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CISC-102 
Winter 2020 

Week 5 

Relations (See chapter 2. of SN)

Functions are mappings from one set to another with 
specific additional properties.  

Recall: A function must map every element of the Domain 
set to a single element in the Range set.  

Mappings without these additional properties are also 
valid entities in mathematics. 

An ordered pair  of elements a,b is written as (a,b).  
NOTE: Mathematical convention distinguishes between  
“( )” brackets -order is important – and “{ }” -- not 
ordered. 
Example: {1,2} = {2,1}, but (1,2) ≠ (2,1). 
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Product Sets
Let A and B be two arbitrary sets. The set of all ordered 
pairs (a,b) where  a  ∈ A  and b ∈ B is called the product  
or Cartesian product or cross product of A and B.  
The cross product is denoted as: 
                            A × B = {(a,b) : a  ∈ A  and b ∈ B }  
and is pronounced “A cross B”.  
 It is common to denote A × A as A2. 

A “famous” example of a product set is , ℝ2, that is,  the 
product of the Reals, or the two dimensional real plane or 
Cartesian plane -- x and y coordinates. 
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Relations
Definition: Let A and B be arbitrary sets. A binary relation, 
or simply a relation from A to B is a subset of  
A × B. 
( We study relations to continue our exploration of 
mathematical definitions and notation. ) 

Example: Suppose A = {1,3,6} and B = {1,4,6}  
A × B = {(a,b) : a ∈ A, and b ∈ B }  
            = {(1,1),(1,4),(1,6),(3,1),(3,4),(3,6),(6,1),(6,4)(6,6)} 

Example: Consider the relation ≤ on A × B where A and B 
are defined above.   
The subset of A × B  in this relation are the pairs: 
{(1,1),(1,4),(1,6),(3,4),(3,6),(6,6)} 

That is, a pair (a,b) is in the relation ≤ whenever a ≤ b.  
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Consider a relation from the set  
S = {A, B, C, D, F,G} to the set T= {1, 2, 3, 4, 5, 6, 7} 

A 1 in table entry (s,t) denotes that the pair (s,t) is in 
the relation, otherwise we leave the table entry blank. 

How would you describe the relation if 

I. There are 1’s along the main diagonal. 
II.Every row has exactly one 1. 
III. Every row and every column has exactly one 1. 

1 2 3 4 5 6 7

A

B

C

D

E

F

G 1
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Functions as relations
A function can be viewed as a special case of relations.   

A relation R from A to B is a function if every element 
a ∈ A belongs to a unique ordered pair (a,b) in R.  

Let A = {a,b,c, …, z} and let S = {1,2,3, …, 26}. We define a 
relation R from A to S as: 
R = {(x,y) ∈ A × S: letter x is the yth letter of the alphabet.}  

We can verify that R is a function be observing that for every 
letter x ∈ A, there is a single value y ∈ S, such that (x,y) ∈ R 

In fact R is a bijection, that is,  a one-to-one and onto 
function. Why?  

Also observe that |A| = |S|.  
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Vocabulary
When we have a relation on S × S (which is a very 
common occurrence) we simply call it a relation on S, 
rather than a relation on  S × S. 
Let A = {1,2,3,4}, we can define the following relations 
on A.  
R1 = {(1,1), (1,2), (2,3), (1,3), (4,4)} 
R2 = {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}  
R3 = {(1,3), (2,1)} 
R4 = ∅ 
R5 = A × A = A2  (How many elements are there in R5 ?)  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Properties of relations on a set A

Reflexive: A relation R is reflexive  
 if (a,a) ∈ R for all a ∈ A. 
 
Symmetric: A relation R is symmetric  
 if whenever (a1, a2) ∈ R then (a2, a1) ∈ R. 
Antisymmetric: A relation R is antisymmetric  
 if whenever (a1, a2) ∈ R and (a2, a1) ∈ R then a1 =  a2. 

NOTE: There are relations that are neither symmetric nor 
antisymmetric or both symmetric and antisymmetric. 

Transitive: A relation R is transitive  
 if whenever (a1, a2) ∈ R and (a2, a3) ∈ R then (a1, a3) ∈ R. 
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Let A = {1,2,3,4}, we can define the following relations 
on A.  
R1 = {(1,1), (1,2), (2,3), (1,3), (4,4)}  
NOT reflexive, NOT symmetric, antisymmetric, transitive 

R2 = {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}  
reflexive, symmetric, NOT antisymmetric, transitive 

R3 = {(1,3), (2,1)} 
NOT reflexive, NOT symmetric, antisymmetric, NOT 
transitive 
R4 = ∅ 
NOT reflexive, symmetric, antisymmetric, transitive 

R5 = A × A = A2  (How many elements are there in R5 ?) 
reflexive, symmetric, transitive.  
Consider the relation  

