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CISC-102 
Winter 2020 

Week 6 

SN: Chapter 11. 
Properties of the Integers 
Let a,b ∈ ℤ then  
1. if c = a + b then c ∈ ℤ 
2. if c = a - b then c ∈ ℤ 
3. if c = (a)(b) then c ∈ ℤ 
4. if c  = a/b then c ∈ ℚ 

If a & b are integers the quotient a/b may not be an 
integer. For example if c = 1/2, then c is not an integer. 
On the other hand with c = 6/3 then c is an integer.  

We can say that there exists integers a,b such that c = a/b 
is not an integer.  

We can also say that for all integers a,b we have c = a/b is 
a rational number. 
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Divisibility 

Let a,b ∈ ℤ, a ≠ 0.  
If  c =  is an integer,  

or alternately if c ∈ ℤ such that b = ca 
then we say that a divides b or equivalently,  
 b is divisible by a, and this is written  

a ∣ b  

NOTE: Recall long division: 

b
a
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Referring to the long division example, b = 32, is the 
divisor a = 487 is the dividend. The quotient q = 15 and 
the remainder  r = 7.  
In this case b does not divide a  
or equivalently a is not divisible by b.  

This can be notated as: 

b ∤ a 

and we can write a = bq + r or, 487 = (32) (15) + 7  
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Division Algorithm Theorem 

Let a,b ∈ ℤ, b ≠ 0 there exists q,r ∈ ℤ, such that: 

a = bq + r, 0 ≤  r < | b | 

NOTE: The remainder in the Division Algorithm 
Theorem is always positive.   

Notation 

The absolute value of b denoted by  
| b | 

is defined as:  
      | b | = b  if b ≥ 0  
   and  | b | = -b if b < 0. 

Therefore for values  

a = 22, b = 7, and a = -22, b = -7 we get  

22 = (7)(3) + 1 

but  

-22 = (-7)(4) + 6. 

4



 page  of  5 44

Divisibility  

Suppose on the other hand that we have a = 217 and b = 
7.  We have 217 = (31) (7) + 0 so we conclude that b ∣ a.  

       31 
7 ∣ 217 
     21 
       07 
         7 
         0 

5



 page  of  6 44

Division Algorithm Theorem 
Let a,b ∈ ℤ, b ≠ 0 there exists q,r ∈ ℤ, such that: 

a = bq + r, 0 ≤  r < | b |  

Suppose b = 2. The remainder r can be one of two values, 
either 0 or 1.  

Suppose we have: 

a = 2q + 0 

Then a is an even integer.  

On the other hand suppose: 

a = 2q + 1 

Then a is odd.  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Divisibility Theorems.  

Let a,b,c ∈ ℤ.  If a ∣ b and b ∣ c then a ∣ c.  

Proof: 

Suppose  a ∣ b then there exists an integer j such that  

(1) b = aj 

Similarly if  b ∣ c then there exists an integer k such that  

( 2) c = bk 

Replace b in equation ( 2) with aj to get  

( 3) c = ajk 

Thus we have proved that if a ∣ b and b ∣ c then a ∣ c. ◻ 
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Divisibility Theorems.  

Let a,b,c ∈ ℤ.  If a ∣ b then a ∣ bc.  

Proof: 
Since  a ∣ b there exists an integer j such that  

b = aj, and bc = ajc for all (any) c ∈ ℤ. 

It should be obvious that    a ∣ ajc  (  = jc is an integer) 

so a | bc . ◻ 

ajc
a
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Divisibility Theorems.  

Let a,b,c ∈ ℤ.  If a ∣ b and a ∣ c.  Then a ∣ (b + c) and  
a ∣ (b - c). 

Proof:  

Since a | b there exist a j ∈ ℤ such that b = aj. 

Since a | c there exist a k ∈ ℤ such that c = ak. 

Therefore b + c = (aj + ak) = a(j + k). 

Obviously  a | a(j + k) so a ∣ (b + c). 

