CISC-102 WINTER 2020

HOMEWORK 3 SOLUTIONS

(1) Mathematical induction can be used to prove that the sum of the first n natural numbers is equal to $\frac{n(n+1)}{2}$. This can also be stated as:

We can prove that the proposition P(n),

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

is true for all $n \in \mathbb{N}$, by using mathematical induction.

I wrote out the proof, but somehow it got all scrambled as shown below. Rearrange the lines to get the correct proof.

- 1. **Induction step:** The goal is to show that P(k+1) is true.
- 2. **Base:** for $n = 1, 1 = \frac{1(1+1)}{2}$
- $3. = \frac{(k+1)(k+2)}{2}$
- 4. $\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$
- $5. = \frac{k^2 + k + 2k + 2}{2}$
- 6. **Induction hypothesis:** Assume that P(k), for Natural numbers $k \geq 1$ is true, that is:

1

- $7. = \frac{k^2 + 3k + 2}{2}$
- 8. $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$

$$9. = \frac{k(k+1)}{2} + (k+1)$$

The correct order is:

- 2.
- 6.
- 8.
- 1.
- 4.
- 9.
- 5.
- 7.
- 3.

I will now spell it out for easier readability.

- 2. **Base:** for n = 1, $1 = \frac{1(1+1)}{2}$
- 6. Induction hypothesis: Assume that P(k), for Natural numbers $k \geq 1$ is true, that is:
- 8. $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$
- 1. **Induction step:** The goal is to show that P(k+1) is true.
- 4. $\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$
 - $9. = \frac{k(k+1)}{2} + (k+1)$
 - $5. = \frac{k^2 + k + 2k + 2}{2}$
 - $7. = \frac{k^2 + 3k + 2}{2}$
 - $3. = \frac{(k+1)(k+2)}{2}$
- (2) Prove using mathematical induction that the proposition P(n),

$$\sum_{i=2}^{n} i = \frac{(n-1)(n+2)}{2}$$

is true for all $n \in \mathbb{N}, n \geq 2$

Base: for n = 2, $2 = \frac{1(2+2)}{2}$

Induction hypothesis: Assume that P(k) is true, that is:

$$\sum_{i=2}^{k} i = \frac{(k-1)(k+2)}{2}.$$

for $k \geq 2$.

Induction step: The goal is to show that P(k+1) is true, that is:

$$\sum_{i=2}^{k+1} i = \frac{(k)(k+3)}{2}.$$

Consider the sum

$$\sum_{i=2}^{k+1} i = \sum_{i=2}^{k} i + (k+1) \text{(arithmetic)}$$

$$= \frac{(k-1)(k+2)}{2} + (k+1) \text{(Use the induction hypothesis)}$$

$$= \frac{k^2 + k - 2 + 2k + 2}{2} \text{(get common denominator and add)}$$

$$= \frac{k^2 + 3k}{2} \text{(arithmetic)}$$

$$= \frac{k(k+3)}{2} \text{(factor to arrive at goal)}$$

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}, n \ge 2$.

(3) Prove using mathematical induction that the proposition P(n),

$$\sum_{i=3}^{n} i = \frac{(n-2)(n+3)}{2}$$

is true for all $n \in \mathbb{N}, n \geq 3$

Base: for n = 3, $3 = \frac{(3-2)(3+3)}{2}$

Induction hypothesis: Assume that P(k) is true, that is:

$$\sum_{k=3}^{k} i = \frac{(k-2)(k+3)}{2}.$$

for $k \geq 3$.

Induction step: The goal is to show that P(k+1) is true, that is:

$$\sum_{i=3}^{k+1} i = \frac{(k-1)(k+4)}{2}.$$

Consider the sum

$$\sum_{i=3}^{k+1} i = \sum_{i=3}^{k} i + (k+1) \text{(arithmetic)}$$

$$= \frac{(k-2)(k+3)}{2} + (k+1) \text{(Use the induction hypothesis)}$$

$$= \frac{k^2 + k - 6 + 2k + 2}{2} \text{(get common denominator and add)}$$

$$= \frac{k^2 + 3k - 4}{2} \text{(arithmetic)}$$

$$= \frac{(k-1)(k+4)}{2} \text{(factor to arrive at goal)}$$

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}, n \geq 3$.

