Please work on these problems and be prepared to share your solutions with classmates in class next week. Assignments will not be collected for grading.

Readings

Read chapter 4 of *Schaum’s Outline of Discrete Mathematics*.
Read section 3.1, 3.5 and 3.6 of *Discrete Mathematics Elementary and Beyond*.

Problems

(1) Prove (using mathematical induction on \(n \)) that:

\[
\sum_{m=0}^{n} \binom{m+1}{m} = \binom{n+2}{n}
\]

is true for all \(n \in \mathbb{N} \).

(2) Use a truth table to verify that the proposition \(p \lor \neg(p \land q) \) is a tautology, that is, the expression is true for all values of \(p \) and \(q \).

(3) Use a truth table to verify that the proposition \((p \land q) \land \neg(p \lor q) \) is a contradiction, that is, the expression is false for all values of \(p \) and \(q \).

(4) Use a truth table to show that \(p \lor q \equiv \neg(\neg p \land \neg q) \)

(5) Show that the following argument is valid.

\[p \implies q, \neg q \vdash \neg p \]

(6) Let \(A = \{1, 2, 3, 4, 5\} \). Determine the truth value of each of the following statements.

\begin{enumerate}
 \item (a) \(\exists x \in A \)(\(x + 2 = 7 \))
 \item (b) \(\forall x \in A \)(\(x + 2 < 8 \))
 \item (c) \(\exists x \in A \)(\(x + 3 < 2 \))
 \item (d) \(\forall x \in A \)(\(x + 3 \leq 9 \))
\end{enumerate}

(7) Let \(A = \{1, 2, 3, 4, 5\} \). And let \((x, y) \in A^2 \), be the domain of the propositions given below. Determine the truth value of the following statements.

\begin{enumerate}
 \item (a) \(\exists x \forall y, x^2 < y + 1 \)
 \item (b) \(\forall x \exists y, x^2 < y + 1 \)
\end{enumerate}