Similarly a | a(j - k) so a ∣ (b - c).  ◻ 
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Absolute Value 

Let a and b be any integers. Then: 

(i) |a| ≥ 0 and |a| = 0 if and only if a = 0. 

(ii)  -| a | ≤ a ≤  | a | 

(iii) |ab| = |a| |b|  

(iv) |a + b| ≤ | a | + | b | 

(v) |a - b| ≤ | a | + | b | 

(vi) | |a| - |b| | ≤ | a + b | 

(vii) | |a| - |b| | ≤ | a - b | 

We can verify each of these properties by exhaustive case 

analysis. For example: 

(i) Suppose a > 0, then |a| = a so |a| > 0.  

On the other hand suppose a < 0, then |a| = -a, so |a| > 0. 

Finally suppose a = 0, so |a| = 0. Since we already have 

shown that |a| ≠ 0 when a ≠ 0, we have |a| = 0 if and only 

if a = 0. 
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Another example  
(iii) |ab| = |a| |b|  

We consider the following cases: 
• |ab| = 0, so either a or b or both are 0, therefore |a| | b| = 0. 
• a > 0 and b > 0 so |a| = a and |b| = b, therefore |ab| = |a| |b|. 
• a < 0 and b > 0 so |a| = -a and |b| = b, therefore |ab| = -ab and  

|a||b| = -ab so |ab| = |a||b|. 
• a > 0 and b < 0 so |a| = a and |b| = -b, therefore |ab| = -ab and  

|a||b| = -ab, so |ab| = |a||b|. 
• a < 0 and b < 0 so |a| = -a and |b| = -b, therefore |ab| = ab and  

|a||b| = ab, so |ab| = |a||b|. 

Also observe that if a = b then |a| = |b| and this can be verified by 
considering the cases: a < 0, and a ≥ 0.  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• More Divisibility Theorems. 

If  a | b and b ≠ 0 then | a | ≤ | b|.  

If  a | b and b | a then | a | = | b |. 

If a | 1 then | a | = 1.  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Prime Numbers 
Definition: A positive integer p > 1 is called a prime 
number if its only divisors are 1, -1, and p, -p.  

The first 10 prime numbers are: 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ... 

Definition: If an integer c > 2  is not prime, then it is 
composite. Every composite number c can be written as a 
product of two integers a,b such that a,b ∉ {1,-1, c, -c}. 
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Determining whether a number, n,  is prime or composite 
is difficult computationally. A simple method (which is in 
essence of the same computational difficulty as more 
sophisticated methods) checks all integers k,  2 ≤ k ≤ √n 
to determine divisibility.  

Example: Let n = 143 

2 does not divide 143 
3 does not divide 143 
4 does not divide 143 
5 does not divide 143 
6 does not divide 143 
7 does not divide 143 
8 does not divide 143 
9 does not divide 143 
10 does not divide 143 
11divides 143, 11 × 13 = 143 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Theorem: Every integer n  > 1 is either prime or can be 
written as a product of primes. 

For example: 

12 = 2 × 2 × 3. 

17 is prime. 

90 = 2 × 5 × 3 × 3. 

143 = 11 × 13. 

147 = 3 × 7 × 7. 

330 = 2 × 5 × 3 × 11. 

Note: If factors are repeated we can use exponents. 

48 = 24 × 3. 
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Theorem: Every integer n  > 1 is either prime or can be 
written as a product of primes. 

Proof:  
(1) We will assume that there are integers that are not 

prime nor a product of primes. If there are integers that 
are neither prime nor a product of primes, then let the 
integer  k+1 be the smallest. (This proof concludes by 
showing that this assumption is false.)  
 

(2) If k+1 is not prime it must be composite and:  
  k+1 = ab,  a,b ∈ ℤ,  a,b ∉ {1,-1, k+1, -(k+1)}. 

