Properties of the Integers

Let $a, b \in \mathbb{Z}$ then

1. if $c = a + b$ then $c \in \mathbb{Z}$
2. if $c = a - b$ then $c \in \mathbb{Z}$
3. if $c = (a)(b)$ then $c \in \mathbb{Z}$
4. if $c = a/b$ then $c \in \mathbb{Q}$

If $a \& b$ are integers the quotient a/b may not be an integer. For example if $c = 1/2$, then c is not an integer. On the other hand with $c = 6/3$ then c is an integer.

We can say that there exists integers a,b such that $c = a/b$ is not an integer.

We can also say that for all integers a,b we have $c = a/b$ is a rational number.
Divisibility

Let \(a, b \in \mathbb{Z}, a \neq 0 \).

If \(c = \frac{b}{a} \) is an integer,

or alternately if \(c \in \mathbb{Z} \) such that \(b = ca \)

then we say that \(a \) divides \(b \) or equivalently, \(b \) is divisible by \(a \), and this is written \(a \mid b \)

NOTE: Recall long division:

```
  015
32 | 487
  0
--
  48
  32
--
  167
  160
--
   7
```
Referring to the long division example, \(b = 32 \), is the divisor \(a = 487 \) is the dividend. The quotient \(q = 15 \) and the remainder \(r = 7 \).

In this case \(b \) *does not divide* \(a \) or equivalently \(a \) is *not divisible* by \(b \).

This can be notated as:

\[b \nmid a \]

and we can write \(a = bq + r \) or, \(487 = (32)(15) + 7 \)
Division Algorithm Theorem

Let $a, b \in \mathbb{Z}$, $b \neq 0$ there exists $q, r \in \mathbb{Z}$, such that:

$$a = bq + r, \quad 0 \leq r < |b|$$

NOTE: The remainder in the Division Algorithm Theorem is always positive.

Notation

The *absolute value* of b denoted by $|b|$ is defined as:

$$|b| = b \text{ if } b \geq 0$$

and $|b| = -b$ if $b < 0$.

Therefore for values

$a = 22, b = 7$, and $a = -22, b = -7$ we get

$$22 = (7)(3) + 1$$

but

$$-22 = (-7)(4) + 6.$$
Divisibility

Suppose on the other hand that we have \(a = 217 \) and \(b = 7 \). We have \(217 = (31) (7) + 0 \) so we conclude that \(b \mid a \).

\[
\begin{array}{c}
31 \\
7 \mid 217 \\
21 \\
07 \\
7 \\
0
\end{array}
\]
Divisibility Theorems.

Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$ then $a \mid c$.

Proof:

Suppose $a \mid b$ then there exists an integer j such that

(1) $b = aj$

Similarly if $b \mid c$ then there exists an integer k such that

(2) $c = bk$

Replace b in equation (2) with aj to get

(3) $c = ajk$

Thus we have proved that if $a \mid b$ and $b \mid c$ then $a \mid c$. \square
Divisibility Theorems.

Let $a,b,c \in \mathbb{Z}$. If $a \mid b$ then $a \mid bc$.

Proof:

Since $a \mid b$ there exists an integer j such that $b = aj$, and $bc = ajc$ for all (any) $c \in \mathbb{Z}$.

It should be obvious that $a \mid ajc$ ($\frac{ajc}{a} = jc$ is an integer)

so $a \mid bc$.
Divisibility Theorems.

Let \(a,b,c \in \mathbb{Z}\). If \(a \mid b\) and \(a \mid c\). Then \(a \mid (b + c)\) and \(a \mid (b - c)\).

Proof:

Since \(a \mid b\) there exist \(j \in \mathbb{Z}\) such that \(b = aj\).

Since \(a \mid c\) there exist \(k \in \mathbb{Z}\) such that \(c = ak\).

Therefore \(b + c = (aj + ak) = a(j + k)\).

Obviously \(a \mid a(j + k)\) so \(a \mid (b + c)\).

Similarly \(a \mid a(j - k)\) so \(a \mid (b - c)\). \(\square\)
More Divisibility Theorems.

If $a \mid b$ and $b \neq 0$ then $|a| \leq |b|.$

If $a \mid b$ and $b \mid a$ then $|a| = |b|.$

If $a \mid 1$ then $|a| = 1.$
Prime Numbers

Definition: A positive integer $p > 1$ is called a *prime number* if its only divisors are 1, -1, and p, $-p$.

