Properties of the Integers

Let \(a, b \in \mathbb{Z} \) then

1. if \(c = a + b \) then \(c \in \mathbb{Z} \)
2. if \(c = a - b \) then \(c \in \mathbb{Z} \)
3. if \(c = (a)(b) \) then \(c \in \mathbb{Z} \)
4. if \(c = a/b \) then \(c \in \mathbb{Q} \)

If \(a \) & \(b \) are integers the quotient \(a/b \) may not be an integer. For example if \(c = 1/2 \), then \(c \) is not an integer. On the other hand with \(c = 6/3 \) then \(c \) is an integer.

We can say that \textit{there exists} integers \(a,b \) such that \(c = a/b \) is not an integer.

We can also say that \textit{for all} integers \(a,b \) we have \(c = a/b \) is a rational number.
Divisibility

Let $a, b \in \mathbb{Z}$, $a \neq 0$.
If $c = \frac{b}{a}$ is an integer,
or alternately if $c \in \mathbb{Z}$ such that $b = ca$
then we say that a divides b or equivalently,
b is divisible by a, and this is written

\[a \mid b \]

NOTE: Recall long division:

```
  Quotient  015
  Divisor   32  487
  Dividend  48 32 167 160
  Remainder 7
```
Referring to the long division example, $a = 32$, is the divisor $b = 487$ is the dividend. The quotient $q = 15$ and the remainder $r = 7$.
In this case a does not divide b or equivalently b is not divisible by a.

This can be notated as:

$$a \nmid b$$

and we can write $a = bq + r$ or, $487 = (32) (15) + 7$

Division Algorithm Theorem

Let $a, b \in \mathbb{Z}, b \neq 0$ there exists $q, r \in \mathbb{Z}$, such that:

$$a = bq + r, \quad 0 \leq r \leq |b|$$
NOTE: The remainder in the Division Algorithm Theorem is always positive. Therefore for values

\[a = 22, \ b = 7, \text{ and } a = -22, \ b = -7 \text{ we get} \]

\[22 = (7)(3) + 1 \]

but

\[-22 = (-7)(4) + 6. \]
Divisibility

Suppose on the other hand that we have \(a = 217 \) and \(b = 7 \). We have \(217 = (31)(7) + 0 \) so we conclude that \(b \mid a \).

\[
\begin{array}{c}
31 \\
7 \mid 217 \\
21 \\
07 \\
7 \\
0
\end{array}
\]
Divisibility Theorems.

Let \(a, b, c \in \mathbb{Z} \). If \(a \mid b \) and \(b \mid c \) then \(a \mid c \).

Suppose \(a \mid b \) then there exists an integer \(j \) such that

\[(1) \ b = aj\]

Similarly if \(b \mid c \) then there exists an integer \(k \) such that

\[(2) \ c = bk\]

Replace \(b \) in equation (2) with \(aj \) to get

\[(3) \ c = ajk\]

And thus we have proved that if \(a \mid b \) and \(b \mid c \) then \(a \mid c \).
Divisibility Theorems.

Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ then $a \mid bc$.

Since $a \mid b$ there exists an integer j such that $b = aj$, and $bc = ajc$ for all (any) $c \in \mathbb{Z}$.

It should be obvious that $a \mid ajc$ ($\frac{ajc}{a} = jc$ is an integer)

so $a \mid bc$.
Divisibility Theorems.

Let $a,b,c \in \mathbb{Z}$. If $a \mid b$ and $a \mid c$. Then $a \mid (b + c)$ and $a \mid (b - c)$.

Since $a \mid b$ there exist $a j \in \mathbb{Z}$ such that $b = aj$.

Since $a \mid c$ there exist $a k \in \mathbb{Z}$ such that $c = ak$.

Therefore $b + c = (aj + ak) = a(j + k)$.

Obviously $a \mid a(j + k)$ so $a \mid (b + c)$.

Similarly $a \mid a(j - k)$ so $a \mid (b - c)$.
Notation

The absolute value of a denoted by $|a|$ is defined as:

- $|a| = a$ if $a \geq 0$
- and $|a| = -a$ if $a < 0$.

Divisibility Theorems.

If $a | b$ then $|a| \leq |b|$.

If $a | b$ and $b | a$ then $|a| = |b|$.

If $a | 1$ then $|a| = 1$.
Prime Numbers
A positive integer $p > 1$ is called a prime number if its only divisors are 1, -1, and p, -p.

The first 10 prime numbers are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...

If an integer $c > 2$ is not prime, then it is composite. Every composite number c can be written as a product of two numbers a, b such that $a, b \not\in \{1, -1, c, -c\}$.
Determining whether a number, \(n \), is prime or composite is a difficult computationally. A simple method (which is in essence of the same computational difficulty as more sophisticated methods) checks all integers \(k, \ 2 \leq k \leq \sqrt{n} \) to determine divisibility.

Example: Let \(n = 143 \)

- 2 does not divide 143
- 3 does not divide 143
- 4 does not divide 143
- 5 does not divide 143
- 6 does not divide 143
- 7 does not divide 143
- 8 does not divide 143
- 9 does not divide 143
- 10 does not divide 143
- 11 divides 143, \(11 \times 13 = 143 \)
Theorem: Every integer \(n > 1 \) is either prime or can be written as a product of primes.

For example:

\[
12 = 2 \times 2 \times 3.
\]

17 is prime.

\[
90 = 2 \times 5 \times 3 \times 3.
\]

143 = 11 \times 13.

147 = 3 \times 7 \times 7.

330 = 2 \times 5 \times 3 \times 11.

Note: If factors are repeated we can use exponents.

\[
48 = 2^4 \times 3.
\]