(3) Observe that  |a| <  k+1 and |b| <  k+1, because a | k+1 
and b | k+1. We assume that k+1 is the smallest positive 
integer that is not prime or the product of primes, 
therefore  |a| and |b| are prime or a product of primes.  
  

(4) Since k+1 is a product of a and b it follows that it too 
is a product of primes.  
  

(5) Thus we have contradicted the assumption that there is 
a smallest integer that is neither prime nor the product 
of primes, and we can therefore conclude that every 
integer n > 1 is either prime or written as a product of 
primes.  ◻  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Mathematical Induction (2nd form) 

Let P(n) be a proposition defined on a subset of the 
Natural numbers (b, b+1, b+2, ...)  such that: 

i) P(b) is true  
(Base)  

ii) Assume P(j) is true for all j, b ≤ j ≤ k.  
 (Induction Hypothesis) 

iii) Use Induction Hypothesis to show that P(k+1) is true.  
  (Induction Step) 

NOTE: Go back to all of the proofs using mathematical 
induction that we have seen so far and replace the 
assumption  
(1) Assume P(k) is true for k ≥ b. (b is the base case 
value) by  
(2) Assume P(j) is true for all j, b ≤ j ≤ k.” 

and the rest of the proof can remain as is. 

Assumption (2) above is stronger than assumption (1). 
Sometimes this form of induction is called strong 
induction.  

NOTE: A stronger assumption makes it easier to prove the 
result.   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Let P(n) be the proposition: 

 

Theorem: P(n) is true for all . 

Proof: 
Base: P(1) is    which is clearly true. 
Induction Hypothesis: P(j) is true for j, 1 ≤ j ≤ k. 
Induction Step:  

                  (because P(k) is true)  

                           

                                     ⧠
 

Pn
i=1 2

i = 2 + 22 + · · ·+ 2n = 2n+1 � 2

n 2 N

2 = 22 � 2

k+1X

i=1

2i = 2k+1 � 2 + 2k+1

= 2(2k+1)� 2

= 2k+2 � 2
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Theorem: Every integer n  > 1 is either prime or can be 
written as a product of primes.  

Proof: (Mathematical Induction of the 2nd form) Let P(n) 
be the proposition that all natural numbers n ≥ 2 are either 
prime or the product of primes. 

Base: n = 2, P(2) is true because 2 is prime. 
Induction Hypothesis:  
(1) Assume that P(j) is true, for all j, 2 ≤ j ≤ k. 
Induction Step: Consider the integer k+1. 

(2) Observe that if k+1 is prime P(k+1) is true, so 
consider the case where k+1 is composite. That is: k+1 = 
ab,  a,b ∈ ℤ,  a,b ∉ {1,-1, k+1, -(k+1)}.   
(3) Therefore, |a| <  k+1 and |b| <  k+1.  
      So |a| and |b| are prime or a product of primes.  
(4) Since k+1 is a product of a and b it follows that it too 
is a product of primes.  
(5) Therefore, by the 2nd form of mathematical induction 
we can conclude that P(n) is true for all n ≥ 2. ◻  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Well-Ordering Principle 

In our initial proof that shows that integers greater than 2 
are either prime or a product of primes we assumed that if 
that wasn’t true for all integers greater than 2, then there 
was a smallest integer where the proposition is false. (we 
called that integer k+1.) This statement may appear to be 
obvious, but there is a mathematical property of the 
positive integers at play that makes this true.  

Theorem: Well Ordering Principle: Let S be a non-empty 
subset of the positive integers. Then S contains a least 
element, that is, S contains an element a ≤ s for all s ∈ S. 

•Observe that S could be an infinite set. 
•Well ordering does NOT apply to subsets of ℤ, ℚ, or ℝ. 
It is a special property of the positive integers. 
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NOTE: The Well Ordering Principle can be used to prove 
both forms of the Principle of Mathematical Induction. 