The first 10 prime numbers are:

$2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ...$

Definition: If an integer $c > 2$ is not prime, then it is *composite*. Every composite number c can be written as a product of two integers a,b such that $a,b \notin \{1,-1, c, -c\}$.
Determining whether a number, n, is prime or composite is difficult computationally. A simple method (which is in essence of the same computational difficulty as more sophisticated methods) checks all integers k, $2 \leq k \leq \sqrt{n}$ to determine divisibility.

Example: Let $n = 143$

2 does not divide 143
3 does not divide 143
4 does not divide 143
5 does not divide 143
6 does not divide 143
7 does not divide 143
8 does not divide 143
9 does not divide 143
10 does not divide 143
11 divides 143, $11 \times 13 = 143$
Theorem: Every integer \(n > 1 \) is either prime or can be written as a product of primes.

For example:

\[
12 = 2 \times 2 \times 3.
\]

17 is prime.

\[
90 = 2 \times 5 \times 3 \times 3.
\]

143 = 11 \times 13.

\[
147 = 3 \times 7 \times 7.
\]

330 = 2 \times 5 \times 3 \times 11.

Note: If factors are repeated we can use exponents.

\[
48 = 2^4 \times 3.
\]
Theorem: Every integer $n > 1$ is either prime or can be written as a product of primes.

Proof:
(1) We will assume that there are integers that are not prime nor a product of primes. If there are integers that are neither prime nor a product of primes, then let the integer $k+1$ be the smallest. (This proof concludes by showing that this assumption is false.)

(2) If $k+1$ is not prime it must be composite and:
$$k+1 = ab, \quad a,b \in \mathbb{Z}, \quad a,b \not\in \{1,-1, k+1, -(k+1)\}.$$

(3) Observe that $|a| < k+1$ and $|b| < k+1$, because $a \mid k+1$ and $b \mid k+1$. We assume that $k+1$ is the smallest positive integer that is not prime or the product of primes, therefore $|a|$ and $|b|$ are prime or a product of primes.

(4) Since $k+1$ is a product of a and b it follows that it too is a product of primes.

(5) Thus we have contradicted the assumption that there is a smallest integer that is neither prime nor the product of primes, and we can therefore conclude that every integer $n > 1$ is either prime or written as a product of primes. □
Mathematical Induction (2nd form)

Let \(P(n) \) be a proposition defined on a subset of the Natural numbers \((b, b+1, b+2, ...)\) such that:

i) \(P(b) \) is true
 (Base)

ii) Assume \(P(j) \) is true for all \(j, b \leq j \leq k \).
 (Induction Hypothesis)

iii) Use Induction Hypothesis to show that \(P(k+1) \) is true.
 (Induction Step)

NOTE: Go back to all of the proofs using mathematical induction that we have seen so far and replace the assumption
(1) Assume \(P(k) \) is true for \(k \geq b \). (\(b \) is the base case value) by
(2) Assume \(P(j) \) is true for all \(j, b \leq j \leq k \).

and the rest of the proof can remain as is.

Assumption (2) above is stronger than assumption (1). Sometimes this form of induction is called \textit{strong induction}.

\textit{NOTE: A stronger assumption makes it easier to prove the result.}
Let $P(n)$ be the proposition:

$$\sum_{i=1}^{n} 2^i = 2 + 2^2 + \cdots + 2^n = 2^{n+1} - 2$$

Theorem: $P(n)$ is true for all $n \in \mathbb{N}$.

Proof:

Base: $P(1)$ is $2 = 2^2 - 2$ which is clearly true.

Induction Hypothesis: $P(j)$ is true for j, $1 \leq j \leq k$.

Induction Step:

$$\sum_{i=1}^{k+1} 2^i = 2^k + 1 - 2 + 2^{k+1}$$

(because $P(k)$ is true)

$$= 2(2^{k+1}) - 2$$

$$= 2^{k+2} - 2 \quad \square$$
Theorem: Every integer \(n > 1 \) is either prime or can be written as a product of primes.

