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CISC-102 
Winter 2020 

Week 9 

When we expand the expression: 
 (x + y)3  

we get: 
(x+y)(x+y)(x+y) = x3 + 3x2y + 3xy2 + y3 

this can also be written as follows: 

 

We can reason that when we expand (x + y)3, there is one 
way to choose a triple that is exclusively x’s (with 0 y’s), 
3 ways to choose a triple that has 2 x’s (and 1 y) , and 3 
ways to choose a triple that has 1 x (and 2 y’s). Finally 
there is 1 way to choose a triple with no x (and 3 y’s).  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Binomial Theorem: 

 
For all natural numbers n. 

Proof: In the expansion of the product: 

(x + y) (x + y) ... (x+y), 

there  ways to choose an n-tuple with n-k x’s and (k 
y’s).  ⧠  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A special case of the binomial theorem should look 
familiar. 

This is just the sum the sizes of  
all subsets of  a set of size n. 
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Using counting to prove theorems. 

Counting arguments can be useful tool for proving 
theorems. In each case there is also an algebraic way of 
proving the result. However, there is an inherent beauty in 
the elegant simplicity of some of these counting 
arguments so it’s well worth looking at some examples. 
These proofs lack the formality of algebraic proofs. The 
lack of formality may make these arguments harder to 
grasp for some, and easier to understand for others.  

The proofs we see will be to prove the validity of 
equations. We will count the left and right hand side of 
each equation and show that they count the same thing. 

4
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Binomial Coefficients 

We prove identities involving binomial coefficients using 
counting arguments. 

Theorem: 

 

Proof: On the left we have the quantity  which 
represents the number of ways to select a k element subset 
from an n element set, S. Using the analogy of selecting 
balls from a bag, we see that we also implicitly select the 
complementary subset that stays in the bag, and the 
number of ways to do this is as given on the right hand 
side of the equation is   .    ⧠ 
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Theorem A: 

 

Proof: On the left the quantity  represents the 

number of ways to select a k element subset from an n+1 
element set. To see what the right hand side counts we 
suppose that there is a “favourite” or “distinguished” 
element of the set, call it x.  
The number of ways to  select a k element subset from 
n+1 distinct objects that is guaranteed to include x is to 
pull x out and then choose the remaining k-1 elements in 

ways. On the other hand the number of ways to  

select a k element subset from n+1 distinct objects that is 
guaranteed to exclude x is to pull x out and then choose all 

k elements in ways.   

Therefore the left and right hand side both count the same 
thing thus justifying the equation. ⧠  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And here’s an alternate algebraic proof.  
 

Proof: 
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Theorem:  

Proof: On the left the sum counts all the subsets of a set 

of size n. We already know that the number of subsets of a  

set of size n, is 2n.   
Therefore the left and right hand side both count the same 
thing thus justifying the equation. ⧠  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Pascal’s Triangle  

 An easy way to calculate a table of binomial coefficients 
was recognized centuries ago by mathematicians in India, 
China, Iran and Europe.  
In the west the technique is named after the French 
mathematician Blaise Pascal (1623-1662). In the example 
below each row represents the binomial coefficients as 
used in the binomial theorem.  
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3.5 Pascal’s Triangle 49

ing trick, we can reduce the problem of counting such distributions to the
problem we just solved: We borrow 1 penny from each child, and then dis-
tribute the whole amount (i.e., n + k pennies) to the children so that each
child gets at least one penny. This way every child gets back the money we
borrowed from him or her, and the lucky ones get some more. The “more”
is exactly n pennies distributed to k children. We already know that the
number of ways to distribute n+ k pennies to k children so that each child
gets at least one penny is

(n+k−1
k−1

)
. So we have the next result:

Theorem 3.4.2 The number of ways to distribute n identical pennies to
k children is

(n+k−1
k−1

)
.

3.4.1 In how many ways can you distribute n pennies to k children if each child
is supposed to get at least 2?

3.4.2 We distribute n pennies to k boys and ℓ girls in such a way that (to be
really unfair) we require that each of the girls gets at least one penny (but we do
not insist on the same thing for the boys). In how many ways can we do this?

3.4.3 A group of k earls are playing cards. Originally, they each have p pennies.
At the end of the game, they count how much money they have. They do not
borrow from each other, so that each cannot loose more than his p pennies. How
many possible results are there?

