Backtracking

• Besides being inefficient in making bad guesses, backtracking also has the practical difficulty that any output of the parser must be undone as well as the input - not that easy

• So in general if top-down recursive descent parsing is to be practical, we must avoid backtracking

• Deterministic recursive descent parsing occurs when there is no possibility of backtracking
Avoiding Backtracking

• We achieve this by limiting the grammar

• For each nonterminal A, for each legal leading input string X of A, there must be a unique A_i in the right hand sides for A

$$ A \rightarrow A_1 \]

| A_2 such that $A_i \Rightarrow^* XY$
| A_3 where $X \in T^*$, $Y \in (N \cup T)^*$

| A_n

• In other words, if we are guessing which production of A to use when the remaining input begins with the string of symbols X, there’s only one possibility

• Note that the string X need not be directly in the production, only derived by it
Practical Recursive Descent Parsers

• A practical recursive descent parser that implements grammars with this limitation is called a *deterministic recursive descent* parser.

• This is a very common parsing method used in parsers for *scripting language* interpreters and other “lightweight” language implementations.

• We can think of *SL* in this way (although as we’ll see the recognition power of *SL* is not limited to this language class).
LL Parsers

• A class of grammars that meets the deterministic top-down limitation is called the LL grammars
 (Left-to-right scan of input, Leftmost derivation)

• If the maximum length of the leading terminal strings \(X \) in a grammar meeting the limitation is \(k \) symbols, then we have an \(LL(k) \) grammar

• If the \(X \)'s are each a single terminal symbol (i.e. we can decide for certain which production to apply next by looking at only the next input token) then we have an \(LL(1) \) grammar

• \(LL(k) \) languages are a subset of the \(LR(k) \) languages
SL Parsers

- **SL**, the pure parsing subset of S/SL, is a lot like **LL(1)** because each choice can depend only on a single next input symbol.

- However, **SL** also has **rule choices**, which **LL(1)** parsers do not.

- This gives **SL** parsers the power to parse languages that are not **LL(k)** languages.

```
AssignmentOrLabel: @Variable
    [@ColonOrAssign ColonOrAssign >> Boolean :
        '':
        [ @Expression
        | *:
    ];
```

```
ColonOrAssign: true:
    @ColonOrAssign:
        '=':
        true:
        @Expression:
        *:
        false:
    ];
```
Language Class of SL Parsers

- Rule choices increase the parsing power of SL to handle the same set of languages as LR(k) - that is, more than LL(k), and all of the deterministic context-free languages.

- This does not imply grammar equivalence - in each case, the grammar must be structured to meet the constraints of the parsing method (LR(k), LL(k), SL).

- There is a simple constructive proof (Barnard & Cordy 1988) that SL ↔ LR(k), based on a previous proof that LR(k) ↔ LR(1) and the translation of LR(1) transition matrices to SL programs.
SL Parsers

• Advantages of SL parsers:
 • Efficient
 • Easy to modify
 • Transparent parse algorithm
 • Excellent syntax error recovery

• Disadvantages:
 • Not completely automated
 • BNF grammars not used directly
Summary

Top-down Parsers

• Top-down parsers attempt to build the parse tree for the input by guessing which production should be applied next based on looking at the next few input symbols
• May have to backtrack when guess later turns out to be wrong
• Practical deterministic recursive descent top-down parsers solve this problem by limiting grammars to those where a correct guess can always be made (the LL(k) grammars)
• SL is like LL(1), but like LR(k) can handle all deterministic context free languages

Next Time

• Constructing parsers in SL
• Syntax error recovery and repair