CISC-102 FALL 2014

HOMEWORK 4 SOLUTIONS

Problems

(1) Explain why each of the following binary relations on the set \(S = \{1, 2, 3\} \) is not an equivalence relation on \(S \).

Recall that a relation is an equivalence relation if it is symmetric, reflexive, and transitive.

(a) \(R = \{(1, 1), (1, 2), (3, 2), (3, 3), (2, 3), (2, 1)\} \)

This relation is not reflexive, and not transitive. It is symmetric.

(b) \(R = \{(1, 1), (2, 2), (3, 3), (2, 1), (1, 2), (3, 2), (2, 3), (3, 3), (3, 1), (1, 3)\} \)

This relation is symmetric, reflexive and transitive. It is an equivalence relation.

(c) \(R = \{(1, 1), (2, 2), (3, 3), (2, 1), (1, 2), (1, 3)\} \)

This relation is not symmetric, and not transitive. It is reflexive.

(2) The sets \(\{1\}, \{2\}, \{3\} \) are the equivalence classes for a well known equivalence relation on the set \(\{1, 2, 3\} \). What is the common name and symbol for this equivalence relation?

This is ", equality.

(3) Prove using mathematical induction that every odd number \(x \in \mathbb{N} \) can be written as \(2k - 1 \) where \(k \in \mathbb{N} \).

Base: \(1 = 2*1-1=1 \)

Induction Hypothesis: Assume that the \(j \)th odd number can be written as \(2j - 1 \).

Induction Step: The \(j + 1 \)st odd number is equal to the \(j \)th odd number plus 2. That is, \(2j - 1 + 2 = 2(j + 1) - 1 \).

(4) Consider the set, \(\mathbb{Z}_0 \), of non-zero integers \(\mathbb{Z}_0 = \mathbb{Z} \setminus \{0\} = \mathbb{Z} - \{0\} \), and define the relation \(\sim \) on \(\mathbb{Z}_0 \) such that \(a \sim b \) if \(a + b \) is even.

(a) Show that \(\sim \) defines an equivalence relation on \(\mathbb{Z}_0 \).

\(\sim \) is reflexive because \(a + a = 2a \) for all non-zero integers, and \(a + a \) is always even. \(\sim \) is symmetric because if \(a + b \) is even then \(b + a \) is also even. Suppose \(a + b \) is even. Observe that both \(a \) and \(b \) must be odd or both \(a \) and \(b \) must be even. This can be demonstrated as follows:

Both even: \(a = 2i, b = 2j \), where \(i \) and \(j \) are integers, then \(a + b = 2i + 2j = 2(i + j) \) and is even.

Both odd: \(a = 2i - 1, b = 2j - 1 \), where \(i \) and \(j \) are integers, then \(a + b = 2i - 1 + 2j - 1 = 2i + 2j - 2 = 2(i + j - 1) \) and is even.
One of each: Without loss of generality let $a = 2i$, $b = 2j - 1$, where i and j are integers, then $a + b = 2i + 2j - 1 = 2(i + j) - 1$ and is odd. Therefore if $a + b$ is even and $b + c$ is even then a, b, c are all either even or odd, and $a + c$ is even.

(b) What is the equivalence class [5]? What is the equivalence class [-5]?
 The equivalence class [5] = [-5] and is the set of odd numbers.

(c) What is the partition of \mathbb{Z}_0 determined by this equivalence relation.
 The partition is two equivalence classes, even numbers and odd numbers.

(5) Consider the following relations on the set $A = \{1, 2, 3\}$: $R = \{(1, 1), (1, 2), (1, 3), (3, 3)\}$, $S = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)\}$, $T = \{(1, 1), (1, 2), (2, 2), (2, 3)\}$, $A \times A$.
 Which of the relations above are antisymmetric?
 Recall a relation, R, is antisymmetric if $(a, b) \in R$ implies $(b, a) \notin R$ whenever $a \neq b$.
 R is antisymmetric, S is not antisymmetric, T is antisymmetric, $A \times A$ is not antisymmetric.

(6) Let R be a relation on the set of Natural numbers such that $(a, b) \in R$ if $a \geq b$.
 Show that the relation R on \mathbb{N} is a partial order.
 Recall that a relation is a partial order if it is reflexive, antisymmetric, and transitive.
 R is reflexive because $a \geq a$ for all $a \in \mathbb{N}$.
 R is antisymmetric because $a \geq b$ implies $b \not\geq a$ if $a \neq b$.
 R is transitive because if $a \geq b$ and $b \geq c$ then $a \geq c$.