In essence the statement “use the proposition  P(k) to 
show that P(k+1) is true” uses an underlying assumption: 

 “Should there be a value of n where the proposition is  
false then there must be a smallest value of n where the 
proposition is false” 

In all of our induction proofs so far the value k+1 plays 
the role of that smallest value of n where the proposition 
may be false. For all other values j, b ≤ j ≤ k, we can 
assume that P(j) is true. In the induction step we show that 
P(k+1) is also true, in essence showing that there is no 
smallest value of n where the proposition is false. And by 
well ordering this implies that the result is true for all 
values of n. 
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Another application of the 2nd form of  induction 

Consider a two player game, where players take turns 
removing any number of matches from one of two piles. The 
last person who plays (removes the last of the  matches) 
wins.  

When the two piles start with the same number of 
matches there is a strategy so that the second player is 
guaranteed to win no matter what the first player does.  

We can prove this using the second form of induction. 
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Base: 1 match per pile, so player 1 is forced to leave a 
single pile and player two wins.  

Induction Hypothesis: Assume that player two wins 
whenever we start with two piles of j matches each, for j, 
1 ≤ j ≤ k.  

Induction Step: Suppose we start with two piles of k+1 
matches each. Player 1 removes x matches from one of 
the piles such that 1 ≤ x ≤ k+1.  

Now you complete the proof.  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And another application of the 2nd form of induction 

Consider the recursive function defined as:  
F(1) = 1, F(2) = 1 F(n) = F(n-1) / F(n-2) for n ≥ 3.  

Observe that F(3) = 1/1 = 1 F(4) =1/1 = 1 etc.  

We can prove the obvious using the 2nd form of 
induction.  

The function F(n) = 1 for all natural numbers n.  

Base: F(1) = F(2) = 1. (Note: We need 2 base cases!) 
Induction Hypothesis: F(j) = 1 for all j, 1 ≤ j ≤ k.  
Induction Step:   F(k+1)  = F(k) / F(k-1) 
      = 1/1 (Using the Ind. Hyp.) 
      = 1.  

24



 page  of  25 44

Theorem: There exists a prime greater than n for all 
positive integers n. (We could also say that there are 
infinitely many primes.)  

Proof: Let n be an arbitrary (large) natural number. We 
will show that there exists a prime number larger than n.  
Consider y = n! and x = n! + 1.  

Let p be a prime divisor of x. We show that assuming that 
p ≤ n leads to a contradiction.  

Observe that any prime number smaller than n, is a 
divisor of n! = y, because n! is the product of all natural 
numbers from 1 to n.   
  
 So we have p | x and p | y.  

According to one of the divisibility theorems we have  
p | x - y. But x - y = 1 and the only divisor of 1 is -1, or 1, 
both not prime. So there are no prime divisors of x less 
than n. And since every integer is either prime or a 
product if primes, we either have x > n is prime, or there 
exists a prime p, p > n in the prime factorization of x. ◻ 
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Theorem: There is no largest prime. 

(Proof by contradiction.) 

Suppose there is a largest prime. So we can write down all 
of the finitely many primes as: { }.  

Now let n =  . 

Observe that n must be larger the  the largest prime. 
Therefore n is composite and is a product of primes. Let 

 denote a prime factor of n. Thus we have  

pk ∣ n  

And since  ∈ { } we also have  

pk ∣ (n-1) 

We know that pk ∣ n and pk ∣ (n-1) implies that pk ∣ n - (n-1) 
or pk ∣ 1. But no integer divides 1 except 1, and 1 is not 
prime, so pk ∣ 1 is impossible, and raises a mathematical 
contradiction. This implies that our assumption that  is 
the largest prime is false, and so we conclude that there is 
no largest prime. ◻ 

p1, p2, . . . , p!

p1 ⇥ p2 ⇥ · · ·⇥ p! + 1

p!

pk

pk p1, p2, . . . , p!

p!