3.5 Pascal’s Triangle

To study various properties of binomial coefficients, the following picture is
very useful. We arrange all binomial coefficients into a triangular scheme:
in the “zeroth” row we put

(0
0

)
; in the first row, we put

(1
0

)
and
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1

)
; in the

second row,
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0

)
,
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1

)
, and
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2

)
; etc. In general, the nth row contains the num-

bers
(n
0

)
,
(n
1

)
, . . . ,

(n
n

)
. We shift these rows so that their midpoints match;

this way we get a pyramidlike scheme, called Pascal’s Triangle (named af-
ter the French mathematician and philosopher Blaise Pascal, 1623–1662).
The figure below shows only a finite piece of Pascal’s Triangle.
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To obtain the entries by hand in a simple way we can use 
the identity:  

. 
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50 3. Binomial Coefficients and Pascal’s Triangle

We can replace each binomial coefficient by its numerical value to get
another version of Pascal’s Triangle (going a little further down, to the
eighth row):

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

3.5.1 Prove that Pascal’s Triangle is symmetric with respect to the vertical line
through its apex.

3.5.2 Prove that each row of Pascal’s Triangle starts and ends with 1.

3.6 Identities in Pascal’s Triangle

Looking at Pascal’s Triangle, it is not hard to notice its most important
property: Every number in it (other than the 1’s on the boundary) is the
sum of the two numbers immediately above it. This, in fact, is a property of
the binomial coefficients we already met, namely, equation (1.8) in Section
1.8: (

n

k

)
=

(
n − 1
k − 1

)
+

(
n − 1

k

)
. (3.2)

This property of Pascal’s Triangle enables us to generate the triangle
very fast, building it up row by row, using (3.2). It also gives us a tool to
prove many properties of the binomial coefficients, as we shall see.

As a first application, let us give a new solution to exercise 3.1.2. There
the task was to prove the identity
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Consider the sum of elements in a row of  Pascal’s 
triangle. If we label the top row 0, then it appears that row 
i sums to the value 2i. Can you explain why this is the 
case? 
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ing trick, we can reduce the problem of counting such distributions to the
problem we just solved: We borrow 1 penny from each child, and then dis-
tribute the whole amount (i.e., n + k pennies) to the children so that each
child gets at least one penny. This way every child gets back the money we
borrowed from him or her, and the lucky ones get some more. The “more”
is exactly n pennies distributed to k children. We already know that the
number of ways to distribute n+ k pennies to k children so that each child
gets at least one penny is

(n+k−1
k−1

)
. So we have the next result:

Theorem 3.4.2 The number of ways to distribute n identical pennies to
k children is

(n+k−1
k−1

)
.

3.4.1 In how many ways can you distribute n pennies to k children if each child
is supposed to get at least 2?

3.4.2 We distribute n pennies to k boys and ℓ girls in such a way that (to be
really unfair) we require that each of the girls gets at least one penny (but we do
not insist on the same thing for the boys). In how many ways can we do this?

3.4.3 A group of k earls are playing cards. Originally, they each have p pennies.
At the end of the game, they count how much money they have. They do not
borrow from each other, so that each cannot loose more than his p pennies. How
many possible results are there?

3.5 Pascal’s Triangle

To study various properties of binomial coefficients, the following picture is
very useful. We arrange all binomial coefficients into a triangular scheme:
in the “zeroth” row we put

(0
0

)
; in the first row, we put

(1
0

)
and

(1
1

)
; in the

second row,
(2
0

)
,
(2
1

)
, and

(2
2

)
; etc. In general, the nth row contains the num-

bers
(n
0

)
,
(n
1

)
, . . . ,

(n
n

)
. We shift these rows so that their midpoints match;

this way we get a pyramidlike scheme, called Pascal’s Triangle (named af-
ter the French mathematician and philosopher Blaise Pascal, 1623–1662).
The figure below shows only a finite piece of Pascal’s Triangle.

(0
0

)
(1
0

) (1
1

)
(2
0

) (2
1

) (2
2

)
(3
0

) (3
1

) (3
2

) (3
3

)
(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)
(5
0

) (5
1

) (5
2

) (5
3

) (5
4

) (5
5

)
(6
0

) (6
1

) (6
2

) (6
3

) (6
4

) (6
5

) (6
6

)



 page  of 12 48

Now let’s compute the sum of squares of the entries of 
each row in Pascal’s triangle.  

12 = 1 
12 + 12 = 2 
12 + 22 + 12 = 6 
12 + 32 + 32 +12 = 20 
12 + 42 + 62 + 42 + 12 = 70 

These sums all appear in the middle row of Pascal’s 
triangle.  

 
 Which leads us to conjecture that: 
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Before proving the theorem there are two preliminary 
lemmas. 

Lemma 1: 

 
For all non-negative integers n,k, n > k. 
Proof: Since we already showed that  this 

should be obvious. ⧠ 
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Lemma 2:  
For all non-negative integers m,n,k such that n ≥ m ≥ k. 
Proof: We use a counting argument. The right hand side 
can be viewed as the number of subsets of size k chosen 
from the union of two disjoint sets, S of size m, and T of 
size n. On the left we sum the choices where all k are 
from S, then k-1 from S and 1 from T and so on up to all k 
chosen from set T. ⧠ 

For example: Suppose  
S = {a,b} with |S| = m = 2, and  
T = {c,d,e} with |T| = n = 3   and  
k = 2. So the sum on the right would be: 
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Theorem: 

for all natural numbers n ≥ 1.  

Proof: Using lemma 1 we can write . 

Now we observe that the sum is just a special case of 
lemma 2, where m = n, and k = n, as follows: 

⧠  
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