1. Consider the following relations on the set $A = \{1, 2, 3, 4\}$: $R = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$, $\emptyset = \{\}$, $A^2 = A \times A$.

(a) (3) List the relations from above that are reflexive and justify your answer.
 R is reflexive because $(a, a) \in R$ for all $a \in A$.
 A^2 is reflexive because $(a, a) \in A^2$ for all $a \in A$.
 \emptyset is not reflexive because $(1, 1) \notin \emptyset$.

(b) (3) List the relations from above that are symmetric and justify your answer.
 \emptyset is symmetric because there are no pairs of the form (a, b).
 R and A^2 are symmetric because for every pair $(a, b), a, b \in A$ we have the pair (b, a).

(c) (3) List the relations from above that are antisymmetric and justify your answer.
 R, \emptyset are antisymmetric because there are no pairs of the form $(a, b), a \neq b, a, b \in A$.
 A^2 is not antisymmetric because $\{(1, 2), (2, 1)\} \subset A^2$.
2. (6) Consider the relation $R = \{(a, b) \in \mathbb{N}^2 : |a - b| \leq 2\}$. For example $(1, 3) \in R$ and $(3, 1) \in R$ but $(1, 4) \notin R$. Is R an equivalence relation? Explain your answer.

An equivalence relation must be reflexive, symmetric and transitive. R is not transitive because $|1 - 3| \leq 2$ and $|3 - 5| \leq 2$ but $|1 - 5| \notin 2$.

3. (6) Let $n \in \mathbb{N}$ and $P(n)$ be the proposition:

$$\sum_{i=1}^{n} 2^i = 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 2$$

Use mathematical induction to prove that $P(n)$ is true for all $n \in \mathbb{N}$.

Base: $n = 1, 2 = 2^2 - 2$.

Induction Hypothesis: $P(k)$ is true, that is:

$$\sum_{i=1}^{k} 2^i = 2^{k+1} - 2$$

Induction Step: Show that $P(k)$ true can be used to prove that $P(k + 1)$ is true.

$$\sum_{i=1}^{k+1} 2^i = \sum_{i=1}^{k} 2^i + 2^{k+1}$$

$$= 2^{k+1} - 2 + 2^{k+1}$$

$$= 2^{k+2} - 2$$
4. (6) Let $P(n)$ be the proposition

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \cdots + \frac{1}{n \times (n + 1)} = \frac{n}{n + 1}$$

Use mathematical induction to prove that $P(n)$ is true for all $n \in \mathbb{N}$.

Base: $n = 1$, $\frac{1}{1 \times 2} = \frac{1}{2}$.

Induction Hypothesis: $P(k)$ is true, that is:

$$\sum_{i=1}^{k} \frac{1}{i(i + 1)} = \frac{k}{k + 1}$$

Induction Step: Show that $P(k)$ true can be used to prove that $P(k + 1)$ is true.

$$\begin{align*}
\sum_{i=1}^{k+1} \frac{1}{i(i + 1)} &= \sum_{i=1}^{k} \frac{1}{i(i + 1)} + \frac{1}{(k + 1)(k + 2)} \\
&= \frac{k}{k + 1} + \frac{1}{(k + 1)(k + 2)} \\
&= \frac{k(k + 2) + 1}{(k + 1)(k + 2)} \\
&= \frac{k^2 + 2k + 1}{(k + 1)(k + 2)} \\
&= \frac{(k + 1)(k + 2)}{(k + 1)(k + 2)} \\
&= \frac{k + 1}{k + 2}
\end{align*}$$
5. Let \mathbb{R}^+ denote the positive real numbers. Consider the function $f : \mathbb{R} \to \mathbb{R}^+$ such that $f(x) = 2^x$, as plotted below.

![Graph of $f(x) = 2^x$.](image)

Figure 1: $f(x) = 2^x$

(a) (2) Is f a one-to-one function? Explain why or why not?

f is one-to-one because there is a unique image for every $x \in \mathbb{R}$, that is, if $f(x_1) = f(x_2)$ then $x_1 = x_2$.

(b) (2) Is f an onto function? Explain why or why not?

f is an onto function because every element in \mathbb{R}^+ has a pre-image in \mathbb{R}.

(c) (2) Is f a bijective function? Explain why or why not?

f is a bijective function because f is both one-to-one and onto.