26
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Greatest Common Divisor 

Consider any two integers, a,b, at least one non-zero. If 
we list the positive divisors in numeric order from 
smallest to largest, we would get two lists: 

a: (1, c1, c2, ... |a|) 
b: (1, d1, d2, ... |b|) 

Since both lists must contain the number 1, we see that 1 
is a common divisor of a and b. Since the greatest divisor 
of a is |a| and the greatest divisor of b is |b|, we can deduce 
that amongst the common divisors of a and b, there must 
be one that is the greatest. 

Thus we can say that given two integers a,b, at least one 
not zero, there is a unique greatest common divisor of a 
and b. 

Computing the greatest common divisor of a non-zero 
integer a, and 0, is somewhat boring because all non-zero 
integers divide 0, so the greatest common divisor of a and 
0 is always |a|. So let’s just assume from now on that 
neither a nor b is 0.  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Example:  
Let a = 111, and b = 250. We can construct sorted lists of 
divisors of a and b yielding: 

a: (1, 3, 37, 111) 
b: (1, 2, 5, 10, 25, 50, 125, 250) 

And by inspection we can deduce that 1 is the greatest 
common divisor of a and b. When the greatest common 
divisor of two numbers a,b is 1 we say that a and b are 
relatively prime or coprime. 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Another example: 
Let a = 250, and b = 575. We can construct sorted lists of 
divisors of a and b yielding: 

a: (1, 2, 5, 10, 25, 50, 125, 250) 
b:(1, 5, 23, 25, 115, 575) 

And by inspection we can deduce that 25 is the greatest 
common divisor of a and b.  

This method of obtaining all divisors of a and b is very 
computationally intensive, and would make some 
essential steps of public key encryption schemes non 
feasible. Remarkably an algorithm invented by Euclid  
(~ 300 BC) finds greatest common divisors in a much 
more efficient way.  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Euclid’s Algorithm 
Suppose a,b are non-zero integers. We can define a 
function on the integers:  

gcd(a,b)  

that returns the greatest common divisor of a and b. It will 
be convenient to further assume that |a| ≥ |b|.  

Euclid’s algorithm to compute gcd(a,b) is way more 
efficient than computing all the divisors of a and b, and is 
based on the following observation. 

Euclid’s Theorem: 
Let a,b,q,r be positive integers such that a = qb + r  then  

   gcd (a,b) = gcd(b,r) 
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For example: a = 575, b = 250. 

575 = (2)(250) + 75  (Use long division to get q and r) 

So the claim is that gcd(575, 250) = gcd(250,75). 

This can be verified by listing the divisors of 250 and 75. 

250: (1, 2, 5, 10, 25, 50, 125, 250) 
75: (1, 3, 5, 15, 25, 75)  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We can now “iterate” this process by  renaming a = 250, b 
= 75 and repeat the previous calculation. That is: 

250 = (3)(75) + 25 

We can again verify that gcd(250,75) = gcd(75,25). 

Let’s repeat this again, so a = 75 and b = 25 

75 = (3)(25) + 0 

so we have gcd(75,25) = gcd(25,0), and we have already 
seen that the greatest common divisor of any non-zero 
integer a and 0 is |a|.  

Therefore by Euclid’s algorithm we have  
gcd(575,250) = 25. 

NOTE: Euclid’s algorithm is given for positive integers. 
However,   

gcd(a,b) = gcd (-a,b) = gcd(a,-b) = gcd(-a,-b) 

so there is no loss of generality if we simply focus on 
positive integers.  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Observe that as a side effect of Euclid’s algorithm we can 
always find integers x,y such that gcd(a,b) = ax + by. 

This can be illustrated with the previous example. 

(1) 575  = (2) 250 + 75 implies 75 = 575 - (2)250 
(2) 250  = (3) 75  +  25 implies 25 = 250 - (3)75 
(3)   75  = (3) 25  +   0 

Now we can write gcd(575,250) = 25 as:  

25 = 250 - (3)75                      (Using (2) above) 
25 = 250 - (3)[575 - (2)250]   (Using (1) above) 
25 = (7)250 - (3)575               (Simplify)  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To prove Euclid’s Theorem we will need a preliminary 
result. (Math convention uses the word “lemma” for  
preliminary results that are proved in preparation for the 
proof of the main theorem. 