R6 = {(1,1), (1,2), (2,1), (2,3),(2,2), (3,3)} 
NOT reflexive, NOT symmetric, NOT antisymmetric, 
NOT transitive 
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Consider the relations <,  ≤, and = on the Natural 
numbers. (less than, less than or equal to, equal to) 
The relation < on the Natural numbers  
 {(a,b) : a,b ∈ N, a < b} is:  
NOT reflexive, NOT symmetric, antisymmetric, transitive 

The relation ≤ is on the Natural numbers  
 {(a,b) : a,b ∈ N, a ≤ b}  is:  
reflexive, NOT symmetric, antisymmetric, transitive 

The relation = on the Natural numbers  
 {(a,b) : a,b ∈ N, a = b} is: 
reflexive, symmetric, antisymmetric, transitive 
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Partial orders and equivalence relations

A relation R is called a partial order  if R is reflexive, 
antisymmetric, and transitive.  

Partial order relations can be used when we want to 
compare and order things.  

NOTE: The relation ≤ is on the Natural numbers  
 {(a,b) : a,b ∈ N, a ≤ b} is a partial order relation.

 
We can order the tallest buildings in the world by height. 

10/3/2018 Tallest_buildings_in_the_world.png (4961×1969)

https://upload.wikimedia.org/wikipedia/commons/7/7e/Tallest_buildings_in_the_world.png 1/1
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Let P(S) denote the power set of the set S, and let R be a 
relation on P(S) defined as: 

R = {(s,t) ∈ P(S) × P(S) : s ⊆ t } 

Observe that R is a partial order, because: 
(s,s) ∈ R for all sets s ∈ P(S), therefore R is reflexive.   

Whenever  s ⊆ t  and t ⊆ s, then s = t, therefore R is 
antisymmetric 

Whenever s ⊆ t and t ⊆ w, then s  ⊆ w, therefore R is 
transitive.  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A relation R is called an equivalence relation if R is 
reflexive, symmetric, and transitive.  

Equivalence relations can be used when we want to 
compare and classify things. 
The relation = on the Natural numbers  
 {(a,b) : a,b ∈ N, a = b} is an equivalence relation. 

  

We can partition fruit into equivalence classes using an 
equivalence relation.  
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Suppose R is an equivalence relation on a set S. For each 
element s ∈ S, let [s] = {t ∈ S : (s,t)  ∈ R}. We call [s] an 
equivalence class of S.  

For example let S be the set {A,B,C, a,b,c,1,2,3} and let R 
be the relation {(s,t) ∈ S × S : s and t are both upper case, 
both lower case, or both digits}.  

Thus, R partitions S into 3 equivalence classes,  
[a] = {a,b,c}, [A] = {A,B,C}, [1] = {1,2,3}.  

Observe that: 
(s,s)  ∈ R so R is reflexive. 
Whenever (s,t) ∈ R, then (t,s) ∈ R. 
Whenever (s,t) ∈ R and (t,v) ∈ R, then (s,v) ∈ R. 

So R is an equivalence relation. Furthermore, note that  

[a] ∩ [ A] = ∅, [a] ∩ [ 1] = ∅, [A] ∩ [ 1] = ∅, and that  
[a] ∪ [A] ∪ [1] = S.  

That is the equivalence classes partition the set S.  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Consider the relation W defined as 

  

We will show that W is an equivalence relation. 

Reflexive:   for all . 
Symmetric : Let , then , 
   so if  then  
Transitive: Let  if  and  
      then  because . 

Consider a fixed value . The equivalence class 
denoted by [k] is defined as 

. 

For example suppose k = 4.2, then some elements of 
[k] could be 1.2, 42.2, 96.2 etc… 

Observe that  

W = {(x, y) ∈ ℝ × ℝ : x − y ∈ ℤ}

x − x = 0 ∈ ℤ x ∈ ℝ
a, b ∈ ℝ a − b = − (b − a)

a − b ∈ ℤ b − a ∈ ℤ
a, b, c ∈ ℝ a − b ∈ ℤ b − c ∈ ℤ
a − c ∈ ℤ a − b + b − c ∈ ℤ

k ∈ ℝ

[k] = {y ∈ R : k − y ∈ ℤ}

ℝ = ⋃
x∈ℝ

[x]
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Consider the relation V on the set of all binary bit 
strings, defined as: 

V = {(s,t): s,t, are binary strings that contain the same 
number of 1’s} 

For example (111, 1010100) are in V.  

Show that V is an equivalence relation. 

Reflexive:  

Symmetric : 

Transitive: 

A standard notation that can be used to denote binary 
strings of arbitrary length is {0,1}*. 

Let [n] denote the equivalence class with respect to V as 
all binary strings with n 1’s.  

Observe that {0,1}* = ⋃
n∈ℕ

[n]
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