## CISC-102 WINTER 2020

## HOMEWORK 4 SOLUTIONS

- (1) Determine whether the mappings given below where  $f : \mathbb{R} \to \mathbb{R}$  are or are not functions, and explain your decision.
  - (a) f(x) = 1/x

f(x) = 1/x is not a function from  $\mathbb{R}$  to  $\mathbb{R}$  because 1/x is not defined for x = 0. f(x) = 1/x is a functions from  $\mathbb{R} \setminus \{0\}$  to  $\mathbb{R}$ .

(b)  $f(x) = \sqrt{x}$ 

 $f(x) = \sqrt{x}$  is not a function from  $\mathbb{R}$  to  $\mathbb{R}$  because  $\sqrt{x}$  is not a real number for x < 0. Furthermore,  $\sqrt{x}$  has a positive and negative value for  $x \in \mathbb{R}, x > 0$ . We could salvage this by defining the set  $\mathbb{R}^+ = \{x : x \in \mathbb{R}, x \ge 0\}$ , and consider a function from  $\mathbb{R}^+$  to  $\mathbb{R}^+$  defined as  $f(x) = +\sqrt{x}$ .

(c) f(x) = 3x - 3Consider the equation:

y = 3x - 3.

Observe that 3x - 3 has a distinct image  $y \in \mathbb{R}$ . Therefore, f(x) = 3x - 3 is a function.

- (2) Determine whether each of the following functions from  $\mathbb{R}$  to  $\mathbb{R}$  is a bijection, and explain your decision. HINT: Plotting these functions may help you with your decision.
  - (a) f(x) = 3x + 4

f(x) = 3x + 4 is an onto function. Consider the equation y = 3x + 4. For every real valued y we can find a real valued x, that is x = y/3 - 4. f(x) = 3x + 4is a one-to-one function because, if  $3x_1 + 4 = 3x_2 + 4$  then  $x_1 = x_2$ . Therefore we can conclude that f(x) = 3x + 4 is a bijection. Furthermore we have  $f^{-1}(x) = x/3 - 4$ 

(b)  $f(x) = -x^2 + 2$  $f(x) = -x^2 + 2$  is not a bijection. It is neither onto  $(f(x) \le 2)$  nor one-to-one  $(f(x) = 0 \text{ for } x = +\sqrt{2} \text{ and for } x = -\sqrt{2}).$ 





( e )

(f)

FIGURE 1. Graphs of functions for questions 1 and 2. (a) 1/x (b)  $\sqrt{x}$  (c)3x - 3 (d) 3x + 4 (e)  $-x^2 + 2$  (f)  $x^3 - x^2$ 

- (c)  $f(x) = x^3 x^2$   $f(x) = x^3 - x^2$  is not a bijection. It is not one-to-one because  $x^3 - x^2 = x^2(x-1)$ and is equal to 0 for x = 1, and x = 0.
- (3) Suppose the function  $f : A \to B$  is a bijection. What can you say about the values |A| and |B|?

We can say that |A| = |B|.

- (4) Consider the recursive function T(1) = 1, T(n) = T(n-1) + 1, for all  $n \ge 2$ .
  - (a) Use the recursive definition to obtain values T(2), T(3), and T(4). T(2) = 2, T(3) = 3, T(4) = 4.
  - (b) Using the values that you obtained for T(2), T(3), and T(4), to guess the value of T(n), and then prove that it is correct using induction.
    We guess that T(n) = n, and prove this using mathematical induction.
    Let P(n) denote the proposition that the recursive function T(n) as defined above has the closed form solution T(n) = n.

P(n) is true for all  $n \in \mathbb{N}$ .

**Proof:** We use mathematical induction.

**Base:** T(1) = 1 by definition.

**Induction Hypothesis:** Assume that P(k) is true for some  $k, k \ge 1$ , that is, T(k) = k.

**Induction Step:** P(k + 1) is the proposition that T(k + 1) = k + 1, and we show that it is true using the induction hypothesis.

T(k+1) = T(k) + 1(definition of T(k+1))= k + 1(induction hypothesis)

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all  $n \in \mathbb{N}$ .  $\Box$ 

- (5) Consider the recursive function F(1) = 3, F(n) = 3F(n-1), for all  $n \ge 2$ .
  - (a) Use the recursive definition to obtain values F(2), F(3), and F(4). F(2) = 9, F(3) = 27, F(4) = 81.
  - (b) Use the values that you obtained for F(2), F(3), and F(4), to guess the value of F(n), and then prove that it is correct using induction. We guess that  $F(n) = 3^n$ , and prove this using mathematical induction.

Let P(n) denote the proposition that the recursive function F(n) as defined above has the closed form solution  $F(n) = 3^n$ .

P(n) is true for all  $n \in \mathbb{N}$ .

4

**Proof:** We use mathematical induction.

**Base:**  $F(1) = 3 = 3^1$  by definition.

**Induction Hypothesis:** Assume that P(k) is true for some  $k, k \ge 1$ , that is,  $F(k) = 3^k$ .

**Induction Step:** P(k + 1) is the proposition that  $F(k + 1) = 3^{k+1}$ , and we show that it is true using the induction hypothesis.

$$F(k+1) = 3F(k) (\text{definition of } F(k+1))$$
  
= 3(3<sup>k</sup>)(induction hypothesis)  
= 3<sup>k+1</sup>

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all  $n \in \mathbb{N}$ .  $\Box$ 

- (6) Consider the recursive function G(1) = x, G(n) = xG(n-1), for all  $n \ge 2$ 
  - (a) Use the recursive definition to obtain values G(2), G(3), and G(4).  $G(2) = x^2, G(3) = x^3, G(4) = x^4.$
  - (b) Use the values that you obtained for G(2), G(3), and G(4), to guess the value of G(n), and then prove that it is correct using induction.

We guess that  $G(n) = x^n$ , and prove this using mathematical induction. Let P(n) denote the proposition that the recursive function G(n) as defined above has the closed form solution  $G(n) = x^n$ .

P(n) is true for all  $n \in \mathbb{N}$ .

**Proof:** We use mathematical induction.

**Base:**  $G(1) = x = x^1$  by definition.

**Induction Hypothesis:** Assume that P(k) is true for some  $k, k \ge 1$ , that is,  $G(k) = x^k$ .

**Induction Step:** P(k + 1) is the proposition that  $G(k + 1) = x^{k+1}$ , and we show that it is true using the induction hypothesis.

$$G(k+1) = xG(k) (\text{defintion of } G(k+1))$$
  
=  $x(x^k) (\text{induction hypothesis})$   
=  $x^{k+1}$ 

5

We have shown that P(k) true implies that P(k+1) is true so by the principle of mathematical induction we conclude that P(n) is true for all  $n \in \mathbb{N}$ .  $\Box$