Lemma: If g | a and  g | b   
               then g | (pa + b) for all integers p. 

Proof: Since  g | a and g | b we can write  

( 1 ) a = pag and b  = pbg.  

Replacing the values of a and b in  g | (pa + b)  
using equations ( 1 ) we get: 

                    g | (ppag + pbg)  

which simplifies to: 

  g | g(ppa + pb) 

Now it should be clear that g divides g(ppa+pb) and thus 
we conclude that g divides pa + b.      ⧠  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Theorem: Let a,b,q,r be positive integers such that: 
 a = qb + r, 0 ≤ r < b,  then gcd (a,b) = gcd(b,r) 

Strategy of the proof: We show that the gcd(a,b) is a 
common divisor of b & r and that gcd(b,r) is a common 
divisor of a & b. 

Proof:  
( 0 ) Let g1= gcd(a,b) and g2 = gcd(b,r).  
( 1 ) Observe that g2 | b and g2 | r, so g2 | pb + r for all 
integers p, and in particular for q, where a = qb + r.  
 ( a ) Therefore, g2 | a, and we have established that   
g2 is a common divisor of both a and b.  
 ( b) Furthermore, observe that g2  ≤  g1 = gcd(a,b)  

( 2 ) Using the equation a = qb + r we can write  
        r = - qb + a.  
        g1 | b and g1 | a so use the lemma (with p = -q)   
       to get g1 | -qb + a or g1 | r.  

 ( a ) Therefor g1 | r and we have established that g1 is 
  a common divisor of b and r.   
       ( b ) Furthermore, observe that  g1 ≤  g2 = gcd(b,r) 

( 3 ) g2 ≤ g1 and g1 ≤ g2 implies that g1 = g2, so we can    
        conclude that  gcd(a,b) = gcd(b,r).                      ⧠ 
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Euclid’s Algorithm in the Python programming language. 

def euclid_gcd(a,b): 

# Assume a >= b > 0 

    r = a % b # this returns r such that a = bq + r 

    while r > 0: 

        a,b = b,r  

        r = a % b # this returns r s.t. a = bq + r  

    return b 

NOTE: The % (mod) operator is found in many 
programming languages and returns the remainder when  
doing integer division.  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We will argue that euclid_gcd(a,b) finds gcd(a,b) assuming 
that a ≥ b > 0.  

We first argue that the loop terminates, that is r eventually 
becomes 0. This is easy to see because the remainder when 
we divide a by b is less than b. The value of r begins positive 
and always decreases so it eventually must be zero. 

The correctness follows from Euclid’s theorem. 

It can also be shown that this function is extremely efficient 
when compared to looking at all the divisors of a and b.  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Let a = 250, and b = 575. We can construct a prime 
factorization of a and b. 

Prime factorization: 
250 = (2)(53) 
575 = (52)(23) 

We can inspect the prime factorization of a and b to obtain 
a greatest common divisor.  

Observe that 52 is the greatest number that divides both a 
and b, that is the gcd(a,b). Using the prime factorizations 
of a and b is much less efficient than Euclid’s algorithm. 
Nevertheless, the prime factorization is useful for 
obtaining other properties of the greatest common divisor. 
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Least Common Multiple 

Given two non-zero  integers a,b we can have many 1

values that are positive common multiples of both a & b. 
By the well ordering principle we know that amongst all 
of those multiples there is one that is smallest, and this is 
known as the least common multiple of a and b. We can 
define a function lcm(a,b) that returns this value. 

Example: Suppose a = 12, and b = 24,  
so we have lcm(a,b) = 24.  
In general if a | b then lcm(a,b) = |b|.  
At this point it is worth mentioning that if a | b then 
gcd(a,b) = |a|, and that lcm(a,b) × gcd(a,b) = |ab|. 

