CISC-102 WINTER 2020

HOMEWORK 5

Assignments will **<u>not</u>** be collected for grading.

Readings

Read sections 2.1, 2.2, 2.3, of Schaum's Outline of Discrete Mathematics.

Problems

- (1) Consider the following relations on the set $A = \{1, 2, 3\}$:
 - $R = \{(1,1), (1,2), (1,3), (3,3)\},\$
 - $S = \{(1,1), (1,2), (2,1), (2,2), (3,3)\},\$
 - $T = \{(1,1), (1,2), (2,2), (2,3)\},\$
 - $A \times A$.

For each of these relations determine whether it is symmetric, antisymmetric, reflexive, or transitive.

- (2) Explain why each of the following binary relations on the set $S = \{1, 2, 3\}$ is or is not an equivalence relation on S.
 - (a) $R = \{(1,1), (1,2), (3,2), (3,3), (2,3), (2,1)\}$
 - (b) $R = \{(1,1), (2,2), (3,3), (2,1), (1,2), (3,2), (2,3), (3,1), (1,3)\}$
 - (c) $R = \{(1,1), (2,2), (3,3), (3,1), (1,3)\}$
- (3) Consider a relation W on the set \mathbb{Z} defined as: $W = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x^2 = y^2\}$. Show that W is an equivalence relation. Let n be an arbitrary integer What are the elements of the equivalence class [n].
- (4) Let $A = \{1, 2, 3\}$ and $B = \{1, 2\}$. We can define a relation on the powerset of A, P(A), as $\mathbb{R} = \{(X, Y) \in P(A) \times P(A) : X \cap B = Y \cap B\}$. Show that \mathbb{R} is an equivalence relation. What is the partition of P(A) with respect to \mathbb{R} ?
- (5) Let R be a relation on the set of Natural numbers such that $(a, b) \in \mathbb{R}$ if $a \ge b$. Show that the relation R on N is a partial order.
- (6) Which of the following relations on the set $S = \{1, 2, 3, 4, 5, 6\}$ is a function?
 - $\mathbf{R} = \{(1,1), (2,2), (3,2), (4,2), (5,3), (6,3)\}$
 - S = {(1,1), (2,2), (3,2), (4,2), (5,3), (6,3), (1,4) }
 - T = {(1,1), (2,2), (3,3), (4,4) }
 - $S \times S$