(4) Prove using mathematical induction that the proposition P(n)

$$n! \le n^n$$

is true for all $n \in \mathbb{N}$.

Base: for $n = 1, 1! = 1 = 1^1$

Induction hypothesis: Assume that P(k) is true, that is:

$$k! \le k^k$$

for $k \geq 1$.

Induction step: The goal is to show that P(k+1) is true, that is:

$$(k+1)! \le (k+1)^{k+1}$$
.

We have:

$$(k+1)! = k!(k+1)$$
 (Definition of factorial)
 $\leq k^k(k+1)$ (Use the induction hypothesis)
 $\leq (k+1)^k(k+1)$ (because $k \leq k+1$)
 $= (k+1)^{k+1}$ (multiply)

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}$. \square

(5) Given a set of n points on a two dimensional plane, such that no three points are on the same line, it is always possible to connect every pair of points with a line segment. The figure illustrates this showing 5 points, that are pairwise connected with 10 line segments. Prove using mathematical induction that the total number of line segments is $\frac{n(n-1)}{2}$ for any number of points $n \in \mathbb{N}, n \geq 2$.

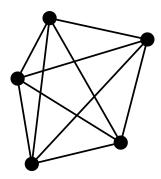


FIGURE 1. Five points, pairwise connected with 10 line segments.

Base: Given two points there is exactly one segment that connects them.

Induction Hypothesis: Assume that k points can be connected by $\frac{k(k-1)}{2}$ line segments for some fixed natural numer $k, k \geq 2$.

Induction Step: Consider k+1 points. We can partition the points into two subsets with k points in one and a single point in the other. The induction hypothesis implies that there are $\frac{k(k-1)}{2}$ line segments connecting the k points. The $k+1^{st}$ point can now be connected to these k points with k line segments. Therefore we have $\frac{k(k-1)}{2}+k=\frac{(k+1)k}{2}$ line segments connecting all k+1 points.

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}, n \geq 2$.

- (6) Let T_n denote the number of two element subsets of a set with n elements. Now observe that $T_{n+1} = T_n + n$. Can you explain why this is true.? If we introduce a new $n + 1^{st}$ element to a set of n there are n additional two element subsets to the count for a set of size n.
- (7) Use the result from the previous question and mathematical induction to prove that the number of two element subsets of a set of size n is $\frac{n(n-1)}{2}$.

Let P(n) denote the proposition that the number of two element subsets of a set of size n is $T(n) = \frac{n(n-1)}{2}$.

Proof: Using mathematical induction.

Base: There is one two element subset of a two element set. That is, $T(2) = \frac{2(2-1)}{2}$.

Induction Hypothesis: Assume that $T(k) = \frac{k(k-1)}{2}$, for a fixed value $k \ge 2$. Induction Step: We argued that T(k+1) = T(k) + k, thus we have:

$$T(k+1) = T(k) + k$$

$$= \frac{k(k-1)}{2} + k \text{(apply induction hypothesis)}$$

$$= \frac{k^2 - k + 2k}{2}$$

$$= \frac{(k+1)k}{2}$$

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}, n \ge 2$.

(8) Consider the following proof that n+1=n, for all natural numbers n.

Induction Hypothesis: Assume that k + 1 = k for a fixed natural number k.

Induction step:

$$k + 2 = \frac{k}{k} + 1 + 1$$

= $\frac{k}{k} + 1$ (apply induction hypothesis)
= $k + 1$

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all $n \in \mathbb{N}$.

This can't possibly be right! What's wrong?

The Base case is missing.