Example: Suppose a = 13, and b = 24, we have  
lcm(a,b) = (13)(24).  
In general if a and b are relatively prime, that is, if 
gcd(a,b) = 1 then lcm(a,b) = |ab| 

So when gcd(a,b) = 1, we can observe that  
lcm(a,b) × gcd(a,b) = |ab|.  

 Multiples of zero are always zero, so this is a boring case.1
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Let a = 250, and b = 575. We can construct a prime 
factorization of a and b 

Prime factorization 
250 = (2)(53) 
575 = (52)(23) 

We can inspect the prime factorization of a and b to obtain 
the least common multiple. 

250 × 575 = (2)(53) × (52)(23) = (52) × (2)(53)(23) 

And since gcd(a,b) = 52 we can conclude that  
lcm(a,b) = (2) (53) (23). 

So in this case we also have lcm(a,b) × gcd(a,b) = |ab|  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Given a prime factorization of two integers a,b we can 
devise a formula to obtain gcd(a,b) as well as lcm(a,b).  

Prime factorization 
a = 250 = (2)(53) 
b = 575 = (52)(23) 

Let p1, p2, …, pk denote all of the prime factors of both a 
and b ordered from smallest to largest. In our example the 
list of prime factors would be 2,5,23. 

Let ai denote the exponent of prime factor pi, for  i, 1 ≤ i 
≤ k, in a prime factorization of a. 

In our example a1 = 1, a2 = 3, a3 = 0. 

Similarly we define bi for i 1 ≤ i ≤ k.  

In our example b1 = 2, b2 = 0, b3 = 1. 

Again referring to our example we have: 

gcd(a,b) = 2min(1,0) × 5min(3,2) × 23min(0,1) 

and,  

lcm(a,b) = 2max(1,0) × 5max(3,2) × 23max(0,1). 
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In general using pi, ai, and bi as defined above we can 
express this formula as: 

and 

42

gcd(a, b) = pmin(a1,b1)
1 ⇥ pmin(a2,b2)

2 ⇥ · · ·⇥ pmin(ak,bk)
k

lcm(a, b) = pmax(a1,b1)
1 ⇥ pmax(a2,b2)

2 ⇥ · · ·⇥ pmax(ak,bk)
k
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Another Example: 

630 = ( 2 ) (32) ( 5 ) ( 7 ) 
84  =  (22) ( 3 ) ( 7 ) 

By inspection we can see that:  
gcd(630,84) = ( 2 ) ( 3 ) ( 7 ) = 42 
And lcm(630,84)  =  (22) (32) ( 5 ) ( 7 ) = 1260  

Again we have  

 630 × 84  = ( 2 ) (32) ( 5 ) ( 7 ) × (22) ( 3 ) ( 7 )  
                 = ( 2 ) ( 3 ) ( 7 ) × (22) (32) ( 5 ) ( 7 ) 
                 = gcd(630,84) × lcm(630,84) 

These ideas lead to the following theorem that is given 
without proof. 

Theorem: Let a,b be non-zero integers, then  

                        gcd(a,b)lcm(a,b) = |ab|.  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Factoring vs. GCD  

Factoring an integer N into its prime factors will use  
roughly  operations. 

Computing gcd(N,m) with Euclid’s algorithm for  
N > m ≥ 0 will use roughly  operations. 

The efficiency of Euclid’s gcd algorithm is essential for 
implementing current public key crypto systems that are 
commonly used for e-commerce applications.  

With a “key” decoding an encrypted message using 
Euclid’s algorithm takes about 1000 operations. Without a 
“key” breaking an encrypted messaged takes about 

 operations. This amounts to a small fraction 
of a second for decoding and many millions of years for 
breaking the encrypted message. 

p
N

log2 N

1024 10 32

1099511627776 40 1,048,576

1000

N

1⇥ 10301

p
N

3.27⇥ 10150

log2 N

3.27⇥ 10150
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