Proof: (Mathematical Induction of the 2\(^{nd}\) form) Let \(P(n) \) be the proposition that all natural numbers \(n \geq 2 \) are either prime or the product of primes.

Base: \(n = 2, \) \(P(2) \) is true because 2 is prime.

Induction Hypothesis:
(1) Assume that \(P(j) \) is true, for all \(j, 2 \leq j \leq k. \)

Induction Step: Consider the integer \(k+1. \)

(2) Observe that if \(k+1 \) is prime \(P(k+1) \) is true, so consider the case where \(k+1 \) is composite. That is: \(k+1 = ab, \ a,b \in \mathbb{Z}, \ a,b \notin \{1,-1, k+1, -(k+1)\}. \)

(3) Therefore, \(|a| < k+1 \) and \(|b| < k+1. \)

So \(|a| \) and \(|b| \) are prime or a product of primes.

(4) Since \(k+1 \) is a product of \(a \) and \(b \) it follows that it too is a product of primes.

(5) Therefore, by the 2\(^{nd}\) form of mathematical induction we can conclude that \(P(n) \) is true for all \(n \geq 2. \) \(\square \)
Well-Ordering Principle

In our initial proof that shows that integers greater than 2 are either prime or a product of primes we assumed that if that wasn’t true for all integers greater than 2, then there was a smallest integer where the proposition is false. (we called that integer k.) This statement may appear to be obvious, but there is a mathematical property of the positive integers at play that makes this true.

Theorem: Well Ordering Principle: Let S be a non-empty subset of the positive integers. Then S contains a least element, that is, S contains an element $a \leq s$ for all $s \in S$.

• Observe that S could be an infinite set.
• Well ordering does NOT apply to subsets of \mathbb{Z}, \mathbb{Q}, or \mathbb{R}. It is a special property of the positive integers.
NOTE: The Well Ordering Principle can be used to prove both forms of the Principle of Mathematical Induction.

In essence the statement “use the proposition P(k) to show that P(k+1) is true” uses an underlying assumption:

“Should there be a value of n where the proposition is false then there must be a smallest value of n where the proposition is false”

In all of our induction proofs so far the value k+1 plays the role of that smallest value of n where the proposition may be false. For all other values j, b ≤ j ≤ k, we can assume that P(j) is true. In the induction step we show that P(k+1) is also true, in essence showing that there is no smallest value of n where the proposition is false. And by well ordering this implies that the result is true for all values of n.
Theorem: There exists a prime greater than \(n \) for all positive integers \(n \). (We could also say that there are infinitely many primes.)

Proof: Consider \(y = n! \) and \(x = n! + 1 \). Let \(p \) be a prime divisor of \(x \), such that \(p \leq n \). This implies that \(p \) is also a divisor of \(y \), because \(n! \) is the product of all natural numbers from 1 to \(n \). So we have \(p \mid x \) and \(p \mid y \). According to one of the divisibility theorems we have \(p \mid x - y \). But \(x - y = 1 \) and the only divisor of 1 is -1, or 1, both not prime. So there are no prime divisors of \(x \) less than \(n \). And since every integer is either prime or a product if primes, we either have \(x > n \) is prime, or there exists a prime \(p, p > n \) in the prime factorization of \(x \). \(\square \)
Theorem: There is no largest prime.

(Proof by contradiction.)

Suppose there is a largest prime. So we can write down all of the finitely many primes as: \{p_1, p_2, \ldots, p_\omega\}.

Now let \(n = p_1 \times p_2 \times \cdots \times p_\omega + 1 \).

Observe that \(n \) must be larger than the \(p_\omega \) the largest prime. Therefore \(n \) is composite and is a product of primes. Let \(p_k \) denote a prime factor of \(n \). Thus we have

\[p_k \mid n \]

And since \(p_k \subseteq \{p_1, p_2, \ldots, p_\omega\} \) we also have

\[p_k \mid (n-1) \]

We know that \(p_k \mid n \) and \(p_k \mid (n-1) \) implies that \(p_k \mid n - (n-1) \) or \(p_k \mid 1 \). But no integer divides 1 except 1, and 1 is not prime, so \(p_k \mid 1 \) is impossible, and raises a mathematical contradiction. This implies that our assumption that \(p_\omega \) is the largest prime is false, and so we conclude that there is no largest prime. \(\square \)