
CISC 458 Winter 2020 Lecture 24© 2020 J.R. Cordy

Last Time

• Two tasks left - storage allocation and code generation

• In order to allocate storage and generate code for a target
machine, we need to choose representations of the abstract
machine structures - this depends on the target machine

• Choice of representation is the single biggest
factor in determining the quality of code we can generate

• There are several classes of target machines, for which we need
to make different representation decisions - stack machines,
register machines, RISC machines, fixed vs windowed registers

CISC 458 Winter 2020 Lecture 24© 2020 J.R. Cordy

Recall ...

• Run Time Model – 5 stacks
• Expression Stack – expression evaluation
• Run Stack – storage allocation
• Display – scope management
• Dynamic Pointer Stack – restoring Run Stack and Display
• Return Stack – remember program counter for call/return

Run Stack Expression
Stack

Return
Stack

Display Dynamic
Pointer
Stack

Mark Register

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

Representing the RunTime Model

• Representations of the ES, RS and Display are the most critical
because they are the most used
(in every expression, every variable reference)

• This time we look at representing these on different classes of
machines

• Keep in mind we are facing tradeoffs - often the easiest or most
obvious choice yields the worst generated code!

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

Implementing the Expression Stack

• Our task is to map the structures of the abstract machine to the
registers, stacks, memory, instructions and operands
of the target computer

• Recall that the Expression Stack is the stack used to evaluate the
values of all expressions, and to do most computation -
so we should choose to represent it using the most efficient
resources of the target computer

• If the target computer has no registers and a fast built-in hardware
stack (e.g., Burroughs B5500) then this is easy - we just
represent the ES using the hardware stack, and we are done

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

• If the target computer has many general purpose registers (e.g., VAX,
IBM/360, all RISC computers), then we can implement the ES
using a subset of registers that we manage as if it were a stack

• Example: IBM/360 (Z-series) mainframe:

pushaddress a LA R1,a
push b L R2,b
push c L R3,c
add AR R3,R2
assign ST R2,0(R1)

• In practice the ES rarely goes deeper than about 3 or 4 deep, so we
can use just 3 or 4 registers - but since we need to handle any
expression (otherwise we're not a very good compiler), we must
be prepared to either arrange that we never use more than the 3
or 4 (this is provably possible) or we need to have a backup strategy

• The backup strategy typically reserves some space on a memory stack
or in global memory to represent elements of the ES that overflow

Implementing the Expression Stack

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

• If the target computer has few registers, but also has a memory stack
(e.g., PDP-11, Intel x86), then there are often not enough
registers to implement the entire ES

• In this case we can allocate only one or two registers for the ES,
and arrange that the registers represent the top two elements
of the ES while the lower elements are pushed on the memory
stack

• On Intel x86 computers registers are particularly scarce, so compilers
often use an accumulator model, where only the top element of
the ES is represented in a register - this model works like a
simple calculator, where the current display value is operated
on by each operation

• On these machines if speed is less important and space is tight,
then the hardware stack is used exclusively (no registers) -
this is only possible on architectures that permit direct memory
to memory operations (e.g., PDP-11, VAX, NS32000)

Implementing the Expression Stack

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

Implementing the Run Stack - Static Variables

• Recall that in our abstract machine model, the Run Stack
represents the storage for all variables in the program

• Static variables are global variables that persist the entire
time the program is running - these are the variables at LL0

• Most computers have the idea of a global data segment and
all have addressing modes that allow access to static
addresses in memory

• Some have addressing modes to access memory at absolute
addresses (e.g., VAX, PDP-11, MC68000, PowerPC, x86) -
on these computers we can simply represent LL0 variables
at permanent absolute addresses

• Example: PDP-11

.data .text
a: .word 0 mov a,r1

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

Implementing the Run Stack - Static Variables

• Other computers use a dedicated register called the static base to
point to the start of the global variable space in memory, and all
access to global variables is indirect through the static base

