CISC-102 Winter 2017

Quiz 2

Solutions

1. A bijection is a function that is both one-to-one and onto. Neither of the following functions are bijections. For each case explain why it is not a bijection.

(a) \(f : \mathbb{R} \mapsto \mathbb{R} \) such that \(f(x) = x^2 - 7 \).
 \(f(x) = x^2 - 7 \) is not one-to-one because \(f(x) = f(-x) \). \(f(x) = x^2 - 7 \) is not onto because any value less than -7 is not an image.

(b) \(f : \mathbb{Z} \mapsto \mathbb{Z} \) such that \(f(x) = |x| - 7 \).
 \(f(x) = |x| - 7 \) is not one-to-one because \(f(x) = f(-x) \). \(f(x) = |x| - 7 \) is not onto because any value less than -7 is not an image.

(c) \(f : \mathbb{Z} \mapsto \mathbb{Z} \) such that \(f(x) = x^3 - x \).
 \(f(x) = x^3 - x \) is not one-to-one because \(f(1) = f(0) = 0 \).

2. (4) Consider a mapping \(M : A \mapsto B \), such that \(M \) is \(A \times B \). Provide an example of non-empty sets \(A \) and \(B \) so that \(M \) is a function.
 \(B \) needs to have exactly one element, otherwise \(A \times B \) is not a function. A possible example \(A = B = \{1\} \), yielding the function \(\{(1,1)\} \).

3. Let \(R_1 \) be a relation on \(\mathbb{Z} \setminus \{0\} \) such that \((a,b) \in R_1 \) if \(a \times b > 0 \).

 (a) (2) Is \(R_1 \) reflexive? Explain your answer.
 \(R_1 \) is reflexive because \(a^2 > 0 \) for all \(a \in \mathbb{Z} \setminus \{0\} \).

 (b) (2) Is \(R_1 \) symmetric? Explain your answer.
 \(R_1 \) is symmetric because \(a \times b = b \times a \) for all \(a, b \in \mathbb{Z} \setminus \{0\} \).

 (c) (2) Is \(R_1 \) antisymmetric? Explain your answer.
 \(R_1 \) is not anti-symmetric because \(a \times b = b \times a \) for all \(a, b \in \mathbb{Z} \setminus \{0\} \) and in particular when \(a \neq b \).

 (d) (2) Is \(R_1 \) transitive? Explain your answer.
 \(R_1 \) is transitive because \(a \times b > 0 \) and \(b \times c > 0 \) implies that \(a \times c > 0 \) for all \(a, b, c \in \mathbb{Z} \setminus \{0\} \). (In essence all three must be positive or all three must be negative.)
NOTE: R_1 is an equivalence relation partitioning $\mathbb{Z}\setminus\{0\}$ into two classes, positive integers, and negative integers.

4. Let R_2 be a relation on \mathbb{N} such that $(a, b) \in R_2$ if $a|b$.

 (a) (2) Is R_2 reflexive? Explain your answer.
 R_2 is reflexive because $a|a$ for all $a \in \mathbb{N}$.

 (b) (2) Is R_2 symmetric? Explain your answer.
 R_2 is not symmetric because $1|2$ but $2 \nmid 1$.

 (c) (2) Is R_2 antisymmetric? Explain your answer.
 R_2 is anti-symmetric because if $a|b$ and $b|a$ then $a = b$ for all $a \in \mathbb{N}$.

 (d) (2) Is R_2 transitive? Explain your answer.
 R_2 is transitive because if $a|b$ and $b|c$ then $a|c$ for all $a, b, c \in \mathbb{N}$.

 NOTE: R_2 is a partial order.

5. (4) The Division Algorithm Theorem can be stated as:
Let $a, b \in \mathbb{Z}, b \neq 0$, then there exists $q, r \in \mathbb{Z}$, such that: $a = bq + r, 0 \leq r < |b|$.
Show using the Division Algorithm theorem, that if $a|b$ and $a|c$ then $a|(b - c)$.
a|b and a|c implies that there exists integers p_b and p_c such that $b = p_b \times a$ and $c = p_c \times a$. Therefore $b - c = a(p_b - p_c)$, and we easily conclude that $a|(b - c)$.

6. (6) Consider the following recursively defined function

$$
\begin{align*}
 f(1) & = 1 \\
 f(n) & = f(n-1) \times n \text{ for } n \in \mathbb{N}, n > 1.
\end{align*}
$$

Use mathematical induction to prove that $f(n) = n!$ for all $n \in \mathbb{N}$.

The first form of induction will suffice.

Base: $f(1) = 1!$

Induction Hypothesis: Assume that $f(k) = k!$ for some fixed value $k, k \geq 1$

Induction Step:

$$
\begin{align*}
 f(k + 1) & = f(k) \times (k + 1) \text{(using the definition of the function } f) \\
 & = k! \times (k + 1) \text{(using the induction hypothesis)} \\
 & = (k + 1)! \quad \square
\end{align*}
$$