• Examples of machines using this technique are the IBM/360 (which
may have multiple static bases) and the NS32000

• One way to envision this is that the static base register simply
represents Display[0]

Global
Vars

Static Base

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

Implementing the RS - Automatic Variables

• Automatic variables require that we actually implement a memory
stack to represent the Run Stack - if the architecture does not
provide a memory stack, then we build one using code

• Many architectures actually have a memory stack concept built in
(e.g., PDP-11, x86, VAX, PowerPC, etc.) - in these
architectures, we (obviously) use the stack for automatic variables

• For machines without a stack (e.g., IBM/360), we allocate a section of
memory to serve as the stack, and dedicate a general purpose
register to act as the stack pointer - push and pop from the stack is
implemented by generating instructions to add or subtract from
the stack pointer register

• The direction that the stack operates is not the same on all
architectures - on most architectures the stack is at the top of
memory and grows down, but on others, the reverse is true

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

Implementing the Display

• If our implementation of Run Stack storage is to be effective, we
must also choose an implementation of the Display (so that
(LL,ON) addressing can be implemented)

• Because we implement global variables (those at LL0) in static
memory, we don't need to represent Display[0]

• For some languages (such as Fortan and C) we need only
support two lexical levels - LL0 in static memory, and LL1,
the current procedure's local variables, on the stack - in this
case there is no need to represent the Display at all, if we use
the stack pointer itself as a (backwards) base (this trick is used
by most C compilers)

• If the programming language does not support recursion, as is
the case for PT Pascal, then there can be at most one instance
of the local variables of a procedure or module - this means
that all variables can be allocated statically as globals, and
there is no need for a memory stack or Display at all!

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

Implementing the Display

• For the more general case (full Pascal, PL/I, ADA, etc.) the
Display must somehow be mapped to the target hardware

• Two general techniques are used: Display registers and
stack based Displays

• At compile time, we know the maximum lexical level used in the
program (the deepest that code is nested) - if our machine has
plenty of registers, we can dedicate some of them (Max LL - 1)
to represent the elements of the Display - we call these the
Display registers - this is currently the most common technique

• On machines with a limited number of registers we can either
impose an implementation limit on the depth of nesting we will
permit (not a very good solution) or we can represent the
Display as an array in memory and load Display entries into a
register as we need them

• To save the previous value of a Display pointer on entry to a
procedure, we push the previous value on the stack as an extra
local variable and restore it when we return

CISC 458 Winter 2020 Lecture 24© 2020 J.R. Cordy

Implementing the Display

There are a variety of ways in which the Display can be represented
as part of the memory stack itself

One way is to represent the entire Display at the bottom of the
current local stack frame in memory - one register locates the stack

frame, and all other Display entries can be fetched from there

Another way is to chain the Display entries together, so that each
scope on the stack has a pointer to the scope one LL down

LL k

Local Scope
Register

LL k-1

LL k

Local Scope
Register

LL k-1

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

Summary

• In order to allocate storage and generate code for a target
machine, we must first choose representations of the abstract
machine structures

• The most critical decisions are the representations of the ES, the
RS and the Display - these choices will largely determine the
quality of code we can generate

• On most modern machines, both the ES and the Display are
represented using registers, while the RS is represented using
the machine's memory stack

• If the machine has no memory stack, we generate code to fake
one using general purpose register as a pointer into a section
of memory allocated to be our stack space

• If the machine has only a couple of registers, we use only one to
locate the local scope and store the other Display entries in
memory

CISC 458 Winter 2020 Lecture 24

© 2020 J.R. Cordy

Next Time

• Next Week
• Quiz #3 - runtime model of scopes and storage,

arrays and records, call/return, semantic analysis,
the symbol and type stacks, semantic mechanisms,
symbol tables, scope control

(Chapters 12-16, Lectures 14-22, inclusive)

• Then
• Storage Allocation & Code Generation

CISC 458 Winter 2020 Lecture 24© 2020 J.R. Cordy

